Due on Friday, September 5
In Problems 1-4, solve the given differential equation or initial value problem.

1. $\frac{d x}{d t}=3 x-e^{t} ; x(0)=-2$.
2. $\dot{x}(t)=\frac{-\left(4 x(t)^{5} t^{3}+\cos t\right)}{5 x(t)^{4} t^{4}+1}$.
3. $\dot{x}(t)+2 t x(t)=t^{3} ; x(0)=1$.
4. $\frac{d x}{d t}=e^{x} e^{2 t}-1$.
5. Solve the integral equation

$$
x(t)=1+\int_{0}^{t} e^{-(t-\tau)}\left[x(\tau)+x(\tau)^{2}\right] d \tau
$$

6. Let I be an interval and $\alpha \in \mathbb{R} \backslash\{0,1\}$ be given. Consider the differential equation

$$
\begin{equation*}
\dot{x}(t)+p(t) x(t)=q(t) x(t)^{\alpha}, \tag{*}
\end{equation*}
$$

where $p, q: I \rightarrow \mathbb{R}$ are given continuous functions. Let x be a strictly positive solution of $(*)$ on some interval $J \subset I$ and put $y(t)=x(t)^{1-\alpha}$ for all $t \in J$. Find a first-order linear differential equation satisfied by y.
7. Determine as much as you can about the solution of

$$
\dot{x}(t)=t^{2}+x(t)^{2} ; x(0)=0 .
$$

