Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

VI. Autonomous Systems: Orbits and Limit Sets

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be given and consider the autonomous system

$$\dot{x} = g(x).$$

We assume throughout this section that g is continuous and has the uniqueness property. For each $p \in \mathbb{R}^n$, let $(\eta_-(p), \eta_+(p))$ be the domain of the unique noncontinuable solution of

(6.1)
$$\dot{x} = g(x); \ x(0) = p,$$

and for each $t \in (\eta_{-}(p), \eta_{+}(p))$ we write $\varphi(t, p)$ for the value at time t of the solution of (6.1). The fact that the time does not appear explicitly on the right-hand side of (A) has the following important consequence: Let x be a solution of (A) and let $\tau \in \mathbb{R}$ be given. Then, the function y defined by $y(t) = x(t + \tau)$ is also a solution of (A).

By combining this observation with the uniqueness property we obtain the following fundamental result.

Proposition 6.1: Let $p \in \mathbb{R}^n$, $t \in \mathbb{R}$, and $\tau \in (\eta_-(p), \eta_+(p))$ be given. Then $t + \tau \in (\eta_-(p), \eta_+(p))$ if and only if $t \in (\eta_-(\varphi(\tau, p)), \eta_+(\varphi(\tau, p)))$. Moreover, if $t + \tau \in (\eta_-(p), \eta_+(p))$ then

(6.2)
$$\varphi(t+\tau,p) = \varphi(t,\varphi(\tau,p)).$$

Definition 6.2: A point $p \in \mathbb{R}^n$ is called a critical point or equilibrium point for (A) if g(p) = 0.

Definition 6.3: Let $p \in \mathbb{R}^n$ be given. The orbit through p is the curve $\gamma(p)$ defined by $\gamma(p) = \{\varphi(t,p) : \eta_-(p) < t < \eta_+(p)\}.$

It is useful to decompose each orbit into two pieces – one corresponding to positive times and the other to negative times.

Definition 6.4: Let $p \in \mathbb{R}^n$ be given. The positive semiorbit through p and the negative semiorbit through p are defined by

$$\gamma^{+}(p) = \{\varphi(t, p) : 0 \le t < \eta_{+}(p)\},\$$

$$\gamma^{-}(p) = \{\varphi(t, p) : \eta_{-}(p) < t \le 0\},\$$

respectively.

Notice that for every $p \in \mathbb{R}^n$ we have $p \in \gamma^+(p)$, $p \in \gamma^-(p)$ and $\gamma(p) = \gamma^-(p) \cup \gamma^+(p)$.

Definition 6.5: Let $S \subset \mathbb{R}^n$. We say that S is

- (i) invariant if $\gamma(p) \subset S$ for every $p \in S$;
- (ii) positively invariant if $\gamma^+(p) \subset S$ for every $p \in S$;
- (iii) negatively invariant if $\gamma^{-}(p) \subset S$ for every $p \in S$.

Notice that every orbit is invariant, every positive semiorbit is positively invariant, and every negative semiorbit is negatively invariant.

Proposition 6.6: Let $p, q \in \mathbb{R}^n$ be given. If $\gamma(p) \cap \gamma(q) \neq \emptyset$ then $\gamma(p) = \gamma(q)$.

Proposition 6.7: Let $p \in \mathbb{R}^n$ be given and assume that $g(p) \neq 0$. Then $\gamma(p)$ is a closed curve if and only if $\eta_-(p) = -\infty, \eta_+(p) = \infty$, and there exists T > 0 such that $\varphi(t+T,p) = \varphi(t,p)$ for all $t \in \mathbb{R}$.

Definition 6.8: Let $p \in \mathbb{R}^n$ be given. We say that $\gamma(p)$ is a periodic orbit if $g(p) \neq 0$ and $\gamma(p)$ is a closed curve.

Remark 6.9: Let $p \in \mathbb{R}^n$ be given and assume that $\gamma(p)$ is a periodic orbit. Let T be the smallest strictly positive time such that $\varphi(T,p) = p$. Then $\gamma(p) = \{\varphi(t,p) : 0 \le t \le T\}$ and $\varphi(t,p) \neq \varphi(s,p)$ for all $s,t \in [0,T)$ with $s \neq t$. In particular, $\gamma(p)$ is a simple closed curve.

Definition 6.10: Let $p, q \in \mathbb{R}^n$ be given. We say that q is an ω -limit point for pif $\eta_+(p) = \infty$ and there is a sequence $\{t_m\}_{m=1}^{\infty}$ of times such that $t_m \geq 0$ for all $m \in \mathbb{N}, t_m \to \infty$ as $m \to \infty$ and $\varphi(t_m, p) \to q$ as $m \to \infty$. We say that q is an α -limit point for p if $\eta_-(p) = -\infty$ and there is a sequence of times $\{t_m\}_{m=1}^{\infty}$ such that $t_m \leq 0$ for all $m \in \mathbb{N}, t_m \to -\infty$ as $m \to \infty$ and $\varphi(t_m, p) \to q$ as $m \to \infty$. The set of all ω -limit points for p is called the ω -limit set for p and is denoted $\omega(p)$. The set of all α -limit points for p is called the α -limit set for p and is denoted $\alpha(p)$.

Theorem 6.11: Let $p \in \mathbb{R}^n$ be given and assume that $\gamma^+(p)$ is bounded. Then $\omega(p)$ is nonempty, closed, bounded, and invariant. Moreover, $dist(\varphi(t,p), \omega(p)) \to 0$ as $t \to \infty$. Finally, $\omega(p)$ cannot be expressed as a union of two nonempty closed disjoint sets.

Definition 6.12: Let $V : \mathbb{R}^n \to \mathbb{R}$ be given and assume that V is continuously differentiable. We define $\dot{V} : \mathbb{R}^n \to \mathbb{R}$ by

$$\dot{V}(z) = \nabla V(z) \cdot g(z)$$
 for all $z \in \mathbb{R}^n$.

Remark 6.13: If $V : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and x is a solution of (A) then

$$\frac{d}{dt}V(x(t)) = \dot{V}(x(t)) \quad \text{for all } t \in \text{Dom}(x)$$

by virtue of the chain rule.

Theorem 6.14 (Invariance Principle): Let $p \in \mathbb{R}^n$ and $V : \mathbb{R}^n \to \mathbb{R}$ be given. Assume that V is continuously differentiable and that $\dot{V}(z) \leq 0$ for all $z \in \mathbb{R}^n$. Let $S = \{z \in \mathbb{R}^n : \dot{V}(z) = 0\}$. If $\gamma^+(p)$ is bounded then $\omega(p) \subset S$.

Proposition 6.15: Assume that $V : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and satisfies $V(z) \to \infty$ as $||z|| \to \infty$. If $\dot{V}(z) \leq 0$ for all $z \in \mathbb{R}^n$, then $\gamma^+(p)$ is bounded for each $p \in \mathbb{R}^n$.

Definition 6.16: Let S and T be subsets of \mathbb{R}^n . We say that S and T are homeomorphic if there is a bijective mapping $F: S \to T$ such that F and F^{-1} are continuous.

Theorem 6.17: Let S be a subset of \mathbb{R}^n that is positively invariant and homeomorphic to $\{z \in \mathbb{R}^n : ||z|| \le 1\}$. Then S contains a critical point.