VII. Positive Definite Functions

Recall that a real $n \times n$ matrix A is said to be positive definite if

$$
z \cdot(A z)=\sum_{i, j=1}^{n} A_{i j} z_{i} z_{j}>0 \quad \text { for all } z \in \mathbb{R}^{n} \backslash\{0\} .
$$

Recall also that if a real $n \times n$ matrix A is symmetric (i.e. if $A=A^{T}$) then all eigenvalues of A are real and there is an orthormal basis for \mathbb{R}^{n} consisting solely of eigenvectors of A.

Proposition 7.1: Let A be a real, symmetric $n \times n$ matrix. For each $k=1,2 \ldots n$, define the $k \times k$ matrix $A^{(k)}$ by $A_{i j}^{(k)}=A_{i j}$ for $i, j=1,2, \ldots k$. The following three statements are equivalent.
(i) A is positive definite.
(ii) All eigenvalues of A are strictly positive.
(iii) $\operatorname{det}\left(A^{(k)}\right)>0$ for each $k=1,2, \ldots, n$.

Definition 7.2:

Let $x^{*} \in \mathbb{R}^{n}$ and $V:\left(\operatorname{Dom}(V) \subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ be given. We say that V is
(a) locally positive definite at x^{*} if there is an open set U such that $x^{*} \in U \subset \operatorname{Dom}(V), V\left(x^{*}\right)=0$, and $V(z)>0$ for all $z \in U \backslash\left\{x^{*}\right\}$.
(b) locally negative definite at x^{*} if $-V$ is positive definite at x^{*}.
(c) globally positive definite at x^{*} if $\operatorname{Dom}(V)=\mathbb{R}^{n}, V\left(x^{*}\right)=0$, and $V(z)>0$ for all $z \in \mathbb{R}^{n} \backslash\left\{x^{*}\right\}$.
(d) globally negative definite at x^{*} if $-V$ is globally positive definite at x^{*}.
(e) locally negative semidefinite at x^{*} if there is an open set U such that $x^{*} \in U \subset \operatorname{Dom}(V), V\left(x^{*}\right)=0$, and $V(z) \leq 0$ for all $z \in U$.
(f) globally negative semidefinite at x^{*} if $\operatorname{Dom}(V)=\mathbb{R}^{n}, V\left(x^{*}\right)=0$ and $V(z) \leq 0$ for all $z \in \mathbb{R}^{n}$.

Theorem 7.3: Let $x^{*} \in \mathbb{R}^{n}$, an open set U with $x^{*} \in U \subset \mathbb{R}^{n}$, and $V: U \rightarrow \mathbb{R}$ be given. Assume that V has continuous second order partial derivatives and define the $n \times n$ matrix $H\left(x^{*}\right)$ by

$$
\left(H\left(x^{*}\right)\right)_{i j}=V_{, i, j}\left(x^{*}\right)
$$

[Note the $H\left(x^{*}\right)$ is symmetric by equality of mixed partials.] Assume that $V\left(x^{*}\right)=0$, $\nabla V\left(x^{*}\right)=0$, and that $H\left(x^{*}\right)$ is positive definite. Then V is locally positive definite at x^{*}.

Corollary 7.4: Let $x^{*} \in \mathbb{R}^{2}$, an open set U with $x^{*} \in U \subset \mathbb{R}^{2}$, and $V: U \rightarrow \mathbb{R}$ be given. Assume that V has continuous second-order partial derivatives and put $\alpha=V_{, 1,1}\left(x^{*}\right), \quad \beta=V_{, 1,2}\left(x^{*}\right)$, and $\gamma=V_{, 2,2}\left(x^{*}\right)$. Assume that $V\left(x^{*}\right)=V_{, 1}\left(x^{*}\right)=$ $V_{, 2}\left(x^{*}\right)=0$.
(i) If $\alpha>0$ and $\alpha \gamma-\beta^{2}>0$ then V is locally positive definite at x^{*}.
(ii) If $\alpha<0$ and $\alpha \gamma-\beta^{2}>0$ then V is locally negative definite at x^{*}.

