Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

VII. Positive Definite Functions

Recall that a real $n \times n$ matrix A is said to be *positive definite* if

$$z \cdot (Az) = \sum_{i,j=1}^{n} A_{ij} z_i z_j > 0 \quad \text{for all } z \in \mathbb{R}^n \setminus \{0\}.$$

Recall also that if a real $n \times n$ matrix A is symmetric (i.e. if $A = A^T$) then all eigenvalues of A are real and there is an orthormal basis for \mathbb{R}^n consisting solely of eigenvectors of A.

Proposition 7.1: Let A be a real, symmetric $n \times n$ matrix. For each k = 1, 2 ... n, define the $k \times k$ matrix $A^{(k)}$ by $A_{ij}^{(k)} = A_{ij}$ for i, j = 1, 2, ... k. The following three statements are equivalent.

- (i) A is positive definite.
- (ii) All eigenvalues of A are strictly positive.
- (iii) det $(A^{(k)}) > 0$ for each k = 1, 2, ..., n.

Definition 7.2:

Let $x^* \in \mathbb{R}^n$ and $V : (\text{Dom}(V) \subset \mathbb{R}^n) \to \mathbb{R}$ be given. We say that V is

- (a) locally positive definite at x^* if there is an open set U such that $x^* \in U \subset \text{Dom}(V), V(x^*) = 0$, and V(z) > 0 for all $z \in U \setminus \{x^*\}$.
- (b) locally negative definite at x^* if -V is positive definite at x^* .
- (c) globally positive definite at x^* if $\text{Dom}(V) = \mathbb{R}^n$, $V(x^*) = 0$, and V(z) > 0 for all $z \in \mathbb{R}^n \setminus \{x^*\}$.
- (d) globally negative definite at x^* if -V is globally positive definite at x^* .
- (e) locally negative semidefinite at x^* if there is an open set U such that $x^* \in U \subset \text{Dom}(V), V(x^*) = 0$, and $V(z) \leq 0$ for all $z \in U$.
- (f) globally negative semidefinite at x^* if $\text{Dom}(V) = \mathbb{R}^n$, $V(x^*) = 0$ and $V(z) \le 0$ for all $z \in \mathbb{R}^n$.

Theorem 7.3: Let $x^* \in \mathbb{R}^n$, an open set U with $x^* \in U \subset \mathbb{R}^n$, and $V : U \to \mathbb{R}$ be given. Assume that V has continuous second order partial derivatives and define the $n \times n$ matrix $H(x^*)$ by

$$(H(x^*))_{ij} = V_{i,j}(x^*)$$

[Note the $H(x^*)$ is symmetric by equality of mixed partials.] Assume that $V(x^*) = 0$, $\nabla V(x^*) = 0$, and that $H(x^*)$ is positive definite. Then V is locally positive definite at x^* .

Corollary 7.4: Let $x^* \in \mathbb{R}^2$, an open set U with $x^* \in U \subset \mathbb{R}^2$, and $V : U \to \mathbb{R}$ be given. Assume that V has continuous second-order partial derivatives and put $\alpha = V_{,1,1}(x^*)$, $\beta = V_{,1,2}(x^*)$, and $\gamma = V_{,2,2}(x^*)$. Assume that $V(x^*) = V_{,1}(x^*) = V_{,2}(x^*) = 0$.

- (i) If $\alpha > 0$ and $\alpha \gamma \beta^2 > 0$ then V is locally positive definite at x^* .
- (ii) If $\alpha < 0$ and $\alpha \gamma \beta^2 > 0$ then V is locally negative definite at x^* .