Assignment 2

Due on Friday, October 1

1. Let $x_{n}=\frac{n}{n+1}\left[1+\cos \left(\frac{n \pi}{2}\right)\right]$ for all $n \in \mathbb{N}$. Find all cluster points of $\left\{x_{n}\right\}_{n=1}^{\infty}$ and find $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$.
2. Show that the sequence defined recursively by

$$
x_{1}=\sqrt{2}, \quad x_{n+1}=\sqrt{2+\sqrt{x_{n}}}
$$

for all $n \in \mathbb{N}$ is convergent.
3.* Consider the sequence $\left\{x_{n}\right\}_{n+1}^{\infty}$ defined recursively by $x_{1}=2, x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}}$ for all $n \in \mathbb{N}$.
(a) Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent.
(b) Find $\lim _{n \rightarrow \infty} x_{n}$.
4. Show that every sequence has a monotonic subsequence.
5.* Let $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty},\left\{z_{n}\right\}_{n=1}^{\infty}$ be sequences and let $l \in \mathbb{R}$ be given. Assume that $x_{n} \rightarrow l$ as $n \rightarrow \infty, z_{n} \rightarrow l$ as $n \rightarrow \infty$ and that

$$
x_{n} \leq y_{n} \leq z_{n} \quad \text { for all } n \in \mathbb{N}
$$

Show that $y_{n} \rightarrow l$ as $n \rightarrow \infty$.
6.* Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence and assume that every $l \in(0,1]$ is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$. Show that 0 is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.
7.* Show that there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that every real number is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.
8. Give an example of two bounded sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ such that neither sequence is convergent,

$$
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\left(\limsup _{n \rightarrow \infty} x_{n}\right)+\left(\limsup _{n \rightarrow \infty} y_{n}\right),
$$

but

$$
\limsup _{n \rightarrow \infty}\left(x_{n} y_{n}\right) \neq\left(\limsup _{n \rightarrow \infty} x_{n}\right)\left(\limsup _{n \rightarrow \infty} y_{n}\right)
$$

*Problems marked with an asterisk should be written up and handed in.

