Assignment 2

Due on Friday, October 1

- 1. Let $x_n = \frac{n}{n+1} \left[1 + \cos\left(\frac{n\pi}{2}\right) \right]$ for all $n \in \mathbb{N}$. Find all cluster points of $\{x_n\}_{n=1}^{\infty}$ and find $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$.
- 2. Show that the sequence defined recursively by

$$x_1 = \sqrt{2}, \quad x_{n+1} = \sqrt{2 + \sqrt{x_n}}$$

for all $n \in \mathbb{N}$ is convergent.

- 3.* Consider the sequence $\{x_n\}_{n+1}^{\infty}$ defined recursively by $x_1 = 2$, $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$ for all $n \in \mathbb{N}$.
 - (a) Show that $\{x_n\}_{n=1}^{\infty}$ is convergent.
 - (b) Find $\lim_{n \to \infty} x_n$.
- 4. Show that every sequence has a monotonic subsequence.
- 5.* Let $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$, $\{z_n\}_{n=1}^{\infty}$ be sequences and let $l \in \mathbb{R}$ be given. Assume that $x_n \to l$ as $n \to \infty$, $z_n \to l$ as $n \to \infty$ and that

$$x_n \leq y_n \leq z_n \quad \text{for all} \quad n \in \mathbb{N}.$$

Show that $y_n \to l$ as $n \to \infty$.

- 6.* Let $\{x_n\}_{n=1}^{\infty}$ be a sequence and assume that every $l \in (0, 1]$ is a cluster point of $\{x_n\}_{n=1}^{\infty}$. Show that 0 is a cluster point of $\{x_n\}_{n=1}^{\infty}$.
- 7.* Show that there is a sequence $\{x_n\}_{n=1}^{\infty}$ such that every real number is a cluster point of $\{x_n\}_{n=1}^{\infty}$.

8. Give an example of two bounded sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ such that neither sequence is convergent,

$$\limsup_{n \to \infty} (x_n + y_n) = \left(\limsup_{n \to \infty} x_n\right) + \left(\limsup_{n \to \infty} y_n\right),$$

but

$$\limsup_{n \to \infty} (x_n y_n) \neq \left(\limsup_{n \to \infty} x_n\right) \left(\limsup_{n \to \infty} y_n\right)$$

*Problems marked with an asterisk should be written up and handed in.