Solutions to Assignment 7

3. Assume that g is twice differentiable, $g(r)=0, g^{\prime}(x)>0$ and $g^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$. Notice that $g(x)>0$ if and only if $x>r$. We shall make use of the following proposition proved in lecture.
Prop: $z-\frac{g(z)}{g^{\prime}(z)}>r \quad \forall z \in(r, \infty)$.
Claim: $r<x_{n+1}<x_{n} \quad \forall n \in \mathbb{N}$.
The claim will be proved by induction
Base Case: $x_{1}>x_{2}>r$ by assumption.
Inductive Step: Let $k \in \mathbb{N}$ be given and assume that

$$
r<x_{k+1}<x_{k} .
$$

By the mean value theorem we may choose $c_{k} \in\left(x_{k+1}, x_{k}\right)$ such that

$$
g^{\prime}\left(c_{k}\right)=\frac{g\left(x_{k+1}\right)-g\left(x_{k}\right)}{x_{k+1}-x_{k}} .
$$

Since $g^{\prime \prime}>0$ and $c_{k}>x_{k+1}$, it follows that $g^{\prime}\left(c_{k}\right)>g^{\prime}\left(x_{k+1}\right)$. Notice that

$$
x_{k+2}=x_{k+1}-\frac{g\left(x_{k+1}\right)}{g^{\prime}\left(c_{k}\right)} .
$$

Since $g^{\prime}\left(x_{k+1}\right)>0$ and $g\left(x_{k+1}\right)>0$ we deduce that

$$
x_{k+2}>x_{k+1}-\frac{g\left(x_{k+1}\right)}{g^{\prime}\left(x_{k+1}\right)} .
$$

The proposition yields $x_{k+2}>r$. Since $g\left(x_{k+1}\right)>0$ and $g^{\prime}\left(c_{k}\right)>0$ we conclude that

$$
x_{k+2}-x_{k+1}=-\frac{g\left(x_{k+1}\right)}{g^{\prime}\left(c_{k}\right)}<0
$$

so that $r<x_{k+2}<x_{k+1}$.
The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is decreasing and bounded below, and therefore convergent. Let $L=\lim _{n \rightarrow \infty} x_{n}$. For each $n \in \mathbb{N}$, we choose $c_{n} \in\left(x_{n+1}, x_{n}\right)$ such that

$$
g^{\prime}\left(c_{n}\right)=\frac{g\left(x_{n+1}\right)-g\left(x_{n}\right)}{x_{n+1}-x_{n}},
$$

and notice that $c_{n} \rightarrow L$ as $n \rightarrow \infty$ by the squeeze theorem. Using the recursion relation and the continuity of g and g^{\prime} we find that

$$
L=L-\frac{g(L)}{g^{\prime}(L)},
$$

which yields $g(L)=0$. It follows that $L=r$ and $x_{n} \rightarrow r$ as $n \rightarrow \infty$.
4. Notice that

$$
f_{n}(x)-\alpha_{n}<g(x)<f_{n}(x)+\alpha_{n} \quad \forall n \in \mathbb{N}, x \in[a, b] .
$$

Let $P \in \mathcal{P}[a, b]$ be given. Then we have

$$
\begin{aligned}
& m_{i}(g) \geq m_{i}\left(f_{n}\right)-\alpha_{n} \quad \text { and } \\
& M_{i}(g) \leq M_{i}\left(f_{n}\right)+\alpha_{n}
\end{aligned}
$$

so that

$$
U(g, P)-L(g, P) \leq 2 \alpha_{n}+U\left(f_{n}, P\right)-L\left(f_{n}, P\right)
$$

Let $\epsilon>0$ be given and choose $N \in \mathbb{N}$ such that $\left|\alpha_{N}\right|<\epsilon / 4$. Since $f_{N} \in \mathcal{R}[a, b]$ we may choose $P_{N} \in \mathcal{P}[a, b]$ such that

$$
U\left(f_{N}, P_{n}\right)-L\left(f_{N}, P_{N}\right)<\epsilon / 2
$$

It follows that

$$
U(g, P)-L(g, P) \leq 2 \alpha_{N}+U\left(f_{N}, P_{N}\right)-L\left(f_{N}, P_{N}\right)<\epsilon / 2+\epsilon / 2
$$

and $g \in \mathcal{R}[a, b]$.
To prove the final claim, observe that

$$
\begin{aligned}
\left|\int_{a}^{b} g-\int_{a}^{b} f_{n}\right| & =\left|\int_{a}^{b}\left(g-f_{n}\right)\right| \\
& \leq \int_{a}^{b}\left|g-f_{n}\right| \\
& \leq \int_{a}^{b} \alpha_{n}=\alpha_{n}(b-a)
\end{aligned}
$$

Since $\alpha_{n}(b-a) \rightarrow 0$ as $n \rightarrow \infty$ we conclude that

$$
\int_{a}^{b} g=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}
$$

5. Since $\mathcal{R}[a, b] \subset \mathcal{B}[a, b]$, we may choose $M>0$ such that

$$
|f(t)| \leq M \quad \forall t \in[a, b] .
$$

Let $\epsilon>0$ be given and put $\delta=\epsilon / M$. Then for all $x, y \in[a, b]$ with $|x-y|<\delta$ we have

$$
\begin{aligned}
|F(x)-F(y)| & =\left|\int_{a}^{x} f(t) d t-\int_{a}^{y} f(t) d t\right| \\
& =\left|\int_{y}^{x} f(t) d t\right| \\
& \leq\left|\int_{y}^{x} M d t\right| \leq M|x-y| \\
& <M\left(\frac{\epsilon}{M}\right)=\epsilon
\end{aligned}
$$

6. Let $A=\int_{a}^{b} g^{2}, B=\int_{a}^{b} f g$, and $C=\int_{a}^{b} f^{2}$. then

$$
\begin{aligned}
H(\lambda)= & \int_{a}^{b}(f(x)-\lambda g(x))^{2} d x \\
& =C-2 B \lambda+A \lambda^{2} \\
& \geq 0 \text { for all } \lambda \in \mathbb{R}
\end{aligned}
$$

Case 1: $A \neq 0$.
Then the quadratic equation $A \lambda^{2}-2 B \lambda+C=0$ has at most one real root, so that $4 B^{2}-4 A C \leq 0$. This yields $B \leq A^{1 / 2} C^{1 / 2}$ which is the desired inequality.
Case 2: $A=0$.
Then the linear expression $C-2 B \lambda$ is always nonnegative. This implies $B=0$ which is the desired inequality when $A=0$.

