Solutions to Assignment 6

3. (a) Let $x \in \mathbb{R}$ be given. Then for each $h \in \mathbb{R} \backslash\{0\}$ we may choose C_{h} between x and $x+h$ and C_{-h} between x and $x-h$ such that

$$
\begin{aligned}
& f(x+h)=f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}\left(C_{h}\right) h^{2} \\
& f(x-h)=f(x)-f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}\left(C_{-h}\right) h^{2}
\end{aligned}
$$

by virtue of Taylor's Theorem. It follows that $\forall h \in \mathbb{R} \backslash\{0\}$ we have

$$
\frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=\frac{1}{2} f^{\prime \prime}\left(C_{h}\right)+\frac{1}{2} f^{\prime \prime}\left(C_{-h}\right) .
$$

Notice that $C_{h} \rightarrow x$ and $C_{-h} \rightarrow x$ as $h \rightarrow 0$. Since $f^{\prime \prime}$ is continuous at x, we have

$$
\lim _{h \rightarrow 0} f^{\prime \prime}\left(C_{h}\right)=f^{\prime \prime}(x), \lim _{h \rightarrow 0} f^{\prime \prime}\left(C_{-h}\right)=f^{\prime \prime}(x)
$$

It follows that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)
$$

(b) Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x)=\left\{\begin{array}{rl}
1 & \forall x>0 \\
0 & x=0 \\
-1 & x<0
\end{array}\right.
$$

and notice that g is not continuous at 0 , so that g certainly does not have a second derivative at 0 . On the other hand, $g(h)+g(-h)-2 g(0)=0$ for all $h \in \mathbb{R}$, so that

$$
\lim _{h \rightarrow 0} \frac{g(h)+g(-h)-2 g(0)}{h^{2}}=0
$$

5. By Taylor's Theorem, we may choose $C_{1} \in(0,1)$ and $C_{-1} \in(-1,0)$ so that

$$
\begin{aligned}
f(1) & =f(0)+f^{\prime}(0)+\frac{1}{2} f^{\prime \prime}(0)+\frac{1}{6} f^{\prime \prime \prime}\left(C_{1}\right) \\
f(-1) & =f(0)-f^{\prime}(0)+\frac{1}{2} f^{\prime \prime}(0)-\frac{1}{6} f^{\prime \prime \prime}\left(C_{-1}\right)
\end{aligned}
$$

In particular, we have

$$
\begin{aligned}
1 & =\frac{1}{2} f^{\prime \prime}(0)+\frac{1}{6} f^{\prime \prime \prime}\left(C_{1}\right) \\
0 & =\frac{1}{2} f^{\prime \prime \prime}(0)-\frac{1}{6} f^{\prime \prime \prime}\left(C_{-1}\right)
\end{aligned}
$$

Subtracting these two equations gives $1=\frac{1}{6} f^{\prime \prime \prime}\left(C_{1}\right)+\frac{1}{6} f^{\prime \prime \prime}\left(C_{-1}\right)$, i.e., $f^{\prime \prime \prime}\left(C_{1}\right)+$ $f^{\prime \prime \prime}\left(C_{-1}\right)=6$. It follows that $f^{\prime \prime \prime}\left(C_{1}\right) \geq 3$ or $f^{\prime \prime \prime}\left(C_{-1}\right) \geq 3$.
6. Suppose that f is not the zero function. Then we may choose $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)^{2}>0$. Since f^{2} is continuous we may choose $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset(a, b)$ and that

$$
\left|f(x)^{2}-f\left(x_{0}\right)^{2}\right|<\frac{1}{2} f\left(x_{0}\right)^{2} \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right) .
$$

It follows that

$$
f(x)^{2} \geq \frac{1}{2} f\left(x_{0}\right)^{2} \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

Therefore, we have

$$
\begin{aligned}
\int_{a}^{b} f^{2} & =\int_{a}^{x_{0}-\delta} f^{2}+\int_{x_{0}-\delta}^{x_{0}+\delta} f^{2}+\int_{x_{0}-\delta}^{b} f^{2} \\
& \geq 0+2 \delta\left(\frac{1}{2} f\left(x_{0}\right)^{2}\right)+0=\delta f\left(x_{0}\right)^{2} \\
& >0
\end{aligned}
$$

7. Choose $m, M \in \mathbb{R}$ such that

$$
m \leq f(x) \leq M \text { for all } x \in[a, b]
$$

Let $\varepsilon>0$ be given. Choose $c \in(a, b)$ such that

$$
(M-m)(c-a)<\frac{\varepsilon}{2} .
$$

Since f is integrable on $[c, b]$, we may choose $Q \in \mathcal{P}[c, b]$ such that

$$
U(f, Q)-L(f, Q)<\frac{\varepsilon}{2}
$$

Put $P=\{a\} \cup Q$ and notice that $P \in \mathcal{P}[a, b]$. Observe also that

$$
\begin{aligned}
U(f, P)-L(f, P) & \leq(M-m)(c-a)+U(f, Q)-L(f, Q) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}
\end{aligned}
$$

It follows that $f \in \mathcal{R}[a, b]$.

