Solutions to Assignment 6

3. (a) Let $x \in \mathbb{R}$ be given. Then for each $h \in \mathbb{R} \setminus \{0\}$ we may choose C_h between x and x + h and C_{-h} between x and x - h such that

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(C_h)h^2$$
$$f(x-h) = f(x) - f'(x)h + \frac{1}{2}f''(C_{-h})h^2,$$

by virtue of Taylor's Theorem. It follows that $\forall h \in \mathbb{R} \setminus \{0\}$ we have

$$\frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \frac{1}{2}f''(C_h) + \frac{1}{2}f''(C_{-h}).$$

Notice that $C_h \to x$ and $C_{-h} \to x$ as $h \to 0$. Since f'' is continuous at x, we have

$$\lim_{h \to 0} f''(C_h) = f''(x), \ \lim_{h \to 0} f''(C_{-h}) = f''(x).$$

It follows that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

(b) Define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} 1 & \forall x > 0 \\ 0 & x = 0 \\ -1 & x < 0, \end{cases}$$

and notice that g is not continuous at 0, so that g certainly does not have a second derivative at 0. On the other hand, g(h) + g(-h) - 2g(0) = 0 for all $h \in \mathbb{R}$, so that

$$\lim_{h \to 0} \frac{g(h) + g(-h) - 2g(0)}{h^2} = 0.$$

5. By Taylor's Theorem, we may choose $C_1 \in (0,1)$ and $C_{-1} \in (-1,0)$ so that

$$f(1) = f(0) + f'(0) + \frac{1}{2}f''(0) + \frac{1}{6}f'''(C_1)$$

$$f(-1) = f(0) - f'(0) + \frac{1}{2}f''(0) - \frac{1}{6}f'''(C_{-1}).$$

In particular, we have

$$1 = \frac{1}{2}f''(0) + \frac{1}{6}f'''(C_1),$$

$$0 = \frac{1}{2}f'''(0) - \frac{1}{6}f'''(C_{-1}).$$

Subtracting these two equations gives $1 = \frac{1}{6} f'''(C_1) + \frac{1}{6} f'''(C_{-1})$, i.e., $f'''(C_1) + f'''(C_{-1}) = 6$. It follows that $f'''(C_1) \ge 3$ or $f'''(C_{-1}) \ge 3$.

6. Suppose that f is not the zero function. Then we may choose $x_0 \in (a, b)$ such that $f(x_0)^2 > 0$. Since f^2 is continuous we may choose $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \subset (a, b)$ and that

$$\left|f(x)^{2} - f(x_{0})^{2}\right| < \frac{1}{2}f(x_{0})^{2} \ \forall x \in (x_{0} - \delta, x_{0} + \delta).$$

It follows that

$$f(x)^2 \ge \frac{1}{2}f(x_0)^2 \ \forall x \in (x_0 - \delta, x_0 + \delta)$$

Therefore, we have

$$\int_{a}^{b} f^{2} = \int_{a}^{x_{0}-\delta} f^{2} + \int_{x_{0}-\delta}^{x_{0}+\delta} f^{2} + \int_{x_{0}-\delta}^{b} f^{2}$$

$$\geq 0 + 2\delta \left(\frac{1}{2}f(x_{0})^{2}\right) + 0 = \delta f(x_{0})^{2}$$

$$\geq 0.$$

7. Choose $m, M \in \mathbb{R}$ such that

$$m \leq f(x) \leq M$$
 for all $x \in [a, b]$.

Let $\varepsilon > 0$ be given. Choose $c \in (a, b)$ such that

$$(M-m)(c-a) < \frac{\varepsilon}{2}.$$

Since f is integrable on [c,b], we may choose $Q\in \mathcal{P}[c,b]$ such that

$$U(f,Q) - L(f,Q) < \frac{\varepsilon}{2}.$$

Put $P = \{a\} \cup Q$ and notice that $P \in \mathcal{P}[a, b]$. Observe also that

$$U(f,P) - L(f,P) \leq (M-m)(c-a) + U(f,Q) - L(f,Q)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.$$

It follows that $f \in \mathcal{R}[a, b]$.