
21-355 Principles of Real Analysis I Fall 2004

Solutions to Assignment 5

1. Claim 1: f is discontinuous at each z ∈ Q ∩ [0, 1].

Proof of Claim 1: Let z ∈ Q ∩ [0, 1] be given and note that f(z) > 0. Since
cl([0, 1]\Q) = [0, 1], we may choose a sequence {xn}∞n=1 such that xn ∈ [0, 1]\Q
for every n ∈ N and xn → z as n → ∞. Since f(xn) = 0 for every n ∈ N, we
have lim

n→∞
f(xn) = 0 6= f(z). It follows that f is discontinuous at z.

Claim 2: f is continuous at each y ∈ [0, 1]\Q.

The proof of Claim 2 will make use of the following lemma.

Lemma: Let y ∈ [0, 1]\Q and N ∈ N be given. There exists δ > 0 such that
q(x) > N for all x ∈ Bδ(y) ∩Q ∩ [0, 1].

Proof of Lemma: For each n ∈ N let Dn = {x ∈ Q∩ [0, 1] : q(x) = n}. Notice
that D1 = {0, 1}, and for each n ≥ 2, Dn contains at most n− 1 elements. Let
An = {x ∈ Q ∩ [0, 1] : q(x) ≤ N} and notice that

AN =
N∪

n=1
Dn.

It follows that AN is nonempty and finite. Put

δ = min {|y − x| : x ∈ AN}

and notice that δ > 0. Now, let x ∈ Bδ(y)∩Q∩ [0, 1] be given. Since |x−y| < δ,
it follows that x /∈ AN and consequently q(x) > N . ¤

Proof of Claim 2: Let y ∈ [0, 1]\Q and ε > 0 be given. Choose N ∈ N with
N > 1

ε
. Now choose δ > 0 as in the lemma. Let x ∈ Bδ(y) ∩ [0, 1] be given. If

x ∈ [0, 1]\Q then

|f(x)− f(y)| = |0− 0| = 0 < ε.

If x ∈ Q then q(x) > N so that

|f(x)− f(y)| = 1

q(x)
<

1

N
< ε.

It follows that f is continuous at y.
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4 (a) Assume that f and g are bounded on S. Choose M1,M2 > 0 such that

|f(x)| ≤ M1, |g(x)| ≤ M2 ∀x ∈ S.

Let ε > 0 be given. Since f, g are uniformly continuous on S we may
choose δ1, δ2 > 0 such that

|f(x)− f(y)| < ε

2M2

∀x, y ∈ S, |x− y| < δ1

|g(x)− g(y)| < ε

2M1

∀x, y ∈ S|x− y| < δ2,

and put δ = min {δ1, δ2}.
Then, for all x, y ∈ S with |x− y| < δ we have

|F (x) −F (y)| = |f(x)g(x)− f(y)g(y)|

≤ |f(x)(g(x)− g(y))|+ |g(y)(f(x)− f(y))|

≤ M1|g(x)− g(y)|+ M2|f(x)− f(y)|

< M1

(
ε

2M1

)
+ M2

(
ε

2M2

)
= ε.

It follows that F is uniformly continuous on S.

(b) If f is bounded, but g is not, then F need not be uniformly continuous.
As an example, take S = R,

f(x) =
sin(x2)

1 + |x| ∀x ∈ R

g(x) = 1 + |x| ∀x ∈ R.

Then g is uniformly continuous (take δ = ε), and f is uniformly continuous
by Problem 4 on Assignment 4. Notice that

F (x) = f(x)g(x) = sin(x2) ∀x ∈ R.

We showed that F is not uniformly continuous in one of the problem
sessions.

6. Define g : R → R by g(x) = f(x) − αx for all x ∈ R. Notice that g is
differentiable on R and g′(x) = f ′(x)−α for all x ∈ R. It follows that g′(a) < 0
and g′(b) > 0. Since g is continuous on [a, b], we may choose c ∈ [a, b] such that
g(c) ≤ g(x) for all x ∈ [a, b]. Notice that c 6= a, because if we had g(x) ≥ g(a)
for all x ∈ [a, b], it would follow that g′(a) ≥ 0. A similar argument gives c 6= b.
Consequently, c ∈ (a, b) and g′(c) = 0. It follows that f ′(c) = α.
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7. Assume that f is differentiable on R and that f ′ is bounded. Choose M > 0
such that |f ′(x)| ≤ M for all x ∈ R. For x, y ∈ R with x 6= y we may choose
Cx,y between x and y such that

f(x)− f(y) = f ′(Cx,y)(x− y)

by virtue of the mean value theorem. It follows that

|f(x)− f(y)| = |f ′(Cx,y)| · |x− y|

≤ M |x− y|

∀x, y ∈ R, x 6= y.

If x = y, then f(x)− f(y) = x− y = 0, and consequently

(∗) |f(x)− f(y)| ≤ M |x− y| ∀x, y ∈ R.

Let ε > 0 be given and put δ = ε
M

. Then, for all x, y ∈ R with |x − y| < δ we
have

|f(x)− f(y)| ≤ M |x− y| < M
( ε

M

)
= ε.
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