Solutions to Assignment 5

1. Claim 1: f is discontinuous at each $z \in \mathbb{Q} \cap[0,1]$.

Proof of Claim 1: Let $z \in \mathbb{Q} \cap[0,1]$ be given and note that $f(z)>0$. Since $c l([0,1] \backslash \mathbb{Q})=[0,1]$, we may choose a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $x_{n} \in[0,1] \backslash \mathbb{Q}$ for every $n \in \mathbb{N}$ and $x_{n} \rightarrow z$ as $n \rightarrow \infty$. Since $f\left(x_{n}\right)=0$ for every $n \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0 \neq f(z)$. It follows that f is discontinuous at z.

Claim 2: f is continuous at each $y \in[0,1] \backslash \mathbb{Q}$.
The proof of Claim 2 will make use of the following lemma.
Lemma: Let $y \in[0,1] \backslash \mathbb{Q}$ and $N \in \mathbb{N}$ be given. There exists $\delta>0$ such that $q(x)>N$ for all $x \in B_{\delta}(y) \cap \mathbb{Q} \cap[0,1]$.

Proof of Lemma: For each $n \in \mathbb{N}$ let $D_{n}=\{x \in \mathbb{Q} \cap[0,1]: q(x)=n\}$. Notice that $D_{1}=\{0,1\}$, and for each $n \geq 2, D_{n}$ contains at most $n-1$ elements. Let $A_{n}=\{x \in \mathbb{Q} \cap[0,1]: q(x) \leq N\}$ and notice that

$$
A_{N}=\bigcup_{n=1}^{N} D_{n} .
$$

It follows that A_{N} is nonempty and finite. Put

$$
\delta=\min \left\{|y-x|: x \in A_{N}\right\}
$$

and notice that $\delta>0$. Now, let $x \in B_{\delta}(y) \cap \mathbb{Q} \cap[0,1]$ be given. Since $|x-y|<\delta$, it follows that $x \notin A_{N}$ and consequently $q(x)>N$.

Proof of Claim 2: Let $y \in[0,1] \backslash \mathbb{Q}$ and $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ with $N>\frac{1}{\epsilon}$. Now choose $\delta>0$ as in the lemma. Let $x \in B_{\delta}(y) \cap[0,1]$ be given. If $x \in[0,1] \backslash \mathbb{Q}$ then

$$
|f(x)-f(y)|=|0-0|=0<\epsilon
$$

If $x \in \mathbb{Q}$ then $q(x)>N$ so that

$$
|f(x)-f(y)|=\frac{1}{q(x)}<\frac{1}{N}<\epsilon
$$

It follows that f is continuous at y.

4 (a) Assume that f and g are bounded on S. Choose $M_{1}, M_{2}>0$ such that

$$
|f(x)| \leq M_{1},|g(x)| \leq M_{2} \quad \forall x \in S .
$$

Let $\epsilon>0$ be given. Since f, g are uniformly continuous on S we may choose $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{aligned}
& |f(x)-f(y)|<\frac{\epsilon}{2 M_{2}} \quad \forall x, y \in S,|x-y|<\delta_{1} \\
& |g(x)-g(y)|<\frac{\epsilon}{2 M_{1}} \quad \forall x, y \in S|x-y|<\delta_{2}
\end{aligned}
$$

and put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then, for all $x, y \in S$ with $|x-y|<\delta$ we have

$$
\begin{aligned}
\mid F(x) & -F(y)|=|f(x) g(x)-f(y) g(y)| \\
& \leq|f(x)(g(x)-g(y))|+|g(y)(f(x)-f(y))| \\
& \leq M_{1}|g(x)-g(y)|+M_{2}|f(x)-f(y)| \\
& <M_{1}\left(\frac{\epsilon}{2 M_{1}}\right)+M_{2}\left(\frac{\epsilon}{2 M_{2}}\right)=\epsilon .
\end{aligned}
$$

It follows that F is uniformly continuous on S.
(b) If f is bounded, but g is not, then F need not be uniformly continuous. As an example, take $S=\mathbb{R}$,

$$
\begin{aligned}
& f(x)=\frac{\sin \left(x^{2}\right)}{1+|x|} \quad \forall x \in \mathbb{R} \\
& g(x)=1+|x| \quad \forall x \in \mathbb{R}
\end{aligned}
$$

Then g is uniformly continuous (take $\delta=\epsilon$), and f is uniformly continuous by Problem 4 on Assignment 4. Notice that

$$
F(x)=f(x) g(x)=\sin \left(x^{2}\right) \quad \forall x \in \mathbb{R} .
$$

We showed that F is not uniformly continuous in one of the problem sessions.
6. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=f(x)-\alpha x$ for all $x \in \mathbb{R}$. Notice that g is differentiable on \mathbb{R} and $g^{\prime}(x)=f^{\prime}(x)-\alpha$ for all $x \in \mathbb{R}$. It follows that $g^{\prime}(a)<0$ and $g^{\prime}(b)>0$. Since g is continuous on $[a, b]$, we may choose $c \in[a, b]$ such that $g(c) \leq g(x)$ for all $x \in[a, b]$. Notice that $c \neq a$, because if we had $g(x) \geq g(a)$ for all $x \in[a, b]$, it would follow that $g^{\prime}(a) \geq 0$. A similar argument gives $c \neq b$. Consequently, $c \in(a, b)$ and $g^{\prime}(c)=0$. It follows that $f^{\prime}(c)=\alpha$.
7. Assume that f is differentiable on \mathbb{R} and that f^{\prime} is bounded. Choose $M>0$ such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in \mathbb{R}$. For $x, y \in \mathbb{R}$ with $x \neq y$ we may choose $C_{x, y}$ between x and y such that

$$
f(x)-f(y)=f^{\prime}\left(C_{x, y}\right)(x-y)
$$

by virtue of the mean value theorem. It follows that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|f^{\prime}\left(C_{x, y}\right)\right| \cdot|x-y| \\
& \leq M|x-y| \\
& \forall x, y \in \mathbb{R}, x \neq y
\end{aligned}
$$

If $x=y$, then $f(x)-f(y)=x-y=0$, and consequently

$$
\begin{equation*}
|f(x)-f(y)| \leq M|x-y| \quad \forall x, y \in \mathbb{R} \tag{*}
\end{equation*}
$$

Let $\epsilon>0$ be given and put $\delta=\frac{\epsilon}{M}$. Then, for all $x, y \in \mathbb{R}$ with $|x-y|<\delta$ we have

$$
|f(x)-f(y)| \leq M|x-y|<M\left(\frac{\epsilon}{M}\right)=\epsilon
$$

