Solutions to Assignment 4

2. Since f is uniformly continuous we may choose $\delta > 0$ such that

$$|f(x) - f(y)| < 1$$
 $\forall x, y \in (0, 1)$ with $|x - y| < \delta$

Put $\delta^* = \min \{\frac{1}{3}, \delta\}$. Since f is continuous and $[\delta^*, 1 - \delta^*]$ is nonempty and compact, f attains a maximum and a minimum on $[\delta^*, 1 - \delta^*]$. Therefore, we may choose $M^* \in \mathbb{R}$ such that

$$|f(x)| \le M^* \quad \forall x \in [\delta^*, 1 - \delta^*].$$

Claim: $|f(x)| \le M^* + 1 \quad \forall x \in (0, 1).$

To prove the claim, let $x \in (0, 1)$ be given and notice that exactly one of the following must hold:

Case 1: $x \in [\delta^*, 1 - \delta^*];$ Case 2: $x \in (0, \delta^*);$ Case 3: $x \in (1 - \delta^*, 1).$ If $x \in [\delta^*, 1 - \delta^*]$ then $|f(x)| \le M^* \le M^* + 1.$ If $x \in (0, \delta^*)$ then $|x - \delta^*| < \delta^* \le \delta$ so that

$$|f(x)| \le |f(1 - \delta^*, 1)| + |f(x) - f(\delta^*)| \le M^* + 1$$

If $x \in (1 - \delta^*, 1)$ then $|x - (1 - \delta^*)| < \delta^* \le \delta$ so that

$$|f(x)| \le |f(1-\delta^*)| + |f(x) - f(1-\delta^*)| \le M^* + 1.$$

3. Since f(y) > 0 and f is continuous at y, we may choose $\delta > 0$ such that

$$|f(x) - f(y)| < f(y) \quad \forall x \in B_{\delta}(y) \cap S.$$

It follows that

$$-f(y) < f(x) - f(y) < f(y) \quad \forall x \in B_{\delta}(y) \cap S.$$

which yields

$$0 < f(x) < 2f(y) \quad \forall x \in B_{\delta}(y)n \cap S.$$

4. Let $\epsilon > 0$ be given. Choose M > 0 such that

$$|f(x)| < \epsilon/2 \quad \forall x \in \mathbb{R}, \ |x| > M.$$

Notice that [-M-1, M+1] is compact. Since f is continuous, the restriction of f to [-M-1, M+1] is uniformly continuous. Therefore, we may choose $\delta_1 > 0$ such that

$$|f(x) - f(y)| < \epsilon \quad \forall x, y \in [-M - 1, M + 1], |x - y| > \delta_1$$

Put $\delta = \min\{1, \delta_1\}.$

Claim: $|f(x) - f(y)| < \epsilon \quad \forall x, y \in \mathbb{R}, \ |x - y| < \delta.$

To prove the claim, let $x, y \in \mathbb{R}$ with $|x - y| < \delta$ be given. Notice that one of the following must hold:

Case 1: $x, y \in [-M - 1, M + 1];$

Case 2: x, y > M;

Case 3: x, y < -M.

If $x, y \in [-M - 1, M + 1]$ then $|f(x) - f(y)| < \epsilon$ since $\delta \le \delta^*$. If x, y > M then

$$|f(x) - f(y)| \le |f(x)| + |f(y)| < \epsilon/2 + \epsilon/2.$$

Similarly, if x, y < -M then

$$|f(x) - f(y)| \le |f(x)| + |f(y)| < \epsilon/2 + \epsilon/2.$$

7. Let $y \in S$ be given. Then $y \in cl(T)$ so we may choose a sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \in S \quad \forall n \in \mathbb{N}$ and $x_n \to y$ as $n \to \infty$. Notice that $f(x_n) = g(x_n) \quad \forall n \in \mathbb{N}$. Since f and g are continuous at y, it follow that $f(x_n) \to f(y)$ and $g(x_n) \to g(y)$ as $n \to \infty$. We conclude that f(y) = g(y). \Box