Solutions to Assignment 4

2. Since f is uniformly continuous we may choose $\delta>0$ such that

$$
|f(x)-f(y)|<1 \quad \forall x, y \in(0,1) \quad \text { with }|x-y|<\delta
$$

Put $\delta^{*}=\min \left\{\frac{1}{3}, \delta\right\}$. Since f is continuous and $\left[\delta^{*}, 1-\delta^{*}\right]$ is nonempty and compact, f attains a maximum and a minimum on $\left[\delta^{*}, 1-\delta^{*}\right]$. Therefore, we may choose $M^{*} \in \mathbb{R}$ such that

$$
|f(x)| \leq M^{*} \quad \forall x \in\left[\delta^{*}, 1-\delta^{*}\right]
$$

Claim: $|f(x)| \leq M^{*}+1 \quad \forall x \in(0,1)$.
To prove the claim, let $x \in(0,1)$ be given and notice that exactly one of the following must hold:
Case 1: $x \in\left[\delta^{*}, 1-\delta^{*}\right]$;
Case 2: $x \in\left(0, \delta^{*}\right)$;
Case 3: $x \in\left(1-\delta^{*}, 1\right)$.
If $x \in\left[\delta^{*}, 1-\delta^{*}\right]$ then $|f(x)| \leq M^{*} \leq M^{*}+1$.
If $x \in\left(0, \delta^{*}\right)$ then $\left|x-\delta^{*}\right|<\delta^{*} \leq \delta$ so that

$$
|f(x)| \leq\left|f\left(1-\delta^{*}, 1\right)\right|+\left|f(x)-f\left(\delta^{*}\right)\right| \leq M^{*}+1
$$

If $x \in\left(1-\delta^{*}, 1\right)$ then $\left|x-\left(1-\delta^{*}\right)\right|<\delta^{*} \leq \delta$ so that

$$
|f(x)| \leq\left|f\left(1-\delta^{*}\right)\right|+\left|f(x)-f\left(1-\delta^{*}\right)\right| \leq M^{*}+1
$$

3. Since $f(y)>0$ and f is continuous at y, we may choose $\delta>0$ such that

$$
|f(x)-f(y)|<f(y) \quad \forall x \in B_{\delta}(y) \cap S
$$

It follows that

$$
-f(y)<f(x)-f(y)<f(y) \quad \forall x \in B_{\delta}(y) \cap S
$$

which yields

$$
0<f(x)<2 f(y) \quad \forall x \in B_{\delta}(y) n \cap S
$$

4. Let $\epsilon>0$ be given. Choose $M>0$ such that

$$
|f(x)|<\epsilon / 2 \quad \forall x \in \mathbb{R},|x|>M
$$

Notice that $[-M-1, M+1]$ is compact. Since f is continuous, the restriction of f to $[-M-1, M+1]$ is uniformly continuous. Therefore, we may choose $\delta_{1}>0$ such that

$$
|f(x)-f(y)|<\epsilon \quad \forall x, y \in[-M-1, M+1],|x-y|>\delta_{1} .
$$

Put $\delta=\min \left\{1, \delta_{1}\right\}$.
Claim: $|f(x)-f(y)|<\epsilon \quad \forall x, y \in \mathbb{R},|x-y|<\delta$.
To prove the claim, let $x, y \in \mathbb{R}$ with $|x-y|<\delta$ be given. Notice that one of the following must hold:
Case 1: $x, y \in[-M-1, M+1]$;
Case 2: $x, y>M$;
Case 3: $x, y<-M$.
If $x, y \in[-M-1, M+1]$ then $|f(x)-f(y)|<\epsilon$ since $\delta \leq \delta^{*}$.
If $x, y>M$ then

$$
|f(x)-f(y)| \leq|f(x)|+|f(y)|<\epsilon / 2+\epsilon / 2 .
$$

Similarly, if $x, y<-M$ then

$$
|f(x)-f(y)| \leq|f(x)|+|f(y)|<\epsilon / 2+\epsilon / 2
$$

7. Let $y \in S$ be given. Then $y \in \operatorname{cl}(T)$ so we may choose a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $x_{n} \in S \quad \forall n \in \mathbb{N}$ and $x_{n} \rightarrow y$ as $n \rightarrow \infty$. Notice that $f\left(x_{n}\right)=$ $g\left(x_{n}\right) \quad \forall n \in \mathbb{N}$. Since f and g are continuous at y, it follow that $f\left(x_{n}\right) \rightarrow f(y)$ and $g\left(x_{n}\right) \rightarrow g(y)$ as $n \rightarrow \infty$. We conclude that $f(y)=g(y)$.
