Solutions to Assignment 2

3.a) Claim 1: $x_{n}>0$ for all $n \in \mathbb{N}$.

Proof of Claim 1 (by induction):
Base Case: $x_{1}=2>0$
Inductive Step: Let $k \in \mathbb{N}$ be given and assume that $x_{k}>0$. Then, $\frac{x_{k}}{2}>0$ and $\frac{1}{x_{k}}>0$ so that

$$
x_{k+1}=\frac{x_{k}}{2}+\frac{1}{x_{k}}>0 .
$$

Claim 2: $x_{n}^{2} \geq 2$ for all $n \in \mathbb{N}$.
Proof of Claim 2: Let $n \in \mathbb{N}$ with $n \geq 2$ be given. Then we have

$$
\begin{aligned}
x_{n}^{2}-2 & =\left(\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}\right)^{2}-2 \\
& =\frac{x_{n-1}^{2}}{4}+1+\frac{1}{x_{n-1}^{2}}-2 \\
& =\frac{x_{n-1}^{2}}{4}-1+\frac{1}{x_{n-1}^{2}} \\
& =\left(\frac{x_{n-1}}{2}-\frac{1}{x_{n-1}}\right)^{2} \geq 0
\end{aligned}
$$

so that $x_{n}^{2} \geq 2$. Since $x_{1}^{2}=4>2$, the claim follows.
Claim 3: $x_{n+1}-x_{n} \leq 0$ for all $n \in \mathbb{N}$.
Proof of Claim 3: Let $n \in \mathbb{N}$ be given. Then

$$
\begin{aligned}
x_{n+1}-x_{n} & =\frac{x_{n}}{2}+\frac{1}{x_{n}}-x_{n} \\
& =\frac{1}{x_{n}}-\frac{x_{n}}{2}=\frac{2-x_{n}^{2}}{2 x_{n}} \\
& \leq 0
\end{aligned}
$$

by virtue of Claims 1 and 2. Since $\left\{x_{n}\right\}_{n=1}^{\infty}$ is decreasing and bounded below it is convergent.
b) Let $l=\lim _{n \rightarrow \infty} x_{n}$. Notice that $l \geq \sqrt{2}\left(\right.$ since $x_{n} \geq \sqrt{2}$ for all $\left.n \in \mathbb{N}\right)$. Notice also that $x_{n+1} \rightarrow l, \frac{x_{n}}{2} \rightarrow \frac{l}{2}$, and $\frac{1}{x_{n}} \rightarrow \frac{1}{l}$ as $n \rightarrow \infty$. Therefore,

$$
l=\frac{l}{2}+\frac{1}{l},
$$

which yields $l^{2}=\frac{l^{2}}{2}+1$, so that $l^{2}=2$. Since $l \geq \sqrt{2}$, we deduce that $l=\sqrt{2}$.
5. Let $\epsilon>0$ be given. Choose N_{1} and $N_{2} \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left|x_{n}-l\right|<\epsilon \quad \forall n \in \mathbb{N}, \quad n \geq N_{1}, \\
& \left|z_{n}-l\right|<\epsilon \quad \forall n \in \mathbb{N}, \quad n \geq N_{2},
\end{aligned}
$$

and put $N=\max \left\{N_{1}, N_{2}\right\}$. Then, for all $n \in \mathbb{N}$ with $n \geq N$ we have

$$
\begin{aligned}
& -\epsilon<x_{n}-l<\epsilon \quad \text { and } \\
& -\epsilon<z_{n}-l<\epsilon
\end{aligned}
$$

Notice that

$$
x_{n}-l \leq y_{n}-l \leq z_{n}-l \quad \forall n \in \mathbb{N}
$$

by virtue of our assumptions. Therefore, we have

$$
-\epsilon<x_{n}-l \leq y_{n}-l \leq z_{n}-l<\epsilon \quad \forall n \in \mathbb{N}, n \geq N
$$

which yields

$$
\left|y_{n}-l\right|<\epsilon \quad \forall n \in \mathbb{N}, \quad n \geq N .
$$

6. Let $\epsilon>0$ be given and put $S_{\epsilon}=\left\{n \in \mathbb{N}:\left|x_{n}\right|<\epsilon\right\}$. We want to show that S_{ϵ} is infinite. We assume first that $\epsilon \leq 1$. Let $T_{\epsilon}=\left\{n \in \mathbb{N}:\left|x_{n}-\frac{\epsilon}{2}\right|<\epsilon / 2\right\}$ and notice that T_{ϵ} is infinite since $\epsilon / 2$ is cluster point. Observe that $T_{\epsilon} \subset S_{\epsilon}$. Indeed for a given $k \in \mathbb{N}$: if $k \in T_{\epsilon}$ then $\left|x_{k}\right| \leq \epsilon / 2+\left|x_{k}-\epsilon / 2\right|<\epsilon$, so $k \in S_{\epsilon}$. Since S_{ϵ} has an infinite subset, we conclude that S_{ϵ} is infinite. Finally, if $\epsilon>1$ then $\left\{n \in \mathbb{N}:\left|x_{n}\right|<1\right\} \subset S_{\epsilon}$. Therefore S_{ϵ} has an infinite subset by the argument above.
7. Since \mathbb{Q} is countably infinite, we may choose a bijection $g: \mathbb{N} \rightarrow \mathbb{Q}$. Define the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ by $x_{n}=g(n)$ for all $n \in \mathbb{N}$.
Claim: Let $l \in \mathbb{R}$ be given. Then l is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.

Proof: Let $\epsilon>0$ be given. We want to show that $\left\{n \in \mathbb{N}:\left|x_{n}-l\right|<\epsilon\right\}$ is infinite. To this end let $K=\mathbb{Q} \cap(l-\epsilon, l+\epsilon)$. We know that $K \neq \phi$ by density of \mathbb{Q} in \mathbb{R}. Suppose K were finite. Then it would have a smallest element α, which is not possible since $(l-\epsilon, \alpha)$ would have to contain at least one rational number r, by virtue of density of \mathbb{Q} in \mathbb{R}. This would contradict minimality of α. Since K is an infinite subset of the range of g and g is a bijection we conclude that

$$
\left\{n \in \mathbb{N}:\left|x_{n}-l\right|<\epsilon\right\}=\{n \in \mathbb{N}: g(n) \in K\}
$$

is infinite.

