Solutions to Assignment 1

3. Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$ with $N > \frac{2}{\epsilon}$ and notice that $\frac{1}{N} < \frac{\epsilon}{2}$. Then, for all $n \in \mathbb{N}$ with $n \geq N$ we have

$$\left| \frac{2n}{n+1} - 2 \right| = \left| \frac{2n - 2(n+1)}{n+1} \right|$$

$$= \frac{2}{n+1}$$

$$< \frac{2}{n} \le \frac{2}{N} < 2\left(\frac{\epsilon}{2}\right) = \epsilon.$$

5. Assume that $\{x_n\}_{n=1}^{\infty}$ is bounded. Then we may choose M>0 such that $|x_n|\leq M$ for all $n\in\mathbb{N}$. Let $\epsilon>0$ be given. Since $y_n\to 0$ as $n\to\infty$ we may choose $N\in\mathbb{N}$ such that $|y_n|<\frac{\epsilon}{M}$ for all $n\in\mathbb{N}$ with $n\geq N$. It follows that for all $n\in\mathbb{N}$ with $n\geq N$ we have

$$|x_n y_n - 0| = |x_n y_n| = |x_n| \cdot |y_n| \le M|y_n| < M\left(\frac{\epsilon}{M}\right) = \epsilon.$$

6. Notice that $l = \frac{1}{n} \sum_{k=1}^{n} l$ for all $n \in \mathbb{N}$. It follows that

(1)
$$y_n - l = \frac{1}{n} \sum_{k=1}^n (x_k - l) \quad \forall n \in \mathbb{N}.$$

Let $\epsilon > 0$ be given. Choose $N_1 \in \mathbb{N}$ such that

(2)
$$|x_k - l| < \frac{\epsilon}{2} \quad \forall k \in \mathbb{N}, \ k \ge N_1.$$

Let

(3)
$$M = \sum_{k=1}^{N_1} |x_k - l|$$

and choose $N_2 \in \mathbb{N}$ with

$$(4) N_2 > \frac{2M}{\epsilon}.$$

Notice that

$$\frac{M}{N_2} < \frac{\epsilon}{2}.$$

Now put $N = \max \{N_1 + 1, N_2\}$. Then for all $n \in \mathbb{N}$ with $n \geq N$ we have

$$|y_n - l| = \frac{1}{n} \left| \sum_{k=1}^n (x_k - l) \right|$$

$$\leq \frac{1}{n} \sum_{k=1}^n |x_k - l|$$

$$\leq \frac{1}{n} \sum_{k=1}^{N_1} |x_k - l| + \frac{1}{n} \sum_{k=N_1+1}^n |x_k - l|$$

$$\leq \frac{M}{n} + \frac{1}{n} \sum_{k=N_1+1}^n |x_k - l|$$

$$\leq \frac{M}{N_2} + \left(\frac{n - N_1}{n}\right) \frac{\epsilon}{2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \qquad \Box$$

8. For each $n \in \mathbb{N}$ we may choose $r_n \in \mathbb{Q}$ with $l - \frac{1}{n} < r_n < l + \frac{1}{n}$ by virtue of density of \mathbb{Q} in \mathbb{R} . Notice that

$$|r_n - l| < \frac{1}{n} \quad \forall n \in \mathbb{N}.$$

Let $\epsilon>0$ be given. Choose $N\in\mathbb{N}$ with $N>\frac{1}{\epsilon}.$ Then $\forall n\in\mathbb{N}$ with $n\geq N$ we have

$$|r_n - l| < \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

We conclude that $r_n \to l$ as $n \to \infty$. \square