Practice Problems

Part I (Short Answer)

1. Consider the real sequence defined by

$$
x_{n}=\left(\frac{(-1)^{n}+1}{2}\right)^{n}+(-1)^{n}+\frac{1}{n} \quad \text { for all } n \in \mathbb{N}
$$

Find $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$.
2. Find the interior and closure of S if

$$
S=\{-1\} \cup\{x \in \mathbb{Q}: 0<x<1\} \cup(1,2] .
$$

3. Give an example of an infinite set $S \subset \mathbb{R}$ such that every subset of S is closed.
4. Determine whether or not f is uniformly continuous on S.
(a) $S=\mathbb{R}, \quad f(x)=\frac{\sin \left(x^{3}\right)}{1+x^{2}} \quad$ for all $x \in S$.
(b) $S=(0,1), \quad f(x)=\frac{1}{x} \quad$ for all $x \in S$.
(c) $S=[0,1], \quad f(x)=\frac{x^{4}}{1+x} \quad$ for all $x \in S$.
5. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is differentiable at exactly one point.
6. Give an example of a countably infinite collection $\left\{T_{n}: n \in \mathbb{N}\right\}$ of subsets of \mathbb{R} such that

$$
\bigcup_{n=1}^{\infty} c l\left(T_{n}\right) \neq c l\left(\bigcup_{n=1}^{\infty} T_{n}\right) .
$$

7. Determine whether or not $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly on S.
(a) $S=[0, \infty), \quad f_{n}(x)=\sqrt{\frac{x}{n}} \quad$ for all $x \in S, n \in \mathbb{N}$.
(b) $S=(0,1), \quad f_{n}(x)=\sin ^{2}\left(\frac{x}{n}\right) \quad$ for all $x \in S, n \in \mathbb{N}$.
(c) $S=(1, \infty), \quad f_{n}(x)=\frac{n}{n+x} \quad$ for all $x \in S, n \in \mathbb{N}$.
8. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and T is a closed subset of \mathbb{R}, does it follow that $f[T]$ is closed. (Recall that $f[T]=\{f(x): x \in T\}$.) Explain.
9. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable and $f(0)=f(1)=f(2)=0$, can we conclude that there exists $z \in(0,2)$ with $f^{\prime \prime}(z)=0$? Explain.
10. Give an example of two bounded sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ such that

$$
\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)>\left(\liminf _{n \rightarrow \infty} x_{n}\right)+\left(\liminf _{n \rightarrow \infty} y_{n}\right)
$$

and

$$
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)<\left(\limsup _{n \rightarrow \infty} x_{n}\right)+\left(\limsup _{n \rightarrow \infty} y_{n}\right) .
$$

Part II (Give Complete Proofs.)

1. Let S, T be subsets of \mathbb{R}. Show that

$$
c l(S \cup T)=(c l(S)) \cup(c l(T)) .
$$

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given and put $S=\{x \in \mathbb{R}: f(x)=0\}$. Assume that f is differentiable on \mathbb{R} and that $f^{\prime}(x)=0$ for all $x \in S$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=|f(x)|$ for all $x \in \mathbb{R}$. Show that g is differentiable on \mathbb{R}.
3. Let $S \subset \mathbb{R}, M, \alpha>0$, and $f, g: S \rightarrow \mathbb{R}$ be given. Assume that

$$
|f(x)| \leq M,|g(x)| \geq \alpha \quad \forall x \in S
$$

and that f, g are uniformly continuous on S. Define $F: S \rightarrow \mathbb{R}$ by $F(x)=$ $\frac{f(x)}{g(x)} \quad \forall x \in S$. Show that F is uniformly continuous on S.
4. Assume that $g: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous and let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers such that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Define the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions on \mathbb{R} by

$$
f_{n}(x)=g\left(x+a_{n}\right) \quad \text { for all } x \in \mathbb{R}, n \in \mathbb{N} .
$$

Show that $f_{n} \rightarrow g$ uniformly on \mathbb{R} as $n \rightarrow \infty$.
5. Use the definition of limit to show that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ defined by $x_{n}=$ $\frac{3 n^{2}}{2 n^{2}-1}$ for all $n \in \mathbb{N}$ is convergent.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be given and assume that

$$
|f(x)-f(y)| \leq 6|x-y| \quad \forall x, y \in[0,1] .
$$

Show that $f \in \mathcal{R}[a, b]$ without using the result which asserts that continuous functions on $[a, b]$ are integrable.

