Practice Problems

Part I (Short Answer)

1. Consider the real sequence defined by

$$x_n = \left(\frac{(-1)^n + 1}{2}\right)^n + (-1)^n + \frac{1}{n} \quad \text{for all } n \in \mathbb{N}.$$

Find $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$.

2. Find the interior and closure of S if

$$S = \{-1\} \cup \{x \in \mathbb{Q} : 0 < x < 1\} \cup (1, 2].$$

- 3. Give an example of an infinite set $S \subset \mathbb{R}$ such that every subset of S is closed.
- 4. Determine whether or not f is uniformly continuous on S.

(a)
$$S = \mathbb{R}$$
, $f(x) = \frac{\sin(x^3)}{1+x^2}$ for all $x \in S$.
(b) $S = (0,1)$, $f(x) = \frac{1}{x}$ for all $x \in S$.
(c) $S = [0,1]$, $f(x) = \frac{x^4}{1+x}$ for all $x \in S$.

- 5. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that f is differentiable at exactly one point.
- 6. Give an example of a countably infinite collection $\{T_n : n \in \mathbb{N}\}$ of subsets of \mathbb{R} such that

$$\bigcup_{n=1}^{\infty} cl(T_n) \neq cl\left(\bigcup_{n=1}^{\infty} T_n\right).$$

- 7. Determine whether or not $\{f_n\}_{n=1}^{\infty}$ converges uniformly on S.
 - (a) $S = [0, \infty), \quad f_n(x) = \sqrt{\frac{x}{n}}$ for all $x \in S, n \in \mathbb{N}$. (b) $S = (0, 1), \quad f_n(x) = \sin^2\left(\frac{x}{n}\right)$ for all $x \in S, n \in \mathbb{N}$. (c) $S = (1, \infty), \quad f_n(x) = \frac{n}{n+x}$ for all $x \in S, n \in \mathbb{N}$.

- 8. If $f : \mathbb{R} \to \mathbb{R}$ is continuous and T is a closed subset of \mathbb{R} , does it follow that f[T] is closed. (Recall that $f[T] = \{f(x) : x \in T\}$.) Explain.
- 9. If $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable and f(0) = f(1) = f(2) = 0, can we conclude that there exists $z \in (0, 2)$ with f''(z) = 0? Explain.
- 10. Give an example of two bounded sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ such that

$$\liminf_{n \to \infty} (x_n + y_n) > \left(\liminf_{n \to \infty} x_n\right) + \left(\liminf_{n \to \infty} y_n\right)$$

and

$$\limsup_{n \to \infty} (x_n + y_n) < \left(\limsup_{n \to \infty} x_n\right) + \left(\limsup_{n \to \infty} y_n\right)$$

Part II (Give Complete Proofs.)

1. Let S, T be subsets of \mathbb{R} . Show that

$$cl(S \cup T) = (cl(S)) \cup (cl(T)).$$

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be given and put $S = \{x \in \mathbb{R} : f(x) = 0\}$. Assume that f is differentiable on \mathbb{R} and that f'(x) = 0 for all $x \in S$. Define $g : \mathbb{R} \to \mathbb{R}$ by g(x) = |f(x)| for all $x \in \mathbb{R}$. Show that g is differentiable on \mathbb{R} .
- 3. Let $S \subset \mathbb{R}, M, \alpha > 0$, and $f, g : S \to \mathbb{R}$ be given. Assume that

$$|f(x)| \le M, |g(x)| \ge \alpha \quad \forall x \in S$$

and that f, g are uniformly continuous on S. Define $F : S \to \mathbb{R}$ by $F(x) = \frac{f(x)}{g(x)}$ $\forall x \in S$. Show that F is uniformly continuous on S.

4. Assume that $g : \mathbb{R} \to \mathbb{R}$ is uniformly continuous and let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers such that $a_n \to 0$ as $n \to \infty$. Define the sequence $\{f_n\}_{n=1}^{\infty}$ of functions on \mathbb{R} by

$$f_n(x) = g(x + a_n)$$
 for all $x \in \mathbb{R}, n \in \mathbb{N}$.

Show that $f_n \to g$ uniformly on \mathbb{R} as $n \to \infty$.

5. Use the definition of limit to show that the sequence $\{x_n\}_{n=1}^{\infty}$ defined by $x_n = \frac{3n^2}{2n^2-1}$ for all $n \in \mathbb{N}$ is convergent.

6. Let $f:[0,1] \to \mathbb{R}$ be given and assume that

$$|f(x) - f(y)| \le 6|x - y| \quad \forall x, y \in [0, 1].$$

Show that $f \in \mathcal{R}[a, b]$ without using the result which asserts that continuous functions on [a, b] are integrable.