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IV. Continuity and Limits

For real-valued functions defined on general subsets of R, the notion of continuity
is central. In the most elementary treatments, continuity is sometimes described by
a statement such as “a function is continuous provided that its graph can be drawn
without lifting the pencil from the paper” or “a function is continuous on an interval
provided that its graph has no breaks”. While these intuitive geometric descriptions
have certain merit, they can also be misleading. It is important to bear in mind
that continuity is a very subtle concept. In order to have a serious discussion of this
concept we will need to make a careful definition and interpret it literally.

We shall give a definition of continuity that does not rely on any knowledge of
sequences or topology. However, we will develop characterizations of continuity in
terms of sequences and in terms of open sets. These characterizations allow us to use
previous results as tools to develop properties of continuous functions. The following
notation will be useful. Let S ⊂ R and f : S → R be given. For each U ⊂ S and
V ⊂ R, put

f [U ] = {f(x) : x ∈ U} and

f−1[V ] = {x ∈ S : f(x) ∈ V };
f [U ] is called the image of U under f and f−1[V ] is called the preimage of V under f .
(Notice that f [S] is simply the range of f and that f−1[R] = S.) It is straightforward
to verify the following 4 statements.

(1) f [U1] ⊂ f [U2] ∀U1, U2 with U1 ⊂ U2 ⊂ S

(2) f−1[V1] ⊂ f−1[V2] ∀V1, V2 with V1 ⊂ V2 ⊂ S

(3) f [f−1(V )] ⊂ V ∀V ⊂ R
(4) f−1[f [U ]] ⊃ U ∀U ⊂ S.

A. Definitions

Let S ⊂ R and f : S → R be given.

Definition 1: Let y ∈ S be given. We say that f is continuous at y provided that
∀ε > 0, ∃δ > 0 such that |f(x) − f(y)| < ε for all x ∈ S with |x − y| < δ (i.e.
f [Bδ(y) ∩ S] ⊂ Bε(f(y))). We say that f is continuous (or continuous on S) if f is
continuous at every point in S.

Definition 2: We say that f is uniformly continuous (or uniformly continuous on
S) provided that ∀ε > 0, ∃δ > 0 such that |f(x) − f(y)| < ε for all x, y ∈ S with
|x− y| < δ.
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Definition 3: Let x0, L ∈ R be given and assume that x0 is a limit point of S. We
say that L is a limit of f at x0 provided that ∀ε > 0, ∃δ > 0 such that |f(x)−L| < ε
for all x ∈ S with 0 < |x− x0| < δ. It is straightforward to show that f has at most
one limit at x0. If L is a limit of f at x0 we write lim

x→x0

f(x) = L, and we refer to L as

the limit of f at x0.

B. Some Key Results

IV.1 Proposition: Let S ⊂ R, y ∈ S, and f : S → R be given. Then f is continuous
at y if and only if lim

n→∞
f(xn) = f(y) for every sequence {xn}∞n=1 such that xn ∈ S for

every n ∈ N and lim
n→∞

xn = y.

IV.2 Proposition: Let S ⊂ R and f : S → R be given. Then f is uniformly
continuous on S if and only if lim

n→∞
(f(xn)−f(yn)) = 0 for every pair {xn}∞n=1, {yn}∞n=1

of sequences such that xn, yn ∈ S for every n ∈ N and lim
n→∞

(xn − yn) = 0.

IV.3 Theorem: Let S ⊂ R, y ∈ S, α ∈ R, and f, g : S → R be given.

(a) If f and g are continuous at y then f + g, αf , and fg are continuous at y.

(b) If f and g are continuous at y and g(y) 6= 0 then
f

g
is continuous at y. [Here

we take the domain of
f

g
to be {x ∈ S : g(x) 6= 0}.]

(c) If f and g are uniformly continuous on S then f + g and αf are uniformly
continuous on S.

IV.4 Theorem: Let S, T ⊂ R, y ∈ S, and f : T → R, g : S → R be given. Assume
that g[S] ⊂ T .

(a) If g is continuous at y and f is continuous at g(y) then f ◦ g is continuous at y.

(b) If g is uniformly continuous on S and f is uniformly continuous on T then f ◦ g
is uniformly continuous on S.

IV.5 Theorem: Let f : R → R be given. Then f is continuous on R if and only if
f−1[V ] is open for every open set V ⊂ R.

IV.6 Theorem: Let S ⊂ R and f : S → R be given. Then f is continuous on
S if and only if for every open set V ⊂ R there is an open set U ⊂ R such that
f−1[V ] = S ∩ U .

IV.7 Theorem: Let S ⊂ R and f : S → R be given. Assume that S is nonempty and
compact and that f is continuous on S. Then f attains a maximum and a minimum
on S, i.e. ∃α, β ∈ S such that
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f(α) ≤ f(x) ≤ f(β) ∀x ∈ S.

IV.8 Theorem: Let S ⊂ R and f : S → R be given. Assume that S is compact and
that f is continuous on S. Then f is uniformly continuous on S.

IV.9 Intermediate Value Theorem: Let a, b, γ ∈ R with a < b and f : [a, b] → R
be given. Assume that f is continuous on [a, b] and thatf(a) < γ < f(b) or that
f(a) > γ > f(b) Then there is at least one c ∈ (a, b) such that f(c) = γ.

IV. 10 Theorem: Let S be a subset of R and f : S → R be given. Assume that S
is compact and that f is continuous on S and injective. Let T = f [S] and g : T → R
be the inverse function of f , i.e.

f(g(y)) = y ∀y ∈ T, and

g(f(x)) = x ∀x ∈ S.

Then g is continuous on T .

IV.11 Proposition: Let S ⊂ R, x0, L ∈ R, and f : S → R be given. Assume that
x0 is a limit point of S. Then lim

x→x0

f(x) = L if and only if lim
n→∞

f(xn) = L for every

sequence {xn}∞n=1 such that xn ∈ S\{x0} for every n ∈ N and lim
n→∞

xn = x0.

IV.12 Theorem: Let S ⊂ R, x0, l, L, α ∈ R and f, g : S → R be given. Assume
that x0 is a limit point of S and that lim

x→x0

f(x) = l, lim
x→x0

g(x) = L. Then

(i) lim
x→x0

(f(x) + g(x)) = l + L

(ii) lim
x→x0

(αf(x)) = αl

(iii) lim
x→x0

(f(x)g(x)) = lL

(iv) lim
x→x0

f(x)

g(x)
=

l

L
provided that L 6= 0. [Here we take the domain of

f

g
to be

{x ∈ S : g(x) 6= 0}.]

C. Some Remarks

IV.13 Remark: Although sums and constant multiples of uniformly continuous func-
tions are uniformly continuous, it is important to note that products and quotients
of uniformly continuous functions need not be uniformly continuous.

IV.14: Using Theorem IV.5, the fact that a set V ⊂ R is closed if and only if its
compliment is open, together with the observation that f−1[R\V ] = R\f−1[V ], we
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conclude that a function f : R → R is continuous if and only if f−1[W ] is closed for
every closed set W ⊂ R.

IV.15 Remark: Let S ⊂ R, f : S → R and x0 ∈ S be given.

(i) If x0 is not a limit point of S then f is continuous at x0.

(ii) If x0 is a limit point of S then f is continuous at x0 if and only if lim
x→x0

f(x) =

f(x0).

IV.16 Remark: Let S be a compact subset of R. If f : S → R is continuous then
f [S] is compact.

D. Some Proofs

In order to prove Propositions IV.1 and IV.2 it is convenient to introduce some
terminology. Let S ⊂ R, f : S → R and y ∈ S be given. We say that f is sequentially
continuous at y provided that lim

n→∞
f(xn) = f(y) for every sequence {xn}∞n=1 such that

xn ∈ S for every n ∈ N and lim
n→∞

xn = y. We say that f is sequentially uniformly

continuous on S provided that lim
n→∞

(f(xn)−f(yn)) = 0 for every pair {xn}∞n=1, {yn}∞n=1

of sequences such that xn, yn ∈ S for every n ∈ N and lim
n→∞

(xn − yn) = 0.

Proof of IV.1: Assume first that f is continuous at y. We want to show that f is
sequentially continuous at y. Let {xn}∞n=1 be a sequence such that xn ∈ S for every
n ∈ N and lim

n→∞
xn = y. We need to show that lim

n→∞
f(xn) = f(y). Let ε > 0 be given.

Since f is continuous at y we may choose δ > 0 such that

(5) |f(x)− f(y)| < ε ∀x ∈ S, |x− y| < δ.

Since lim
n→∞

xn = y we may choose N ∈ N such that

(6) |xn − y| < δ ∀n ∈ N, n ≥ N.

Since xn ∈ S for every n ∈ N, it follows that

(7) |f(xn)− f(y)| < ε ∀n ∈ N, n ≥ N

and consequently lim
n→∞

f(xn) = f(y).

It remains to show that if f is sequentially continuous at y then f is continuous
at y. To prove this implication, we shall prove the contrapositive, i.e. we shall show
that if f is not continuous at y then it is not sequentially continuous at y. For this
purpose, we assume that f is not continuous at y. Then we may choose ε > 0 such
that

4



(8) ∀δ > 0, ∃x ∈ S ∩Bδ(y), |f(x)− f(y)| ≥ ε.

For each n ∈ N we may choose xn ∈ B 1
n
(y)∩S such that |f(xn)−f(y)| ≥ ε. It follows

easily that xn → y as n →∞, but f(xn) 9 f(y) as n →∞, i.e. f is not sequentially
continuous at y.

Proof of IV.2: Assume first that f is uniformly continuous. We want to show
that f is sequentially uniformly continuous. Let {xn}∞n=1, {yn}∞n=1 be sequences such
that xn, yn ∈ S for every n ∈ N and lim

n→∞
(xn − yn) = 0. We need to show that

lim
n→∞

(f(xn)− f(yn)) = 0. Let ε > 0 be given. Since f is uniformly continuous we may

choose δ > 0 such that

(9) |f(x)− f(y)| < ε ∀x, y ∈ S, |x− y| < δ.

Since lim
n→∞

(xn − yn) = 0 we may choose N ∈ N such that

(10) |xn − yn| < δ ∀n ∈ N, n ≥ N.

It follows that

(11) |f(xn)− f(yn)| < ε ∀n ∈ N, n ≥ N,

and consequently lim
n→∞

(f(xn)− f(yn)) = 0.

To show that if f is sequentially uniformly continuous then f is uniformly contin-
uous, we shall establish the contrapositive implication, i.e. we shall show that if f is
not uniformly continuous then f is not sequentially uniformly continuous. For this
purpose assume that f is not uniformly continuous. Then we may choose ε > 0 such
that

(12) ∀δ > 0, ∃x, y ∈ S, |x− y| < δ, |f(x)− f(y)| ≥ ε.

For each n ∈ N we may choose xn, yn ∈ S with |xn−yn| < 1
n

and |f(xn)−f(yn)| ≥ ε.
It follows easily that xn − yn → 0 as n →∞, but f(xn)− f(yn) 9 0 as n →∞, i.e.
f is not sequentially uniformly continuous.

Proof of IV.3: Theorem IV.3 follows directly from Propositions II.3, IV.1, and IV.2.

Proof of IV.4: Part (a) follows directly from Proposition IV.1 and part (b) follows
directly from Proposition IV.2.
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Proof of IV.5: Assume first that f is continuous on R. Let V be an open subset of
R. We want to show that f−1[V ] is open. For this purpose let y ∈ f−1[V ] be given.
We want to show that y ∈ int (f−1[V ]). Observe that f(y) ∈ V . Since V is open we
may choose ε > 0 such that

(13) Bε(f(y)) ⊂ V.

Since f is continuous at y, we may choose δ > 0 such that |f(x) − f(y)| < ε for all
x ∈ Bδ(y), i.e.

(14) f [Bδ(y)] ⊂ Bε(f(y)).

It follows from (13) and (14) that

(15) f [Bδ(y)] ⊂ V

Applying (2) to (15) yields

(16) f−1[f [Bδ(y)]] ⊂ f−1[V ].

Finally, by applying (4) to (16) we conclude that

(17) Bδ(y) ⊂ f−1[V ],

i.e. y ∈ int(f−1[V ])
Conversely, assume now that f−1[V ] is open for every open set V ⊂ R. We

want to show that f is continuous on R. Let y ∈ R be given. Let ε > 0 be given
and notice that Bε(f(y)) is open. Consequently f−1[Bε(f(y))] is open. Moreover,
y ∈ f−1[Bδ(f(y))]. Therefore we may choose δ > 0 such that

(18) Bδ(y) ⊂ f−1[Bε(f(y))].

By applying (1) and (3) to (18) we conclude that

(19) f [Bδ(y)] ⊂ Bε(f(y))

which implies that f is continuous at y.

Proof of IV.7: We shall prove the existence of a maximum for f . [The existence of
a minimum for f then follows from the existence of a maximum for the continuous
function −f on S.]
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Claim: The set f [S] is bounded above.
Proof of Claim: Suppose that f [S] is not bounded above. Then, for every n ∈ N
we may choose yn ∈ S such that

(20) f(yn) > n.

Since S is compact, the sequence {yn}∞n=1 is bounded. By the Bolzano-Weierstrass
Theorem, we may choose a convergent subsequence {ynk

}∞k=1. Let l = lim
k→∞

ynk
. Since S

is compact, it is closed, and consequently l ∈ S. Since f is continuous at l, it follows
from Proposition IV.1 that f(ynk

) → f(l) as k → ∞; in particular {f(ynk
)}∞k=1 is

bounded. On the other hand, by virtue of (20) we have

(21) f(ynk
) > nk ≥ k ∀k ∈ N,

which gives a contradiction and completes the proof of the claim. //
The set f [S] is nonempty and bounded above; let

(22) M = sup(f [S]).

We shall show that ∃β ∈ S with f(β) = M . For each n ∈ N we may choose xn ∈ S
such that

(23) M − 1

n
< f(xn) ≤ M.

It follows that

(24) f(xn) → M as n →∞.

The sequence {xn}∞n=1 is bounded since S is compact. By the Bolzano-Weierstrass
Theorem we may choose a convergent subsequence {xnk

}∞k=1. Let β = lim
k→∞

xnk
and

notice that β ∈ S because S is closed. It follows from (24) that

(25) f(xnk
) → M as n →∞.

Since f is continuous, it follows from Proposition IV.1 that

(26) f(xnk
) → f(β) as k →∞.

By uniqueness of limits we conclude that f(β) = M . Since M = sup(f [S]) we see
that
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(27) f(x) ≤ f(β) ∀x ∈ S.

Proof of IV.8: The result is immediate if S = Ø, so we assume that S is nonempty.
Let ε > 0 be given. For each x ∈ S we may choose δx > 0 such that

(28) |f(x)− f(y)| < ε

2
∀y ∈ Bδx(x) ∩ S.

Now, for each x ∈ S let

(29) Ox = B 1
2
δx

(x)

and observe that {Ox : x ∈ S} is a collection of open sets that covers S. By the
Heine-Borel Theorem we may choose a (nonempty) finite set F ⊂ S such that the
collection {Ox : x ∈ F} covers S. Let

(30) δ =
1

2
min {δx : x ∈ F}

and notice that δ > 0.
Let y, z ∈ S with |y− z| < δ be given. We shall show that |f(y)− f(z)| < ε which

establishes uniform continuity of f . Since the collection {Ox : x ∈ F} covers S we

may choose x∗ ∈ F such that y ∈ Ox∗ . Notice that |y − x∗| < 1

2
δx∗ and consequently

(31) |z − x∗| ≤ |z − y|+ |y − x∗| < δ +
1

2
δx∗ < δx∗

because δ ≤ 1

2
δx∗ by virtue of (30). Using (28) we find that

(32) |f(y)− f(x∗)| < ε

2
,

(33) |f(z)− f(x∗)| < ε

2

We conclude that

(34) |f(y)− f(z)| ≤ |f(y)− f(x∗)|+ |f(z)− f(x∗)| < ε

2
+

ε

2
= ε.

Proof of IV.9: Assume that
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(35) f(a) < γ < f(b).

Define F : [a, b] → R by

(36) F (x) = f(x)− γ ∀x ∈ [a, b].

Notice that F is continuous on [a, b] and that

(37) F (a) < 0, F (b) > 0.

Let S = {t ∈ (a, b] : F (x) < 0 for all x ∈ (a, t)} and observe that S is bounded above
by b. By Problem 3 from Assignment 4 we may choose δ1 > 0 such that F (x) < 0 for
all x ∈ Bδ1(a) ∩ [a, b]. It follows that S is nonempty; let

(38) c = sup(S).

We shall show that c ∈ (a, b) and that F (c) = 0. It is immediate that c > a since
S ⊂ (a, b]. It is also immediate that c ≤ b. Since F (b) > 0 we may choose δ2 > 0
such that F (x) > 0 for all x ∈ Bδ2(b) ∩ [a, b]. (Here we have made use of Problem
3 from Assignment 4 again.) We conclude that (b− δ2, b] ∩ S = Ø and consequently
b 6= sup(S).

To show that F (c) = 0 we shall show that it is impossible to have F (c) > 0 or
F (c) < 0. Suppose F (c) > 0. Then we may choose δ3 > 0 such that F (x) > 0 for
all x ∈ Bδ3(c) ∩ [a, b]. This implies that there are numbers strictly less than c that
are upper bounds for S which is a contradiction. Suppose that F (c) < 0. Then we
may choose δ4 > 0 such that F (x) < 0 for all x ∈ Bδ4(c) ∩ [a, b]. This implies that
there are elements of S that are strictly greater than c, which is also a contradiction.
We conclude that F (c) = 0. It follows that f(c) − γ = 0 so that f(c) = γ. The
situation when f(a) > γ > f(b) can be handled by applying the above results to the
continuous function −f .

Proof of IV.10: We begin the proof with a lemma about sequences.

Lemma: Let {zn}∞n=1 be a real sequence and let l ∈ R be given. Assume that every
subsequence {znk

}∞k=1 has a subsequence {znkj
}∞j=1 such that znkj

→ l as j → ∞.

Then zn → l as n →∞.

Proof of Lemma: Suppose that zn 9 l as n →∞. Then we may choose ε > 0 with
the following property: ∀ N ∈ N, ∃n ∈ N with n ≥ N such that |zn− l| ≥ ε. In other
words: {n ∈ N : |zn − l| ≥ ε} is infinite. Therefore we may choose a subsequence
{znk

}∞k=1 such that

(39) |znk
− l| ≥ ε ∀k ∈ N.
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By assumption, there is a subsequence {znkj
}∞j=1 such that

(40) znkj
→ l as j →∞.

On the other hand, it follows from (39) that

(41) |znkj
− l| ≥ ε ∀j ∈ N,

which contradicts (40) and completes the proof of the lemma. //
To prove the theorem, let y ∈ T be given and let {yn}∞n=1 be a sequence such that

yn ∈ T for every n ∈ N and yn → y as n →∞. We want to show that g(yn) → g(y)
as n →∞. We shall do so by employing the lemma. For each n ∈ N, let

(42) xn = g(yn)

and notice that xn ∈ S and

(43) f(xn) = yn.

We want to show that xn → g(y) as n → ∞. By the lemma, it suffices to show
that every subsequence of {xn}∞n=1 has a subsequence that converges to g(y). Let
{xnk

}∞k=1 be a subsequence of {xn}∞n=1. Since S is compact, the sequence {xnk
}∞k=1

is bounded. By the Bolzano-Weierstrass Theorem we may choose a convergent sub-
sequence {xnkj

}∞j=1. Let l = lim
j→∞

xnkj
. It remains to show that l = g(y). Since S is

closed we know that l ∈ S. Furthermore, since f is continuous we know that

(44) f(xnkj
) → f(l) as j →∞.

Since yn → y as n →∞ we know that ynkj
→ y as j →∞. Since f(xnkj

) = ynkj
for

every j ∈ N and ynkj
→ y as j →∞ we deduce from (44) that

(45) y = f(l)

by uniqueness of limits. Finally, since f is injective and f(g(y)) = y, we deduce from
(45) that l = g(y).
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