Assignment 1
Due on Monday, September 20

1. Let $\alpha \in \mathbb{R}$ be given and put $S=\{x \in \mathbb{Q}: x<\alpha\}$ be given. Show that $\sup (S)=\alpha$.
2. Use the definition of limit to show that $\frac{5}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$.
3.* Use the definition of limit to show that $\frac{2 n}{n+1} \rightarrow 2$ as $n \rightarrow \infty$.
3. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a real sequence and $l \in \mathbb{R} \backslash\{0\}$ be given. Assume that $x_{n} \neq 0$ for all $n \in \mathbb{N}$ and that $x_{n} \rightarrow l$ as $n \rightarrow \infty$. Show that $\frac{1}{x_{n}} \rightarrow \frac{1}{l}$ as $n \rightarrow \infty$.
5.* Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be real sequences. Show that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded and $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ then $x_{n} y_{n} \rightarrow 0$ as $n \rightarrow \infty$.
6.* Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a real sequence and $l \in \mathbb{R}$ be given. Define the real sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ by

$$
y_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \quad \text { for all } n \in \mathbb{N} \text {. }
$$

Show that if $x_{n} \rightarrow l$ as $n \rightarrow \infty$ then $y_{n} \rightarrow l$ as $n \rightarrow \infty$.
7. Determine whether or not $\left\{\sqrt{n^{2}+n}-n\right\}_{n=1}^{\infty}$ is convergent. If it is convergent find the limit.
8.* Let $l \in \mathbb{R}$ be given. Show that there is a sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$ such that $r_{n} \in \mathbb{Q}$ for every $n \in \mathbb{N}$ and $r_{n} \rightarrow l$ as $n \rightarrow \infty$.

* Problems marked with an asterisk should be written up and handed in.

