Assignment 1 Due on Monday, September 20

1. Let $\alpha \in \mathbb{R}$ be given and put $S = \{x \in \mathbb{Q} : x < \alpha\}$ be given. Show that $\sup(S) = \alpha$.

2. Use the definition of limit to show that $\frac{5}{n^2} \to 0$ as $n \to \infty$.

3.* Use the definition of limit to show that $\frac{2n}{n+1} \to 2$ as $n \to \infty$.

- 4. Let $\{x_n\}_{n=1}^{\infty}$ be a real sequence and $l \in \mathbb{R} \setminus \{0\}$ be given. Assume that $x_n \neq 0$ for all $n \in \mathbb{N}$ and that $x_n \to l$ as $n \to \infty$. Show that $\frac{1}{x_n} \to \frac{1}{l}$ as $n \to \infty$.
- 5.* Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be real sequences. Show that if $\{x_n\}_{n=1}^{\infty}$ is bounded and $y_n \to 0$ as $n \to \infty$ then $x_n y_n \to 0$ as $n \to \infty$.
- 6.* Let $\{x_n\}_{n=1}^{\infty}$ be a real sequence and $l \in \mathbb{R}$ be given. Define the real sequence $\{y_n\}_{n=1}^{\infty}$ by

$$y_n = \frac{1}{n} \sum_{k=1}^n x_k$$
 for all $n \in \mathbb{N}$.

Show that if $x_n \to l$ as $n \to \infty$ then $y_n \to l$ as $n \to \infty$.

- 7. Determine whether or not $\{\sqrt{n^2 + n} n\}_{n=1}^{\infty}$ is convergent. If it is convergent find the limit.
- 8.* Let $l \in \mathbb{R}$ be given. Show that there is a sequence $\{r_n\}_{n=1}^{\infty}$ such that $r_n \in \mathbb{Q}$ for every $n \in \mathbb{N}$ and $r_n \to l$ as $n \to \infty$.
- * Problems marked with an asterisk should be written up and handed in.