Assignment 7

Due on Friday, December 10

Let $a, b \in \mathbb{R}$ with $a<b$ be given.

1. For each $r \in \mathbb{Q} \backslash\{0\}$ there are unique integers $p(r)$ and $q(r)$ such that $q(r)>0$, $p(r)$ and $q(r)$ have no common divisors, and $r=\frac{p(r)}{q(r)}$. Put $q(0)=1$. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { for all } x \in[0,1] \backslash \mathbb{Q} \\ \frac{1}{q(x)} & \text { for all } x \in[0,1] \cap \mathbb{Q} .\end{cases}
$$

Show that $f \in \mathcal{R}[0,1]$.
2. Give an example of $f \in \mathcal{R}[0,1]$ and an increasing function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\varphi \circ f \notin \mathcal{R}[0,1]$.
3.* Let $g: \mathbb{R} \rightarrow \mathbb{R}, \alpha, \beta, r \in \mathbb{R}$ with $\beta>\alpha>r$ be given. Assume that g is strictly increasing and that $g(r)=0$. Consider the sequence defined recursively by $x_{1}=\beta, x_{2}=\alpha$,

$$
x_{n+2}=x_{n+1}-g\left(x_{n+1}\right)\left[\frac{x_{n+1}-x_{n}}{g\left(x_{n+1}\right)-g\left(x_{n}\right)}\right]
$$

for all $n \in \mathbb{N}$. Formulate and prove a theorem ensuring that $x_{n} \rightarrow r$ as $n \rightarrow \infty$.
4.* Let $g:[a, b] \rightarrow \mathbb{R}$ be given and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions such that $f_{n} \in \mathcal{R}[a, b]$ for every $n \in \mathbb{N}$. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a real sequence such that $\alpha_{n}>0$ for every $n \in \mathbb{N}$ and $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. Assume that

$$
\left|f_{n}(x)-g(x)\right|<\alpha_{n} \quad \forall n \in \mathbb{N}, x \in[a, b] .
$$

Show that $g \in \mathcal{R}[a, b]$ and that

$$
\int_{a}^{b} g=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}
$$

5.* Let $f \in \mathcal{R}[a, b]$ be given and define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{a}^{x} f(t) d t \quad \forall x \in[a, b] .
$$

Show that F is uniformly continuous on $[a, b]$.
6.* Let $f, g \in \mathcal{R}[a, b]$ be given. Show that

$$
\int_{a}^{b} f g \leq\left(\int_{a}^{b} f^{2}\right)^{1 / 2}\left(\int_{a}^{b} g^{2}\right)^{1 / 2}
$$

[Suggestion: Study the function $H: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
H(\lambda)=\int_{a}^{b}(f(x)-\lambda g(x))^{2} d x \quad \forall \lambda \in \mathbb{R}
$$

Notice that $H(\lambda) \geq 0 \quad \forall \lambda \in \mathbb{R}$ and make a "magic choice" for λ.
*Problems marked with an asterisk should be written up and handed in.

