Assignment 6

Due on Wednesday, December 1

1. Let $n \in \mathbb{N}$ and $a_0, a_1, \ldots, a_n \in \mathbb{R}$ be given. Show that if

$$a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \ldots + \frac{a_{n-1}}{n} + \frac{a_n}{n+1} = 0$$

then the equation

$$a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n = 0$$

has at least one solution $x \in (0, 1)$.

- 2. Give an example of two functions $f, g : \mathbb{R} \to \mathbb{R}$ such that f and g are differentiable on \mathbb{R} , f(0) = g(0) = 0, $g'(x) \neq 0$ for all $x \in \mathbb{R}$, $\lim_{x \to 0} \frac{f(x)}{g(x)}$ exists, but $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ does not exist.
- 3.*a. Let $f : \mathbb{R} \to \mathbb{R}$ and assume that f is twice differentiable on \mathbb{R} and that f'' is continuous on \mathbb{R} . Show that for every $x \in \mathbb{R}$,

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

b. Give an example of a function $g: \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{h \to 0} \frac{g(h) + g(-h) - 2g(0)}{h^2}$$

exists, but g does not have a second derivative at 0.

4. Let $g : \mathbb{R} \to \mathbb{R}$, $\alpha, \beta, r \in \mathbb{R}$ with $\beta > \alpha > r$ be given. Assume that g is strictly increasing and that g(r) = 0. Consider the sequence defined recursively by $x_1 = \beta, x_2 = \alpha$,

$$x_{n+2} = x_{n+1} - g(x_{n+1}) \left[\frac{x_{n+1} - x_n}{g(x_{n+1}) - g(x_n)} \right]$$

for all $n \in \mathbb{N}$. Formulate and prove a theorem ensuring that $x_n \to r$ as $n \to \infty$.

- 5.* Let $f : [-1,1] \to \mathbb{R}$ be given. Assume that f is continuous on [-1,1] and that f is three times differentiable on (-1,1). Assume further that f(-1) = 0, f(0) = 0, f(1) = 1, and f'(0) = 0. Show that there exists $c \in (-1,1)$ such that $f'''(c) \geq 3$. [Suggestion: Use Taylor's Theorem with n = 2, $x_0 = 0$, and $x = \pm 1$.]
- 6.* Let $f:[a,b] \to \mathbb{R}$ be given and assume that f is continuous on [a,b]. Show that if $\int_a^b f^2 = 0$ then f(x) = 0 for all $x \in [a,b]$. (Here $f^2:[a,b] \to \mathbb{R}$ is the function defined by $f^2(x) = f(x)^2$ for all $x \in [a,b]$.)
- 7.* Let $f \in \mathcal{B}[a, b]$ be given. Show that if f is Riemann integrable on [c, b] for every $c \in (a, b)$ then f is Riemann integrable on [a, b].