Assignment 6

Due on Wednesday, December 1

1. Let $n \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ be given. Show that if

$$
a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\ldots+\frac{a_{n-1}}{n}+\frac{a_{n}}{n+1}=0
$$

then the equation

$$
a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}=0
$$

has at least one solution $x \in(0,1)$.
2. Give an example of two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that f and g are differentiable on $\mathbb{R}, f(0)=g(0)=0, g^{\prime}(x) \neq 0$ for all $x \in \mathbb{R}, \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ exists, but $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist.
3.*a. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume that f is twice differentiable on \mathbb{R} and that $f^{\prime \prime}$ is continuous on \mathbb{R}. Show that for every $x \in \mathbb{R}$,

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)
$$

b. Give an example of a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\lim _{h \rightarrow 0} \frac{g(h)+g(-h)-2 g(0)}{h^{2}}
$$

exists, but g does not have a second derivative at 0 .
4. Let $g: \mathbb{R} \rightarrow \mathbb{R}, \alpha, \beta, r \in \mathbb{R}$ with $\beta>\alpha>r$ be given. Assume that g is strictly increasing and that $g(r)=0$. Consider the sequence defined recursively by $x_{1}=\beta, x_{2}=\alpha$,

$$
x_{n+2}=x_{n+1}-g\left(x_{n+1}\right)\left[\frac{x_{n+1}-x_{n}}{g\left(x_{n+1}\right)-g\left(x_{n}\right)}\right]
$$

for all $n \in \mathbb{N}$. Formulate and prove a theorem ensuring that $x_{n} \rightarrow r$ as $n \rightarrow \infty$.
5.* Let $f:[-1,1] \rightarrow \mathbb{R}$ be given. Assume that f is continuous on $[-1,1]$ and that f is three times differentiable on $(-1,1)$. Assume further that $f(-1)=$ $0, f(0)=0, f(1)=1$, and $f^{\prime}(0)=0$. Show that there exists $c \in(-1,1)$ such that $f^{\prime \prime \prime}(c) \geq 3$. [Suggestion: Use Taylor's Theorem with $n=2, x_{0}=0$, and $x= \pm 1$.]
6.* Let $f:[a, b] \rightarrow \mathbb{R}$ be given and assume that f is continuous on $[a, b]$. Show that if $\int_{a}^{b} f^{2}=0$ then $f(x)=0$ for all $x \in[a, b]$. (Here $f^{2}:[a, b] \rightarrow \mathbb{R}$ is the function defined by $f^{2}(x)=f(x)^{2}$ for all $x \in[a, b]$.)
7.* Let $f \in \mathcal{B}[a, b]$ be given. Show that if f is Riemann integrable on $[c, b]$ for every $c \in(a, b)$ then f is Riemann integrable on $[a, b]$.

