Assignment 4

Due on Wednesday, November 3

1. Determine whether or not f is uniformly continuous on S.
(a) $S=[0, \infty), \quad f(x)=\sqrt{x}$ for all $x \in S$.
(b) $S=\mathbb{R}, \quad f(x)=\sin \left(x^{2}\right)$ for all $x \in S$.
(c) $S=\mathbb{R}, \quad f(x)=\frac{1}{1+x^{2}}$ for all $x \in S$.
(d) $S=(0,1), \quad f(x)=\frac{\sin x}{x}$ for all $x \in S$.
(e) $S=(0,1), \quad f(x)=\frac{1}{\sqrt{x}}$ for all $x \in S$.
2.* Assume that $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous. Show that f is bounded, i.e. $\exists M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in(0,1)$.

3*. Let $S \subset \mathbb{R}, y \in S$, and $f: S \rightarrow \mathbb{R}$ be given. Assume that f is continuous at y and that $f(y)>0$. Show that there exists $\delta>0$ such that $f(x)>0$ for all $x \in B_{\delta}(y) \cap S$.
4.* Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Assume further that $\forall \epsilon>0, \exists M \in \mathbb{R}$ such that

$$
|f(x)|<\epsilon \quad \text { for all } x \in \mathbb{R},|x|>M
$$

Show that f is uniformly continuous.
5. Let S be a subset of \mathbb{R} and let $g: S \rightarrow \mathbb{R}, f: \mathbb{R} \rightarrow \mathbb{R}$ be given. Assume that g is uniformly continuous and that f is continuous. Show that if g is bounded, then $f \circ g$ is uniformly continuous on S.
6. Assume that $f:[0,1] \rightarrow \mathbb{R}$ is continuous. Show that if $0 \leq f(x) \leq 1$ for all $x \in[0,1]$ then there exists $y \in[0,1]$ such that $y=f(y)$.
7.* Let $S \subset \mathbb{R}$ and assume that $f, g: S \rightarrow \mathbb{R}$ are continuous. Let $T \subset S$ such that $S \subset \operatorname{cl}(T)$. Show that if $f(x)=g(x)$ for all $x \in T$, then $f(x)=g(x)$ for all $x \in S$.
*Problems marked with an asterisk should be written up and handed in.

