Assignment 4

Due on Wednesday, November 3

1. Determine whether or not f is uniformly continuous on S.

(a)
$$S = [0, \infty)$$
, $f(x) = \sqrt{x}$ for all $x \in S$.
(b) $S = \mathbb{R}$, $f(x) = \sin(x^2)$ for all $x \in S$.
(c) $S = \mathbb{R}$, $f(x) = \frac{1}{1+x^2}$ for all $x \in S$.
(d) $S = (0,1)$, $f(x) = \frac{\sin x}{x}$ for all $x \in S$.
(e) $S = (0,1)$, $f(x) = \frac{1}{\sqrt{x}}$ for all $x \in S$.

- 2.* Assume that $f: (0,1) \to \mathbb{R}$ is uniformly continuous. Show that f is bounded, i.e. $\exists M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in (0,1)$.
- 3*. Let $S \subset \mathbb{R}$, $y \in S$, and $f : S \to \mathbb{R}$ be given. Assume that f is continuous at y and that f(y) > 0. Show that there exists $\delta > 0$ such that f(x) > 0 for all $x \in B_{\delta}(y) \cap S$.
- 4.* Assume that $f : \mathbb{R} \to \mathbb{R}$ is continuous. Assume further that $\forall \epsilon > 0, \exists M \in \mathbb{R}$ such that

$$|f(x)| < \epsilon$$
 for all $x \in \mathbb{R}$, $|x| > M$.

Show that f is uniformly continuous.

- 5. Let S be a subset of \mathbb{R} and let $g: S \to \mathbb{R}$, $f: \mathbb{R} \to \mathbb{R}$ be given. Assume that g is uniformly continuous and that f is continuous. Show that if g is bounded, then $f \circ g$ is uniformly continuous on S.
- 6. Assume that $f : [0,1] \to \mathbb{R}$ is continuous. Show that if $0 \le f(x) \le 1$ for all $x \in [0,1]$ then there exists $y \in [0,1]$ such that y = f(y).
- 7.* Let $S \subset \mathbb{R}$ and assume that $f, g : S \to \mathbb{R}$ are continuous. Let $T \subset S$ such that $S \subset cl(T)$. Show that if f(x) = g(x) for all $x \in T$, then f(x) = g(x) for all $x \in S$.

*Problems marked with an asterisk should be written up and handed in.