Assignment 3

Due on Monday, October 11

1. Find int(S) and cl(S) for each of the following.

(a)
$$S = \{x \in \mathbb{Q} : x^2 < 2\}$$

(b) $S = \bigcup_{n=1}^{\infty} \left(\frac{1}{n^2 + 1}, \frac{1}{n}\right)$
(c) $S = \bigcup_{n=1}^{\infty} \left[n, n + \frac{1}{n}\right]$
(d) $S = \{x \in \mathbb{R} \setminus \mathbb{Q} : 0 < x < 1\}$

- 2.* Use the definition of compactness to show that $S = \{0\} \bigcup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ is compact.
- 3.* Let $S \subset \mathbb{R}$. Show that if S is nonempty, closed, and bounded above then $(\sup(S)) \in S$.
- 4.* Prove or Disprove: For every set $S \subset \mathbb{R}$, we have

$$\operatorname{int}(S^c) = (cl(S))^c.$$

- 5. Let $S \subset \mathbb{R}$. We say that S is regularly open if S = int(cl(S)). Prove or disprove each of the following.
 - (a) The union of any collection of regularly open sets is regularly open.
 - (b) The intersection of any finite collection of regularly open sets is regularly open.
- 6. Let $S \subset \mathbb{R}$. Show that int(S) is open and cl(S) is closed.
- 7. Prove or Disprove each of the following.
 - (a) For all sets $S, T \subset \mathbb{R}$ we have $cl(S \bigcup T) = cl(S) \bigcup cl(T)$.
 - (b) For all sets $S, T \subset \mathbb{R}$ we have $\operatorname{int}(S \bigcup T) = \operatorname{int}(S) \bigcup \operatorname{int}(T)$.

- 8.* Let $\{S_i : i \in \mathbb{N}\}$ be a collection of nonempty closed subsets of \mathbb{R} such that $S_{n+1} \subset S_n$ for all $n \in \mathbb{N}$.
 - (a) Show that if there exists $k \in \mathbb{N}$ such that S_k is bounded then $\bigcap_{n=1}^{\infty} S_n \neq \emptyset$.
 - (b) Give an example to show that the conclusion of part (a) may be false if we do not require one of the sets to be bounded.
- 9. Let $\{x_n\}_{n=1}^{\infty}$ be a real sequence. Show that the set of all cluster points of $\{x_n\}_{n=1}^{\infty}$ is closed.
- *Problems marked with an asterisk should be written up and handed in.