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VII. Sequences of Functions

In Section II, we studied sequences of real numbers. It is very useful to consider
extensions of this concept. More generally, a sequence is a function F : N→ S, where
S is some set (possibly much more complicated than R). For each n ∈ N the function
value F (n) is called the nth term of the sequence. We shall adopt the customary
practice of writing Fn in place of F (n) and denote the sequence by {Fn}∞n=1. In order
to talk about convergence of such a sequence, we need to know something about the
structure of the set S. In this section, we consider the case when S is the set of
real-valued functions with domain S, where S is a given subset of R. We refer to such
sequences as sequences of functions, or sequences of functions on S. We shall consider
two basic types of convergence for sequences of functions: pointwise convergence and
uniform convergence. By a subsequence of {Fn}∞n=1, we mean a sequence of the form
{Fnk

}∞k=1, where {nk}∞k=1 is a strictly increasing sequence of natural numbers.
’

A. Some Definitions

Let S be a subset of R, g : S → R and {fn}∞n=1 be a sequence of functions on S.

Definition 1: We say that fn → g pointwise on S as n →∞ provided that

∀x ∈ S, fn(x) → g(x) as n →∞.

We say that {fn}∞n=1 converges pointwise on S if there is a function g∗ : S → R such
that fn → g∗ pointwise on S as n →∞.

Definition 2: We say that fn → g uniformly on S as n → ∞ provided that ∀ε >
0, ∃N ∈ N such that |fn(x)− g(x)| < ε for all x ∈ S, n ∈ N, n ≥ N . We say that
{fn}∞n=1 converges uniformly on S if there is a function g∗ : S → R such that fn → g∗
uniformly on S as n →∞.

Definition 3: We say that {fn}∞n=1 is uniformly Cauchy on S provided that ∀ε >
0, ∃N ∈ N such that |fm(x)−fn(x)| < ε for all x ∈ S and all m,n ∈ N with m, n ≥ N .

Definition 4: We say that {fn}∞n=1 is uniformly equicontinuous on S provided that
∀ε > 0, ∃δ > 0 such that |fn(x)− fn(y)| < ε for all x, y ∈ S with |x− y| < δ and all
n ∈ N.

B. Some Key Results

Let S ⊂ R, y ∈ S, g : S → R and a sequence {fn}∞n=1 of functions on S be given.
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VII.1 Proposition: fn → g uniformly on S as n → ∞ if and only if there is a
real sequence {an}∞n=1 (with an ≥ 0 for all n ∈ N) such that an → 0 as n → ∞ and
|fn(x)− g(x)| ≤ an for all x ∈ S, n ∈ N.

VII.2 Theorem: Let a, b ∈ R with a < b be given. Assume that fn ∈ R[a, b] for
every n ∈ N and let g : [a, b] → R be given. Assume that fn → g uniformly on [a, b]
as n →∞. Then g ∈ R[a, b] and

∫ b

a

g = lim
n→∞

∫ b

a

fn.

VII.3 Theorem: Assume that fn is continuous at y for every n ∈ N and that fn → g
uniformly on S as n →∞. Then g is continuous at y.

VII.4 Theorem: Assume that fn is uniformly continuous on S for every n ∈ N and
that fn → g uniformly on S as n →∞. Then g is uniformly continuous on S.

VII.5 Theorem: {fn}∞n=1 converges uniformly on S if and only if {fn}∞n=1 is uni-
formly Cauchy on S.

VII.6 Lemma: Assume that {fn}∞n=1 is uniformly equicontinuous on S and that
fn → g pointwise on S as n →∞. Then g is uniformly continuous on S.

VII.7 Lemma: Assume that S is compact and that fn is continuous for every n ∈ N.
If {fn}∞n=1 converges uniformly on S then {fn}∞n=1 is uniformly equicontinuous on S.

VII.8 Lemma: Assume that S is compact, {fn}∞n=1 is uniformly equicontinuous on
S and that fn → g pointwise on S as n → ∞. Then fn → g uniformly on S as
n →∞.

VII.9 Ascoli-Arzela Theorem: Assume that S is compact, {fn}∞n=1 is uniformly
equicontinuous on S, and that ∀x ∈ S the real sequence {fn(x)}∞n=1 is bounded. Then
there is a subsequence {fnk

}∞k=1 that converges uniformly on S.

VII.10 Weierstrass Approximation Theorem: Assume that S is compact and
that g is continuous. Then there is a sequence {Pn}∞n=1 of polynomials such that
Pn → g uniformly on S as n →∞.

C. Some Remarks

VII.11 Remark: If fn → g uniformly on S as n →∞ then fn → g pointwise on S
as n →∞. The converse implication is false.

VII.12 Remark: If {fn}∞n=1 is uniformly equicontinuous on S, then for each n ∈ N,
fn is uniformly continuous on S.
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VII.13 Remark:

a) We say that {fn}∞n=1 is equicontinuous at y provided that ∀ε > 0, ∃δ > 0 such
that |fn(x)− fn(y)| < ε for all x ∈ S with |x− y| < δ and all n ∈ N.

b) If {fn}∞n=1 is equicontinuous at each y ∈ S and S is compact then {fn}∞n=1 is
uniformly equicontinuous on S. (The proof is virtually identical to the proof of
Theorem IV.8)

c) If {fn}∞n=1 is equicontinuous at y and fn → g pointwise on S then g is continuous
at y. (The proof is almost identical to the proof of Lemma V.6.)

D. Some Proofs

Proof of Theorem VII.3: Let ε > 0 be given. Choose N ∈ N such that

(1) |fn(x)− g(x)| < ε

3
∀x ∈ S, n ∈ N, n ≥ N.

Then choose δ > 0 such that

(2) |fN(x)− fN(y)| < ε

3
∀x ∈ S ∩Bδ(y).

For all x ∈ S with |x− y| < δ we have

|g(x)− g(y)| ≤ |g(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− g(y)| < ε

3
+

ε

3
+

ε

3

by virtue of (1) and (2).

Proof of Theorem VII.4: Let ε > 0 be given. Choose N ∈ N such that

(3) |fn(x)− g(x)| < ε

3
∀x ∈ S, n ∈ N, n ≥ N.

Then choose δ > 0 such that

(4) |fN(x)− fN(y)| < ε

3
∀x, y ∈ S, |x− y| < δ.

For all x, y ∈ S with |x− y| < δ we have

|g(x)− g(y)| ≤ |g(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− g(y)| < ε

3
+

ε

3
+

ε

3

by virtue of (3) and (4).
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Proof of Theorem VII.5 Assume first that {fn}∞n=1 is uniformly convergent of S.
Choose g∗ : S → R such that fn → g∗ uniformly on S as n →∞. Let ε > 0 be given.
Choose N ∈ N such that

(5) |fn(x)− g∗(x)| < ε

2
∀x ∈ S, n ∈ N, n ≥ N.

Then for all m,n ∈ N with m,n ≥ N and all x ∈ S, we have

|fn(x)− fm(x)| ≤ |fn(x)− g∗(x)|+ |g∗(x)− fm(x)| < ε/2 + ε/2

by virtue of (5).
Assume now that {fn}∞n=1 is uniformly Cauchy. Then for each x ∈ S, the real

sequence {fn(x)}∞n=1 is a Cauchy sequence and consequently is convergent. Define
g : S → R by

g(x) = lim
n→∞

fn(x) ∀x ∈ S.

We shall show that fn → g uniformly on S as n →∞. Let ε > 0 be given. We choose
N ∈ N such that

(6) |fn(x)− fm(x)| < ε

2
∀x ∈ S, m, n ∈ N, m, n ≥ N.

For each x ∈ S, we choose Nx ∈ N such that

(7) |fn(x)− g(x)| < ε/2 ∀n ∈ N, n ≥ Nx,

and we put N∗
x = max {N, Nx}. Then, for all x ∈ S and all n ∈ N with n ≥ N we

have

|fn(x)− g(x)| ≤ |fn(x)− fN∗
x
(x)|+ |fN∗

x
(x)− g(x)| < ε/2 + ε/2

by virtue of (6) and (7).

Proof of Lemma VII.6: Let ε > 0 be given. Choose δ > 0 such that

(8) |fn(x)− fn(y)| < ε

2
∀n ∈ N, x, y ∈ S, |x− y| < δ.

Let x, y ∈ S with |x − y| < δ be given. Then since fn(x) → g(x) and fn(y) → g(y)
as n →∞, we may let n →∞ in (8) and deduce that |g(x)− g(y)| ≤ ε

2
< ε.

Proof of Lemma VII.8: Assume that S 6= φ. Let ε > 0 be given. Choose δ > 0
such that

(9) |fn(x)− fn(y)| < ε

3
∀n ∈ N, x, y ∈ S, |x− y| < δ.
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Since fn → g pointwise on S as n →∞, we may let n →∞ to find that

(10) |g(x)− g(y)| ≤ ε

3
∀x, y ∈ S, |x− y| < δ.

The collection {Bδ(x) : x ∈ S} of open sets covers S. Since S is compact and
nonempty we may choose {x1, x2, . . . , xm} ⊂ S such that {Bδ(xi) : i = 1, 2, . . .m}
covers S. For each i ∈ {1, 2, . . . , m} choose Ni ∈ N such that

(11) |fn(xi)− g(xi)| < ε

3
∀n ∈ N, n ≥ Ni

and put N = max {Ni : i = 1, 2, . . . ,m}. I claim that

|fn(x)− g(x)| < ε ∀x ∈ S, n ∈ N, n ≥ N.

To verify the claim, let x ∈ S be given. Choose i ∈ {1, 2, . . . , m} such that x ∈ Bδ(xi).
Then we have

|fn(x)− g(x)| = |fn(x)− fn(xi)|+ |fn(xi)− g(xi)|+ |g(xi)− g(x)| < ε

3
+

ε

3
+

ε

3

by virtue of (9), (10), and (11).

Sketch of Proof of Theorem VII.9:

Step 1: Construct a countable set T ⊂ S with cl(T ) = S.

Step 2: For every x ∈ T , the real sequence {fn(x)}∞n=1 is bounded. By the Bolzano-
Weiersrtrass Theorem and a standard diagonalization argument one can construct a
subsequence of {fnk

}∞k=1 such that {fnk
(x)}∞k=1 converges for each x ∈ T .

Step 3: Using uniform equicontinuity and the fact that cl(T ) = S one can show that
fn → g pointwise on S as n →∞.

Step 4: It follows from Lemma V.8 that {fnk
(x)}∞k=1 converges uniformly on S.
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