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VI. Riemann Integration

A. Definitions

Let a, b ∈ R with a < b be given. By a partition of [a, b] we mean a finite set
P ⊂ [a, b] with a, b ∈ P . The set of all partitions of [a, b] will be denoted by P [a, b].
The set of all bounded functions f : [a, b] → R will be denoted by B[a, b].

Given P ∈ P [a, b] and f ∈ B[a, b] we write P = {x0, x1, x2, . . . xn} where a = x0 <
x1 < x2 < . . . < xn = b, and put ∆xi = xi − xi−1, mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi}
and Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi}. We define the lower and upper sums of f
for the partition P by

L(f, P ) =
n∑

i=1

mi(f)∆xi and

U(f, P ) =
n∑

i=1

Mi(f)∆xi.

Notice that for every P ∈ P [a, b] we have

m(f)(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(f)(b− a), where

m(f) = inf{f(x) : x ∈ [a, b]} and

M(f) = sup{f(x) : x ∈ [a, b]}.

Definition 1: Let f ∈ [a, b] be given. The lower integral of f is defined by

∫ b

a

f = sup{L(f, P ) : P ∈ P [a, b]}.

The upper integral of f is defined by
∫ b

a

f = inf{U(f, P ) : P ∈ P [a, b]}.

Definition 2. Let f ∈ B[a, b] be given. We say that f is Reimann integrable if

∫ b

a

f =

∫ b

a

f ;

in this case we write ∫ b

a

f =

∫ b

a

f.

Sometimes we write

∫ b

a

f(t)dt in place of

∫ b

a

f . The set of all Riemann integrable

functions f : [a, b] → R will be denoted by R[a, b].
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Definition 3. Let f ∈ R[a, b] be given. Then we define

∫ a

a

f = 0 and

∫ a

b

f = −
∫ b

a

f .

Definition 4: Let P,Q ∈ P [a, b] be given. If P ⊂ Q we say that Q is a refinement
of P .

Definition 5: Let P1, P2 ∈ P [a, b] be given. The partition P = P1 ∪ P2 is called the
common refinement of P1P2.

B. Some Key Results

VI.1 Proposition: Let f ∈ B[a, b] and P,Q ∈ P [a, b] with P ⊂ Q be given. Then
L(f, P ) ≤ L(f, Q) and U(f, P ) ≥ U(f, Q).

VI.2 Proposition: Let f ∈ B[a, b] be given. Then

∫ b

a

f ≤
∫ b

a

f .

VI.3 Theorem: Let f ∈ B[a, b] be given. Then f ∈ R[a, b] if and only ∀ε > 0, ∃P ∈
P [a, b] such that

U(f, P )− L(f, P ) < ε.

VI.4 Theorem: Assume that f [a, b] → R is monotonic. Then f ∈ R[a, b].

VI.5 Theorem: Assume that f : [a, b] → R is continuous. Then f ∈ R[a, b].

VI.6 Theorem: Let f ∈ R[a, b] be given and choose c, d,∈ R such that c < d and
c ≤ f(x) ≤ d for all x ∈ [a, b]. Let ϕ : [c, d] → R be given and assume that ϕ is
continuous. Then ϕ ◦ f ∈ R[a, b].

VI.7 Theorem: Let f, g ∈ R[a, b] and α ∈ R be given. Then

i. f + g ∈ R[a, b] and

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g;

ii. αf ∈ R[a, b] and

∫ b

a

αf = α

∫ b

a

f .

iii. fg ∈ R[a, b].

iv. If f(x) ≤ g(x) ∀x ∈ [a, b] then

∫ b

a

f ≤
∫ b

a

g.

v. |f | ∈ R[a, b] and |
∫ b

a

f | ≤
∫ b

a

|f |.

VI.8 Theorem: Let f ∈ R[a, b] and c, d ∈ R with a ≤ c < d ≤ b be given. Then the
restriction of f to [c, d] is integrable on [c, d].
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VI.9 Theorem: Let f ∈ B[a, b] and c ∈ (a, b) be given. If f is integrable on [a, c]
and on [c, b] then f ∈ R[a, b] and

∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

VI.10 Fundamental Lemma of Calculus: Let f ∈ R[a, b] and c, x0 ∈ (a, b) be
given. Define F : [a, b] → R by

F (x) :=

∫ x

c

f(t)dt ∀x ∈ [a, b].

Then F is uniformly continuous on [a, b]. Moreover if f is continuous at x0 then F is
differentiable at x0 and F ′(x0) = f(x0).

VI.11 Fundamental Theorem of Calculus: Let f ∈ R[a, b] be given and assume
that f is continuous on (a, b). Let F : [a, b] → R be any function that is continuous
on [a, b], differentiable on (a, b) and such that F ′(x) = f(x) for all x ∈ [a, b]. Then∫ b

a

f = F (b)− F (a).

VI.12 Mean Value Theorem for Integrals. Let f ∈ R[a, b] be given and assume
that f is continuous on (a, b). Then there exists c ∈ (a, b) such that

f(c) =
1

b− a

∫ b

a

f.

C. Some Remarks.

VI.13 Remark: It is straightforward to verify that

∫ b

a

1 = b− a.

VI.14 Remark: Define f : [a, b] → R by

f(x) =





0 ∀x ∈ [a, b]\Q

1 ∀x ∈ [a, b] ∩Q.

It is straightforward to verify that

∫ b

a

f = 0 and

∫ b

a

f = b− a

and consequently f /∈ R[a, b].

VI.15 Remark: Let f, g ∈ R[a, b] be given and assume that f(x) < g(x) for all
x ∈ (a, b). Then we have
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∫ b

a

f <

∫ b

a

g

although this seems much more difficult to prove than Theorem VI.7 (iv).

D. Some Proofs.

Proof of VI.3: Assume first that f ∈ R[a, b]. Let ε > 0 be given. Choose P1, P2 ∈
P [a, b] such that

(1) U(f, P1)−
∫ b

a

f <
ε

2

(2)

∫ b

a

f − L(f, P2) <
ε

2

and put P = P1 ∪ P2. By Proposition VI.1 we have

(3) U(f, P )−
∫ b

a

f <
ε

2

(4)

∫ b

a

f − L(f, P ) <
ε

2
.

Since

∫ b

a

f =

∫ b

a

f we may add (3) and (4) to obtain

(5) U(f, P )− L(f, P ) < ε

To prove the converse implication let ε > 0 be given and choose P such that (5)
holds. Then, by Proposition VI.2 we have

(6) L(f, P ) ≤
∫ b

a

f ≤
∫ b

a

≤ U(f, P )

Combining (5) and (6) we get

(7) 0 ≤
∫ b̄

a

f −
∫ b

a

< ε.
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Since ε > 0 was arbitrary we conclude that

(8)

∫ b̄

a

f −
∫ b

a

f = 0

and f ∈ R[a, b].

Proof of VI.4: We treat the case when f is increasing. [The case when f is decreasing
very similar.] We use Theorem VI.3. Let ε > 0 be given. Choose n ∈ N such that

(9) n >
(f(b)− f(a))(b− a)

ε
.

Let P be the uniform partition of [a, b] with n sub-intervals, i.e. the partition char-
acterized by

(10) xi = a + i

(
b− a

n

)
, i = 0, 1, . . . , n.

Let

(11) ∆x =
(b− a)

n

and notice that

(12) xi − xi−1 = ∆x, i = 1, 2, . . . , n.

Since f is increasing we have

(13) mi(f) = f(xi−1), Mi(f) = f(xi) i = 1, 2, . . . , n.

It follows that

(14) U(f, P )− L(f, P ) =
n∑

i=1

[f(xi)− f(xi−1)]∆x =
(b− a)

n
[f(b)− f(a)].

Combining (9) and (14) we get

(15) U(f, P )− L(f, P ) < ε.
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Proof of VI.5. Once again, we apply Theorem VI.3. Le ε > 0 be given. Since f
is continuous on [a, b] and [a, b] is compact, we know that f is uniformly continuous.
Therefore we may choose δ > 0 so that

(16) |f(t)− f(s)| < ε

b− a
∀s, t ∈ [a, b], |t− s| < δ.

Let P be any partition of [a, b] such that

(17) ∆xi < δ, i = 1, 2, . . . , n.

Since f is continuous, for each i ∈ {1, 2, . . . , n} we may choose xi, x∗i ∈ [xi−1, xi]
such that

(18) f(x̄i) ≤ f(x) ≤ f(x∗i ) ∀x ∈ [xi−1, xi].

It follows that

(19) U(f, P )− L(f, P ) =
n∑

i=1

[f(x∗i )− f(x̄i)]∆xi

Since |x∗i − x̄i| < δ for all i ∈ {1, 2, . . . , n} we know that

(20) f(x∗i )− f(x̄i) <
ε

b− a
∀i ∈ {1, 2, . . . , n}.

It follows from (19) and (20) that

(21) U(f, P )− L(f, P ) <

n∑
i=1

ε

(b− a)
∆xi = ε.

Proof of VI.6: Once again, we use Theorem IV.3. Let ε > 0 be given. Since ϕ
is continuous on the compact set [c, d] it is uniformly continuous and it is bounded.
Choose δ > 0 such that

(22) |ϕ(t)− ϕ(s)| < ε

2(b− a)
∀s, t ∈ [c, d], |t− s| > δ

and choose K > 0 such that

(23) |ϕ(s)| ≤ K ∀s ∈ [c, d].
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Since f ∈ R[a, b] we may choose P ∈ P [a, b] such that

(24) U(f, P )− L(f, P ) <
δε

4K
.

Split the index {1, 2, . . . , n} set into two pieces A,B as follows:

(25) i ∈ A ↔ Mi(f)−mi(f) < δ,

(26) i ∈ B ↔ Mi(f)−mi(f) ≥ δ.

Notice that

(27)

U(ϕ ◦ f, P )− L(ϕ ◦ f, P )

=
∑

i∈A[Mi(ϕ ◦ f)−mi(ϕ ◦ f)]∆xi

+
∑

i∈B[Mi(ϕ ◦ f)−mi(ϕ ◦ f ]∆xi.

It follows from (22) and (25) that

(28) Mi(ϕ ◦ f)−mi(ϕ ◦ f) ≤ ε

2(b− a)
∀i ∈ A.

Consequently

(29)

∑
i∈A

[Mi(ϕ ◦ f)−mi(ϕ ◦ f)]∆xi

≤
∑
i∈A

ε∆xi

2(b− a)
≤

n∑
i=1

ε∆xi

2(b− a)
=

ε

2(b− a)
.

Notice that

(30) δ
∑
i∈B

∆xi ≤
∑
i∈B

[Mi(f)−mi(f)]∆xi ≤ U(f, P )− L(f, P ) <
δε

4k
.

It follows from (30) that

(31)
∑
i∈B

∆xi <
ε

4K
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For i ∈ B, we have

(32) [Mk(ϕ ◦ f)−mi(ϕ ◦ f)] ≤ Mi(ϕ ◦ f) + mi(ϕ ◦ f) ≤ 2K

and consequently

(33)
∑
i∈B

[Mi(ϕ ◦ f)−mi(ϕ ◦ f)]∆xi ≤
∑
i∈B

2K∆xi < 2K
( ε

4K

)
=

ε

2

by virture of (31) and (32). Combining (27), (29), and (33), we arrive at

(34) U(ϕ ◦ f, P )− L(ϕ ◦ f, P ) < ε.

Proof of VI.7(i). Let ε > 0 be given. Choose P1, P2 ∈ P [a, b] such that

(35) U(f, P1)− L(f, P1) < ε/2

(36) U(g, P2)− L(g, P2) < ε/2.

Let P = P1 ∪ P2 and observe that

(37) U(f, P )− L(f, P ) < ε/2

(38) U(g, P )− L(g, P ) <
ε

2
.

Notice that for each i ∈ {1, 2, . . . , n} we have

(39) mi(f) ≤ f(x) ≤ Mi(f) ∀x ∈ [xi−1, xi]

(40) mi(g) ≤ g(x) ≤ Mi(g) ∀x ∈ [xi−1, xi],

and consequently

(41) mi(f) + mi(g) ≤ f(x) + g(x) ≤ Mi(f) + Mi(g) ∀x ∈ [xi−1, xi].

It follows that
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(42) mi(f) + mi(g) ≤ mi(f + g) ≤ Mi(f + g) ≤ Mi(f) + Mi(g) ∀i ∈ {1, 2, . . . , n}.

Multiplying (42) by ∆xi and summing over i we get

(43) L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ).

It follows from (37), (38), and (43) that

(44) U(f + g, P )− L(f + g, P ) < ε.

We conclude that f + g ∈ R[a, b]. Notice that

(45) L(f, P ) ≤
∫ b

a

f ≤ U(f, P ),

(46) L(g, P ) ≤
∫ b

a

g ≤ U(g, P ),

(47) L(f + g, P ) ≤
∫ b

a

(f + g) ≤ U(f + g, P ).

Combining (37), (38), (45), (46), and (47) in a straightforward (but perhaps tedious)
fashion we arrive at

(48) −ε +

∫ b

a

f +

∫ b

a

g <

∫ b

a

(f + g) <

∫ b

a

f +

∫ b

a

g + ε.

Since ε > 0 was arbitrary we conclude that

(49)

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

The proofs of VI.7 (ii) and VI.7 (iv) are left as exercises.

Proof of VI.7(iii). The function t 7→ t2 is continuous on R. Therefore, by Theorem
VI.6, F 2 ∈ R[a, b] for every F ∈ R[a, b]. We conclude that (f + g)2 ∈ R[a, b] and
(f − g)2 ∈ R[a, b] by virtue of Theorem VI.7 (i), (ii) and the observation above. The
fact that f, g ∈ R[a, b] now follows from the equation

9



(50) fg =
1

4
[(f + g)2 − (f − g)2]

and another application of Theorem VI.7(i), (ii).

Proof of VI.7(v): The fact that |f | ∈ R[a, b] follows from Theorem VI.6 and
continuity of the function t 7→ |t| on R. The desired inequality follows form Theorem
VI.7(ii), (iv) and the observation

(51) f(x) ≤ |f(x)| ∀x ∈ [a, b]

(52) −f(x) ≤ |f(x)| ∀x ∈ [a, b].

Proof of VI.10: The uniform continuity of F is a homework problem. For h 6= 0
and |h| small enough so that x0 + h ∈ [a, b] we have

(53)

F (x0 + h) =
∫ x0+h

c
f(t)dt

=
∫ x0

c
f(t)dt +

∫ x0+h

x0
f(t)dt

= F (x0) +
∫ x0+h

x0
f(t)dt

and consequently

(52)
F (x0 + h)− F (x0)

h
=

1

h

∫ x0+h

x0

f(t)dt.

Let ε > 0 be given. Since f is continuous at x0 we may choose δ > 0 such that

(53) |f(t)− f(x0)| < ε

2
∀t ∈ Bδ(x0) ∩ [a, b].

Observe that for h 6= 0 we have

(56) f(x0) =
1

h

∫ x0+h

x0

f(x0)dt.

Let h ∈ B∗
δ (0) be given such that x0 + h ∈ [a, b]. Then we have

(57)
F (x0 + h)− F (x0)

h
− f(x0) =

1

h

∫ x0+h

x0

(f(t)− f(x0))dt
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by virtue of (54) and (56). It follows from (55) and (57) that

(58)

∣∣∣∣
F (x0 + h)− F (x0)

h
f(x0)

∣∣∣∣ ≤
1

|h|
∫ x0+h

x0

|f(t)− f(x0)|dt| ≤ 1

|h|
ε

2
|h| < ε.

We conclude that F is differentiable at x0 and F ′(x0) = f(x0).

Proof of VI.II: Define F̃ , G : [a, b] → R by

(59) F̃ (x) =

∫ x

a

f(t)dt ∀x ∈ [a, b]

(60) G(x) = F (x)− F̃ (x) ∀x ∈ [a, b].

Notice that F̃ , G are continuous on [a, b], differentiable on (a, b) and

(61) G′(x) = F ′(x)− F̃ ′(x) = f(x)− f(x) = 0 ∀x ∈ (a, b).

We conclude that G is constant on [a, b], i.e.

(62) G(x) = G(a) ∀x ∈ [a, b];

in particular

(63) G(b) = G(a).

Notice that

(64) G(a) = F (a)− F̃ (a) = F (a)

Combining (63) and (64) yields

(65) G(b) = F (a)

Observe that

(66)

∫ b

a

f(t)dt = F̃ (b) = F (b)−G(b) = F (a)− (a)

by virtue of (59), (60), and (65).
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Proof of VI.12: Define F : [a, b] → R by

(67) F (x) =

∫ x

a

ft)dt ∀x ∈ [a, b]

Then F is continuous on [a, b], differentialbe on (a, b) and F ′(x) = f(x) for all x ∈
(a, b). By the Mean Value Theorem for derivatives we may choose c ∈ (a, b) such that

(68)

f(c) = F ′(c) =
F (b)− F (a)

b− a

=
1

b− a

[∫ b

a

f(t)dt−
∫ a

b

f(t)dt

]

=
1

b− a

∫ b

a

f(t)dt.
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