VI. Riemann Integration

A. Definitions

Let $a, b \in \mathbb{R}$ with $a<b$ be given. By a partition of $[a, b]$ we mean a finite set $P \subset[a, b]$ with $a, b \in P$. The set of all partitions of $[a, b]$ will be denoted by $\mathcal{P}[a, b]$. The set of all bounded functions $f:[a, b] \rightarrow \mathbb{R}$ will be denoted by $\mathcal{B}[a, b]$.

Given $P \in \mathcal{P}[a, b]$ and $f \in \mathcal{B}[a, b]$ we write $P=\left\{x_{0}, x_{1}, x_{2}, \ldots x_{n}\right\}$ where $a=x_{0}<$ $x_{1}<x_{2}<\ldots<x_{n}=b$, and put $\Delta x_{i}=x_{i}-x_{i-1}, m_{i}(f)=\inf \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}$ and $M_{i}(f)=\sup \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}$. We define the lower and upper sums of f for the partition P by

$$
\begin{gathered}
L(f, P)=\sum_{i=1}^{n} m_{i}(f) \Delta x_{i} \quad \text { and } \\
U(f, P)=\sum_{i=1}^{n} M_{i}(f) \Delta x_{i}
\end{gathered}
$$

Notice that for every $P \in \mathcal{P}[a, b]$ we have

$$
\begin{aligned}
& m(f)(b-a) \leq L(f, P) \leq U(f, P) \leq M(f)(b-a), \text { where } \\
& m(f)=\inf \{f(x): x \in[a, b]\} \text { and } \\
& M(f)=\sup \{f(x): x \in[a, b]\}
\end{aligned}
$$

Definition 1: Let $f \in[a, b]$ be given. The lower integral of f is defined by

$$
\underline{\int_{a}^{b}} f=\sup \{L(f, P): P \in \mathcal{P}[a, b]\} .
$$

The upper integral of f is defined by

$$
\overline{\int_{a}^{b}} f=\inf \{U(f, P): P \in \mathcal{P}[a, b]\} .
$$

Definition 2. Let $f \in \mathcal{B}[a, b]$ be given. We say that f is Reimann integrable if

$$
\underline{\int_{a}^{b}} f=\overline{\int_{a}^{b}} f
$$

in this case we write

$$
\int_{a}^{b} f=\underline{\int_{a}^{b}} f
$$

Sometimes we write $\int_{a}^{b} f(t) d t$ in place of $\int_{a}^{b} f$. The set of all Riemann integrable functions $f:[a, b] \rightarrow \mathbb{R}$ will be denoted by $\mathcal{R}[a, b]$.

Definition 3. Let $f \in \mathcal{R}[a, b]$ be given. Then we define $\int_{a}^{a} f=0$ and $\int_{b}^{a} f=-\int_{a}^{b} f$.
Definition 4: Let $P, Q \in \mathcal{P}[a, b]$ be given. If $P \subset Q$ we say that Q is a refinement of P.

Definition 5: Let $P_{1}, P_{2} \in \mathcal{P}[a, b]$ be given. The partition $P=P_{1} \cup P_{2}$ is called the common refinement of $P_{1} P_{2}$.

B. Some Key Results

VI. 1 Proposition: Let $f \in \mathcal{B}[a, b]$ and $P, Q \in \mathcal{P}[a, b]$ with $P \subset Q$ be given. Then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$.
VI. 2 Proposition: Let $f \in \mathcal{B}[a, b]$ be given. Then $\int_{a}^{b} f \leq \overline{\int_{a}^{b}} f$.
VI. 3 Theorem: Let $f \in \mathcal{B}[a, b]$ be given. Then $f \in \mathcal{R}[a, b]$ if and only $\forall \epsilon>0, \exists P \in$ $\mathcal{P}[a, b]$ such that

$$
U(f, P)-L(f, P)<\epsilon
$$

VI. 4 Theorem: Assume that $f[a, b] \rightarrow \mathbb{R}$ is monotonic. Then $f \in \mathcal{R}[a, b]$.
VI. 5 Theorem: Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then $f \in \mathcal{R}[a, b]$.
VI. 6 Theorem: Let $f \in \mathcal{R}[a, b]$ be given and choose $c, d, \in \mathbb{R}$ such that $c<d$ and $c \leq f(x) \leq d$ for all $x \in[a, b]$. Let $\varphi:[c, d] \rightarrow \mathbb{R}$ be given and assume that φ is continuous. Then $\varphi \circ f \in \mathcal{R}[a, b]$.
VI. 7 Theorem: Let $f, g \in \mathcal{R}[a, b]$ and $\alpha \in \mathbb{R}$ be given. Then
i. $f+g \in \mathcal{R}[a, b]$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$;
ii. $\alpha f \in \mathcal{R}[a, b]$ and $\int_{a}^{b} \alpha f=\alpha \int_{a}^{b} f$.
iii. $f g \in \mathcal{R}[a, b]$.
iv. If $f(x) \leq g(x) \quad \forall x \in[a, b]$ then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
v. $|f| \in \mathcal{R}[a, b]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.
VI. 8 Theorem: Let $f \in \mathcal{R}[a, b]$ and $c, d \in \mathbb{R}$ with $a \leq c<d \leq b$ be given. Then the restriction of f to $[c, d]$ is integrable on $[c, d]$.
VI. 9 Theorem: Let $f \in \mathcal{B}[a, b]$ and $c \in(a, b)$ be given. If f is integrable on $[a, c]$ and on $[c, b]$ then $f \in \mathcal{R}[a, b]$ and

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

VI. 10 Fundamental Lemma of Calculus: Let $f \in \mathcal{R}[a, b]$ and $c, x_{0} \in(a, b)$ be given. Define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x):=\int_{c}^{x} f(t) d t \quad \forall x \in[a, b] .
$$

Then F is uniformly continuous on $[a, b]$. Moreover if f is continuous at x_{0} then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
VI. 11 Fundamental Theorem of Calculus: Let $f \in \mathcal{R}[a, b]$ be given and assume that f is continuous on (a, b). Let $F:[a, b] \rightarrow \mathbb{R}$ be any function that is continuous on $[a, b]$, differentiable on (a, b) and such that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$. Then $\int_{a}^{b} f=F(b)-F(a)$.
VI. 12 Mean Value Theorem for Integrals. Let $f \in \mathcal{R}[a, b]$ be given and assume that f is continuous on (a, b). Then there exists $c \in(a, b)$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f
$$

C. Some Remarks.

VI. 13 Remark: It is straightforward to verify that $\int_{a}^{b} 1=b-a$.
VI. 14 Remark: Define $f:[a, b] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \forall x \in[a, b] \backslash \mathbb{Q} \\ 1 & \forall x \in[a, b] \cap \mathbb{Q}\end{cases}
$$

It is straightforward to verify that

$$
\int_{a}^{b} f=0 \text { and } \overline{\int_{a}^{b}} f=b-a
$$

and consequently $f \notin \mathcal{R}[a, b]$.
VI. 15 Remark: Let $f, g \in \mathcal{R}[a, b]$ be given and assume that $f(x)<g(x)$ for all $x \in(a, b)$. Then we have

$$
\int_{a}^{b} f<\int_{a}^{b} g
$$

although this seems much more difficult to prove than Theorem VI. 7 (iv).

D. Some Proofs.

Proof of VI.3: Assume first that $f \in \mathcal{R}[a, b]$. Let $\epsilon>0$ be given. Choose $P_{1}, P_{2} \in$ $\mathcal{P}[a, b]$ such that

$$
\begin{gather*}
U\left(f, P_{1}\right)-\overline{\int_{a}^{b}} f<\frac{\epsilon}{2} \tag{1}\\
\underline{\int_{a}^{b}} f-L\left(f, P_{2}\right)<\frac{\epsilon}{2}
\end{gather*}
$$

and put $P=P_{1} \cup P_{2}$. By Proposition VI. 1 we have

$$
\begin{align*}
& U(f, P)-\overline{\int_{a}^{b}} f<\frac{\epsilon}{2} \tag{3}\\
& {\underline{\int_{a}}}_{\underline{b}} f-L(f, P)<\frac{\epsilon}{2}
\end{align*}
$$

Since $\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f$ we may add (3) and (4) to obtain

$$
\begin{equation*}
U(f, P)-L(f, P)<\epsilon \tag{5}
\end{equation*}
$$

To prove the converse implication let $\epsilon>0$ be given and choose P such that (5) holds. Then, by Proposition VI. 2 we have

$$
\begin{equation*}
L(f, P) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} \leq U(f, P) \tag{6}
\end{equation*}
$$

Combining (5) and (6) we get

$$
\begin{equation*}
0 \leq \overline{\int_{a}^{\bar{b}}} f-\underline{\int_{a}^{b}}<\epsilon . \tag{7}
\end{equation*}
$$

Since $\epsilon>0$ was arbitrary we conclude that

$$
\begin{equation*}
\overline{\int_{a}^{\bar{b}}} f-\underline{\int_{a}^{b}} f=0 \tag{8}
\end{equation*}
$$

and $f \in \mathcal{R}[a, b]$.
Proof of VI.4: We treat the case when f is increasing. [The case when f is decreasing very similar.] We use Theorem VI.3. Let $\epsilon>0$ be given. Choose $n \in \mathbb{N}$ such that

$$
\begin{equation*}
n>\frac{(f(b)-f(a))(b-a)}{\epsilon} \tag{9}
\end{equation*}
$$

Let P be the uniform partition of $[a, b]$ with n sub-intervals, i.e. the partition characterized by

$$
\begin{equation*}
x_{i}=a+i\left(\frac{b-a}{n}\right), i=0,1, \ldots, n . \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Delta x=\frac{(b-a)}{n} \tag{11}
\end{equation*}
$$

and notice that

$$
\begin{equation*}
x_{i}-x_{i-1}=\Delta x, \quad i=1,2, \ldots, n \tag{12}
\end{equation*}
$$

Since f is increasing we have

$$
\begin{equation*}
m_{i}(f)=f\left(x_{i-1}\right), \quad M_{i}(f)=f\left(x_{i}\right) \quad i=1,2, \ldots, n \tag{13}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right] \Delta x=\frac{(b-a)}{n}[f(b)-f(a)] . \tag{14}
\end{equation*}
$$

Combining (9) and (14) we get

$$
\begin{equation*}
U(f, P)-L(f, P)<\epsilon . \tag{15}
\end{equation*}
$$

Proof of VI.5. Once again, we apply Theorem VI.3. Le $\epsilon>0$ be given. Since f is continuous on $[a, b]$ and $[a, b]$ is compact, we know that f is uniformly continuous. Therefore we may choose $\delta>0$ so that

$$
\begin{equation*}
|f(t)-f(s)|<\frac{\epsilon}{b-a} \quad \forall s, t \in[a, b],|t-s|<\delta . \tag{16}
\end{equation*}
$$

Let P be any partition of $[a, b]$ such that

$$
\begin{equation*}
\Delta x_{i}<\delta, \quad i=1,2, \ldots, n \tag{17}
\end{equation*}
$$

Since f is continuous, for each $i \in\{1,2, \ldots, n\}$ we may choose $\bar{x}_{i}, x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ such that

$$
\begin{equation*}
f\left(\bar{x}_{i}\right) \leq f(x) \leq f\left(x_{i}^{*}\right) \quad \forall x \in\left[x_{i-1}, x_{i}\right] . \tag{18}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-f\left(\bar{x}_{i}\right)\right] \Delta x_{i} \tag{19}
\end{equation*}
$$

Since $\left|x_{i}^{*}-\bar{x}_{i}\right|<\delta$ for all $i \in\{1,2, \ldots, n\}$ we know that

$$
\begin{equation*}
f\left(x_{i}^{*}\right)-f\left(\bar{x}_{i}\right)<\frac{\epsilon}{b-a} \quad \forall i \in\{1,2, \ldots, n\} . \tag{20}
\end{equation*}
$$

It follows from (19) and (20) that

$$
\begin{equation*}
U(f, P)-L(f, P)<\sum_{i=1}^{n} \frac{\epsilon}{(b-a)} \Delta x_{i}=\epsilon \tag{21}
\end{equation*}
$$

Proof of VI.6: Once again, we use Theorem IV.3. Let $\epsilon>0$ be given. Since φ is continuous on the compact set $[c, d]$ it is uniformly continuous and it is bounded. Choose $\delta>0$ such that

$$
\begin{equation*}
|\varphi(t)-\varphi(s)|<\frac{\epsilon}{2(b-a)} \quad \forall s, t \in[c, d],|t-s|>\delta \tag{22}
\end{equation*}
$$

and choose $K>0$ such that

$$
\begin{equation*}
|\varphi(s)| \leq K \quad \forall s \in[c, d] . \tag{23}
\end{equation*}
$$

Since $f \in \mathcal{R}[a, b]$ we may choose $P \in \mathcal{P}[a, b]$ such that

$$
\begin{equation*}
U(f, P)-L(f, P)<\frac{\delta \epsilon}{4 K} . \tag{24}
\end{equation*}
$$

Split the index $\{1,2, \ldots, n\}$ set into two pieces A, B as follows:

$$
\begin{align*}
& i \in A \leftrightarrow M_{i}(f)-m_{i}(f)<\delta, \tag{25}\\
& i \in B \leftrightarrow M_{i}(f)-m_{i}(f) \geq \delta \tag{26}
\end{align*}
$$

Notice that

$$
\begin{align*}
& U(\varphi \circ f, P)-L(\varphi \circ f, P) \\
& \quad=\sum_{i \in A}\left[M_{i}(\varphi \circ f)-m_{i}(\varphi \circ f)\right] \Delta x_{i} \tag{27}\\
& \quad+\sum_{i \in B}\left[M_{i}(\varphi \circ f)-m_{i}(\varphi \circ f] \Delta x_{i} .\right.
\end{align*}
$$

It follows from (22) and (25) that

$$
\begin{equation*}
M_{i}(\varphi \circ f)-m_{i}(\varphi \circ f) \leq \frac{\epsilon}{2(b-a)} \quad \forall i \in A \tag{28}
\end{equation*}
$$

Consequently

$$
\begin{align*}
& \sum_{i \in A}\left[M_{i}(\varphi \circ f)-m_{i}(\varphi \circ f)\right] \Delta x_{i} \\
& \leq \sum_{i \in A} \frac{\epsilon \Delta x_{i}}{2(b-a)} \leq \sum_{i=1}^{n} \frac{\epsilon \Delta x_{i}}{2(b-a)}=\frac{\epsilon}{2(b-a)} \tag{29}
\end{align*}
$$

Notice that

$$
\begin{equation*}
\delta \sum_{i \in B} \Delta x_{i} \leq \sum_{i \in B}\left[M_{i}(f)-m_{i}(f)\right] \Delta x_{i} \leq U(f, P)-L(f, P)<\frac{\delta \epsilon}{4 k} \tag{30}
\end{equation*}
$$

It follows from (30) that

$$
\begin{equation*}
\sum_{i \in B} \Delta x_{i}<\frac{\epsilon}{4 K} \tag{31}
\end{equation*}
$$

For $i \in B$, we have

$$
\begin{equation*}
\left[M_{k}(\varphi \circ f)-m_{i}(\varphi \circ f)\right] \leq M_{i}(\varphi \circ f)+m_{i}(\varphi \circ f) \leq 2 K \tag{32}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\sum_{i \in B}\left[M_{i}(\varphi \circ f)-m_{i}(\varphi \circ f)\right] \Delta x_{i} \leq \sum_{i \in B} 2 K \Delta x_{i}<2 K\left(\frac{\epsilon}{4 K}\right)=\frac{\epsilon}{2} \tag{33}
\end{equation*}
$$

by virture of (31) and (32). Combining (27), (29), and (33), we arrive at

$$
\begin{equation*}
U(\varphi \circ f, P)-L(\varphi \circ f, P)<\epsilon \tag{34}
\end{equation*}
$$

Proof of VI.7(i). Let $\epsilon>0$ be given. Choose $P_{1}, P_{2} \in \mathcal{P}[a, b]$ such that

$$
\begin{gather*}
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\epsilon / 2 \tag{35}\\
U\left(g, P_{2}\right)-L\left(g, P_{2}\right)<\epsilon / 2 \tag{36}
\end{gather*}
$$

Let $P=P_{1} \cup P_{2}$ and observe that

$$
\begin{gather*}
U(f, P)-L(f, P)<\epsilon / 2 \tag{37}\\
U(g, P)-L(g, P)<\frac{\epsilon}{2}
\end{gather*}
$$

Notice that for each $i \in\{1,2, \ldots, n\}$ we have

$$
\begin{align*}
& m_{i}(f) \leq f(x) \leq M_{i}(f) \quad \forall x \in\left[x_{i-1}, x_{i}\right] \tag{39}\\
& m_{i}(g) \leq g(x) \leq M_{i}(g) \quad \forall x \in\left[x_{i-1}, x_{i}\right], \tag{40}
\end{align*}
$$

and consequently

$$
\begin{equation*}
m_{i}(f)+m_{i}(g) \leq f(x)+g(x) \leq M_{i}(f)+M_{i}(g) \quad \forall x \in\left[x_{i-1}, x_{i}\right] \tag{41}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
m_{i}(f)+m_{i}(g) \leq m_{i}(f+g) \leq M_{i}(f+g) \leq M_{i}(f)+M_{i}(g) \quad \forall i \in\{1,2, \ldots, n\} . \tag{42}
\end{equation*}
$$

Multiplying (42) by Δx_{i} and summing over i we get

$$
\begin{equation*}
L(f, P)+L(g, P) \leq L(f+g, P) \leq U(f+g, P) \leq U(f, P)+U(g, P) . \tag{43}
\end{equation*}
$$

It follows from (37), (38), and (43) that

$$
\begin{equation*}
U(f+g, P)-L(f+g, P)<\epsilon . \tag{44}
\end{equation*}
$$

We conclude that $f+g \in \mathcal{R}[a, b]$. Notice that

$$
\begin{gather*}
L(f, P) \leq \int_{a}^{b} f \leq U(f, P), \tag{45}\\
L(g, P) \leq \int_{a}^{b} g \leq U(g, P), \tag{46}\\
L(f+g, P) \leq \int_{a}^{b}(f+g) \leq U(f+g, P) . \tag{47}
\end{gather*}
$$

Combining (37), (38), (45), (46), and (47) in a straightforward (but perhaps tedious) fashion we arrive at

$$
\begin{equation*}
-\epsilon+\int_{a}^{b} f+\int_{a}^{b} g<\int_{a}^{b}(f+g)<\int_{a}^{b} f+\int_{a}^{b} g+\epsilon . \tag{48}
\end{equation*}
$$

Since $\epsilon>0$ was arbitrary we conclude that

$$
\begin{equation*}
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g \tag{49}
\end{equation*}
$$

The proofs of VI. 7 (ii) and VI. 7 (iv) are left as exercises.
Proof of VI.7(iii). The function $t \mapsto t^{2}$ is continuous on \mathbb{R}. Therefore, by Theorem VI.6, $F^{2} \in \mathcal{R}[a, b]$ for every $F \in \mathcal{R}[a, b]$. We conclude that $(f+g)^{2} \in \mathcal{R}[a, b]$ and $(f-g)^{2} \in \mathcal{R}[a, b]$ by virtue of Theorem VI. 7 (i), (ii) and the observation above. The fact that $f, g \in \mathcal{R}[a, b]$ now follows from the equation

$$
\begin{equation*}
f g=\frac{1}{4}\left[(f+g)^{2}-(f-g)^{2}\right] \tag{50}
\end{equation*}
$$

and another application of Theorem VI.7(i), (ii).
Proof of VI.7(v): The fact that $|f| \in \mathcal{R}[a, b]$ follows from Theorem VI. 6 and continuity of the function $t \mapsto|t|$ on \mathbb{R}. The desired inequality follows form Theorem VI.7(ii), (iv) and the observation

$$
\begin{gather*}
f(x) \leq|f(x)| \quad \forall x \in[a, b] \tag{51}\\
-f(x) \leq|f(x)| \quad \forall x \in[a, b] \tag{52}
\end{gather*}
$$

Proof of VI.10: The uniform continuity of F is a homework problem. For $h \neq 0$ and $|h|$ small enough so that $x_{0}+h \in[a, b]$ we have

$$
\begin{align*}
F\left(x_{0}+h\right) & =\int_{c}^{x_{0}+h} f(t) d t \\
& =\int_{c}^{x_{0}} f(t) d t+\int_{x_{0}}^{x_{0}+h} f(t) d t \tag{53}\\
& =F\left(x_{0}\right)+\int_{x_{0}}^{x_{0}+h} f(t) d t
\end{align*}
$$

and consequently

$$
\begin{equation*}
\frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h}=\frac{1}{h} \int_{x_{0}}^{x_{0}+h} f(t) d t \tag{52}
\end{equation*}
$$

Let $\epsilon>0$ be given. Since f is continuous at x_{0} we may choose $\delta>0$ such that

$$
\begin{equation*}
\left|f(t)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2} \quad \forall t \in B_{\delta}\left(x_{0}\right) \cap[a, b] . \tag{53}
\end{equation*}
$$

Observe that for $h \neq 0$ we have

$$
\begin{equation*}
f\left(x_{0}\right)=\frac{1}{h} \int_{x_{0}}^{x_{0}+h} f\left(x_{0}\right) d t \tag{56}
\end{equation*}
$$

Let $h \in B_{\delta}^{*}(0)$ be given such that $x_{0}+h \in[a, b]$. Then we have

$$
\begin{equation*}
\frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h}-f\left(x_{0}\right)=\frac{1}{h} \int_{x_{0}}^{x_{0}+h}\left(f(t)-f\left(x_{0}\right)\right) d t \tag{57}
\end{equation*}
$$

by virtue of (54) and (56). It follows from (55) and (57) that

$$
\begin{equation*}
\left.\left|\frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h} f\left(x_{0}\right)\right| \leq \frac{1}{|h|} \int_{x_{0}}^{x_{0}+h}\left|f(t)-f\left(x_{0}\right)\right| d t\left|\leq \frac{1}{|h|} \frac{\epsilon}{2}\right| h \right\rvert\,<\epsilon . \tag{58}
\end{equation*}
$$

We conclude that F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
Proof of VI.II: Define $\tilde{F}, G:[a, b] \rightarrow \mathbb{R}$ by

$$
\begin{gather*}
\tilde{F}(x)=\int_{a}^{x} f(t) d t \quad \forall x \in[a, b] \tag{59}\\
G(x)=F(x)-\tilde{F}(x) \quad \forall x \in[a, b] . \tag{60}
\end{gather*}
$$

Notice that \tilde{F}, G are continuous on $[a, b]$, differentiable on (a, b) and

$$
\begin{equation*}
G^{\prime}(x)=F^{\prime}(x)-\tilde{F}^{\prime}(x)=f(x)-f(x)=0 \quad \forall x \in(a, b) \tag{61}
\end{equation*}
$$

We conclude that G is constant on $[a, b]$, i.e.

$$
\begin{equation*}
G(x)=G(a) \quad \forall x \in[a, b] ; \tag{62}
\end{equation*}
$$

in particular

$$
\begin{equation*}
G(b)=G(a) \tag{63}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
G(a)=F(a)-\tilde{F}(a)=F(a) \tag{64}
\end{equation*}
$$

Combining (63) and (64) yields

$$
\begin{equation*}
G(b)=F(a) \tag{65}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\tilde{F}(b)=F(b)-G(b)=F(a)-(a) \tag{66}
\end{equation*}
$$

by virtue of (59), (60), and (65).

Proof of VI.12: Define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\left.F(x)=\int_{a}^{x} f t\right) d t \quad \forall x \in[a, b] \tag{67}
\end{equation*}
$$

Then F is continuous on $[a, b]$, differentialbe on (a, b) and $F^{\prime}(x)=f(x)$ for all $x \in$ (a, b). By the Mean Value Theorem for derivatives we may choose $c \in(a, b)$ such that

$$
\begin{align*}
f(c) & =F^{\prime}(c)=\frac{F(b)-F(a)}{b-a} \\
& =\frac{1}{b-a}\left[\int_{a}^{b} f(t) d t-\int_{b}^{a} f(t) d t\right] \tag{68}\\
& =\frac{1}{b-a} \int_{a}^{b} f(t) d t
\end{align*}
$$

