21 - 355

VI. Riemann Integration

A. Definitions

Let $a, b \in \mathbb{R}$ with a < b be given. By a partition of [a, b] we mean a finite set $P \subset [a, b]$ with $a, b \in P$. The set of all partitions of [a, b] will be denoted by $\mathcal{P}[a, b]$. The set of all bounded functions $f : [a, b] \to \mathbb{R}$ will be denoted by $\mathcal{B}[a, b]$.

Given $P \in \mathcal{P}[a, b]$ and $f \in \mathcal{B}[a, b]$ we write $P = \{x_0, x_1, x_2, \dots, x_n\}$ where $a = x_0 < x_1 < x_2 < \dots < x_n = b$, and put $\Delta x_i = x_i - x_{i-1}, m_i(f) = \inf\{f(x) : x_{i-1} \leq x \leq x_i\}$ and $M_i(f) = \sup\{f(x) : x_{i-1} \leq x \leq x_i\}$. We define the lower and upper sums of f for the partition P by

$$L(f, P) = \sum_{i=1}^{n} m_i(f) \Delta x_i \quad \text{and} \quad U(f, P) = \sum_{i=1}^{n} M_i(f) \Delta x_i.$$

Notice that for every $P \in \mathcal{P}[a, b]$ we have

$$m(f)(b-a) \le L(f, P) \le U(f, P) \le M(f)(b-a)$$
, where
 $m(f) = \inf\{f(x) : x \in [a, b]\}$ and
 $M(f) = \sup\{f(x) : x \in [a, b]\}.$

Definition 1: Let $f \in [a, b]$ be given. The lower integral of f is defined by

$$\underline{\int_{a}^{b}} f = \sup\{L(f, P) : P \in \mathcal{P}[a, b]\}.$$

The upper integral of f is defined by

$$\overline{\int_{a}^{b}} f = \inf\{U(f, P) : P \in \mathcal{P}[a, b]\}.$$

Definition 2. Let $f \in \mathcal{B}[a, b]$ be given. We say that f is Reimann integrable if

$$\underline{\int_{a}^{b}}f = \int_{a}^{b}f;$$

in this case we write

$$\int_{a}^{b} f = \underbrace{\int_{a}^{b}}_{i} f.$$

Sometimes we write $\int_{a}^{b} f(t)dt$ in place of $\int_{a}^{b} f$. The set of all Riemann integrable functions $f:[a,b] \to \mathbb{R}$ will be denoted by $\mathcal{R}[a,b]$.

Definition 3. Let $f \in \mathcal{R}[a, b]$ be given. Then we define $\int_a^a f = 0$ and $\int_b^a f = -\int_a^b f$.

Definition 4: Let $P, Q \in \mathcal{P}[a, b]$ be given. If $P \subset Q$ we say that Q is a refinement of P.

Definition 5: Let $P_1, P_2 \in \mathcal{P}[a, b]$ be given. The partition $P = P_1 \cup P_2$ is called the common refinement of P_1P_2 .

B. Some Key Results

VI.1 Proposition: Let $f \in \mathcal{B}[a, b]$ and $P, Q \in \mathcal{P}[a, b]$ with $P \subset Q$ be given. Then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$.

VI.2 Proposition: Let $f \in \mathcal{B}[a, b]$ be given. Then $\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f$.

VI.3 Theorem: Let $f \in \mathcal{B}[a, b]$ be given. Then $f \in \mathcal{R}[a, b]$ if and only $\forall \epsilon > 0, \exists P \in \mathcal{P}[a, b]$ such that

$$U(f,P) - L(f,P) < \epsilon.$$

VI.4 Theorem: Assume that $f[a, b] \to \mathbb{R}$ is monotonic. Then $f \in \mathcal{R}[a, b]$.

VI.5 Theorem: Assume that $f : [a, b] \to \mathbb{R}$ is continuous. Then $f \in \mathcal{R}[a, b]$.

VI.6 Theorem: Let $f \in \mathcal{R}[a, b]$ be given and choose $c, d, \in \mathbb{R}$ such that c < d and $c \leq f(x) \leq d$ for all $x \in [a, b]$. Let $\varphi : [c, d] \to \mathbb{R}$ be given and assume that φ is continuous. Then $\varphi \circ f \in \mathcal{R}[a, b]$.

VI.7 Theorem: Let $f, g \in \mathcal{R}[a, b]$ and $\alpha \in \mathbb{R}$ be given. Then

i.
$$f + g \in \mathcal{R}[a, b]$$
 and $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g;$
ii. $\alpha f \in \mathcal{R}[a, b]$ and $\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f.$
iii. $fg \in \mathcal{R}[a, b].$
iv. If $f(x) \leq g(x) \quad \forall x \in [a, b]$ then $\int_{a}^{b} f \leq \int_{a}^{b} g.$
v. $|f| \in \mathcal{R}[a, b]$ and $|\int_{a}^{b} f| \leq \int_{a}^{b} |f|.$

VI.8 Theorem: Let $f \in \mathcal{R}[a, b]$ and $c, d \in \mathbb{R}$ with $a \leq c < d \leq b$ be given. Then the restriction of f to [c, d] is integrable on [c, d].

VI.9 Theorem: Let $f \in \mathcal{B}[a, b]$ and $c \in (a, b)$ be given. If f is integrable on [a, c] and on [c, b] then $f \in \mathcal{R}[a, b]$ and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

VI.10 Fundamental Lemma of Calculus: Let $f \in \mathcal{R}[a, b]$ and $c, x_0 \in (a, b)$ be given. Define $F : [a, b] \to \mathbb{R}$ by

$$F(x) := \int_{c}^{x} f(t)dt \qquad \forall x \in [a, b].$$

Then F is uniformly continuous on [a, b]. Moreover if f is continuous at x_0 then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

VI.11 Fundamental Theorem of Calculus: Let $f \in \mathcal{R}[a, b]$ be given and assume that f is continuous on (a, b). Let $F : [a, b] \to \mathbb{R}$ be any function that is continuous on [a, b], differentiable on (a, b) and such that F'(x) = f(x) for all $x \in [a, b]$. Then $\int_{a}^{b} f = F(b) - F(a)$.

VI.12 Mean Value Theorem for Integrals. Let $f \in \mathcal{R}[a, b]$ be given and assume that f is continuous on (a, b). Then there exists $c \in (a, b)$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f.$$

C. Some Remarks.

VI.13 Remark: It is straightforward to verify that $\int_{a}^{b} 1 = b - a$.

VI.14 Remark: Define $f : [a, b] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 \quad \forall x \in [a, b] \setminus \mathbb{Q} \\ 1 \quad \forall x \in [a, b] \cap \mathbb{Q}. \end{cases}$$

It is straightforward to verify that

$$\underline{\int_{a}^{b}} f = 0$$
 and $\overline{\int_{a}^{b}} f = b - a$

and consequently $f \notin \mathcal{R}[a, b]$.

VI.15 Remark: Let $f, g \in \mathcal{R}[a, b]$ be given and assume that f(x) < g(x) for all $x \in (a, b)$. Then we have

$$\int_a^b f < \int_a^b g$$

although this seems much more difficult to prove than Theorem VI.7 (iv).

D. Some Proofs.

Proof of VI.3: Assume first that $f \in \mathcal{R}[a, b]$. Let $\epsilon > 0$ be given. Choose $P_1, P_2 \in \mathcal{P}[a, b]$ such that

(1)
$$U(f, P_1) - \overline{\int_a^b} f < \frac{\epsilon}{2}$$

(2)
$$\underline{\int_{a}^{b}} f - L(f, P_2) < \frac{\epsilon}{2}$$

and put $P = P_1 \cup P_2$. By Proposition VI.1 we have

(3)
$$U(f,P) - \overline{\int_a^b} f < \frac{\epsilon}{2}$$

(4)
$$\underline{\int_{a}^{b}} f - L(f, P) < \frac{\epsilon}{2}$$

Since $\overline{\int_{a}^{b}} f = \underline{\int_{a}^{b}} f$ we may add (3) and (4) to obtain

(5)
$$U(f,P) - L(f,P) < \epsilon$$

To prove the converse implication let $\epsilon>0$ be given and choose P such that (5) holds. Then, by Proposition VI.2 we have

•

(6)
$$L(f,P) \le \underline{\int_{a}^{b}} f \le \overline{\int_{a}^{b}} \le U(f,P)$$

Combining (5) and (6) we get

(7)
$$0 \le \overline{\int_{a}^{\overline{b}}} f - \underline{\int_{a}^{b}} < \epsilon.$$

Since $\epsilon > 0$ was arbitrary we conclude that

(8)
$$\overline{\int_{a}^{\overline{b}}}f - \underline{\int_{a}^{b}}f = 0$$

and $f \in \mathcal{R}[a, b]$.

Proof of VI.4: We treat the case when f is increasing. [The case when f is decreasing very similar.] We use Theorem VI.3. Let $\epsilon > 0$ be given. Choose $n \in \mathbb{N}$ such that

(9)
$$n > \frac{(f(b) - f(a))(b - a)}{\epsilon}.$$

Let P be the uniform partition of $\left[a,b\right]$ with n sub-intervals, i.e. the partition characterized by

(10)
$$x_i = a + i\left(\frac{b-a}{n}\right), \ i = 0, 1, \dots, n.$$

Let

(11)
$$\Delta x = \frac{(b-a)}{n}$$

and notice that

(12)
$$x_i - x_{i-1} = \Delta x, \quad i = 1, 2, \dots, n.$$

Since f is increasing we have

(13)
$$m_i(f) = f(x_{i-1}), \ M_i(f) = f(x_i) \quad i = 1, 2, \dots, n.$$

It follows that

(14)
$$U(f,P) - L(f,P) = \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})] \Delta x = \frac{(b-a)}{n} [f(b) - f(a)].$$

Combining (9) and (14) we get

(15)
$$U(f,P) - L(f,P) < \epsilon. \blacksquare$$

Proof of VI.5. Once again, we apply Theorem VI.3. Le $\epsilon > 0$ be given. Since f is continuous on [a, b] and [a, b] is compact, we know that f is uniformly continuous. Therefore we may choose $\delta > 0$ so that

(16)
$$|f(t) - f(s)| < \frac{\epsilon}{b-a} \quad \forall s, \ t \in [a,b], |t-s| < \delta.$$

Let P be any partition of [a, b] such that

(17)
$$\Delta x_i < \delta, \quad i = 1, 2, \dots, n.$$

Since f is continuous, for each $i \in \{1, 2, ..., n\}$ we may choose $\overline{x}_i, x_i^* \in [x_{i-1}, x_i]$ such that

(18)
$$f(\bar{x}_i) \le f(x) \le f(x_i^*) \quad \forall x \in [x_{i-1}, x_i].$$

It follows that

(19)
$$U(f,P) - L(f,P) = \sum_{i=1}^{n} [f(x_i^*) - f(\bar{x}_i)] \Delta x_i$$

Since $|x_i^* - \bar{x}_i| < \delta$ for all $i \in \{1, 2, ..., n\}$ we know that

(20)
$$f(x_i^*) - f(\bar{x}_i) < \frac{\epsilon}{b-a} \quad \forall i \in \{1, 2, \dots, n\}.$$

It follows from (19) and (20) that

(21)
$$U(f,P) - L(f,P) < \sum_{i=1}^{n} \frac{\epsilon}{(b-a)} \Delta x_i = \epsilon. \quad \blacksquare$$

Proof of VI.6: Once again, we use Theorem IV.3. Let $\epsilon > 0$ be given. Since φ is continuous on the compact set [c, d] it is uniformly continuous and it is bounded. Choose $\delta > 0$ such that

(22)
$$|\varphi(t) - \varphi(s)| < \frac{\epsilon}{2(b-a)} \quad \forall s, t \in [c,d], \ |t-s| > \delta$$

and choose K > 0 such that

(23)
$$|\varphi(s)| \le K \quad \forall s \in [c,d].$$

Since $f \in \mathcal{R}[a, b]$ we may choose $P \in \mathcal{P}[a, b]$ such that

(24)
$$U(f,P) - L(f,P) < \frac{\delta\epsilon}{4K}.$$

Split the index $\{1, 2, ..., n\}$ set into two pieces A, B as follows:

(25)
$$i \in A \leftrightarrow M_i(f) - m_i(f) < \delta,$$

(26)
$$i \in B \leftrightarrow M_i(f) - m_i(f) \ge \delta.$$

Notice that

(27)

$$U(\varphi \circ f, P) - L(\varphi \circ f, P)$$

$$= \sum_{i \in A} [M_i(\varphi \circ f) - m_i(\varphi \circ f)] \Delta x_i$$

$$+ \sum_{i \in B} [M_i(\varphi \circ f) - m_i(\varphi \circ f)] \Delta x_i.$$

It follows from (22) and (25) that

(28)
$$M_i(\varphi \circ f) - m_i(\varphi \circ f) \le \frac{\epsilon}{2(b-a)} \quad \forall i \in A.$$

Consequently

$$\sum_{i \in A} [M_i(\varphi \circ f) - m_i(\varphi \circ f)] \Delta x_i$$

(29)

$$\leq \sum_{i \in A} \frac{\epsilon \Delta x_i}{2(b-a)} \leq \sum_{i=1}^n \frac{\epsilon \Delta x_i}{2(b-a)} = \frac{\epsilon}{2(b-a)}.$$

Notice that

(30)
$$\delta \sum_{i \in B} \Delta x_i \leq \sum_{i \in B} [M_i(f) - m_i(f)] \Delta x_i \leq U(f, P) - L(f, P) < \frac{\delta \epsilon}{4k}.$$

It follows from (30) that

(31)
$$\sum_{i\in B} \Delta x_i < \frac{\epsilon}{4K}$$

For $i \in B$, we have

(32)
$$[M_k(\varphi \circ f) - m_i(\varphi \circ f)] \le M_i(\varphi \circ f) + m_i(\varphi \circ f) \le 2K$$

and consequently

(33)
$$\sum_{i \in B} [M_i(\varphi \circ f) - m_i(\varphi \circ f)] \Delta x_i \le \sum_{i \in B} 2K \Delta x_i < 2K \left(\frac{\epsilon}{4K}\right) = \frac{\epsilon}{2}$$

by virture of (31) and (32). Combining (27), (29), and (33), we arrive at

(34)
$$U(\varphi \circ f, P) - L(\varphi \circ f, P) < \epsilon. \blacksquare$$

Proof of VI.7(i). Let $\epsilon > 0$ be given. Choose $P_1, P_2 \in \mathcal{P}[a, b]$ such that

(35)
$$U(f, P_1) - L(f, P_1) < \epsilon/2$$

(36)
$$U(g, P_2) - L(g, P_2) < \epsilon/2.$$

Let $P = P_1 \cup P_2$ and observe that

(37)
$$U(f,P) - L(f,P) < \epsilon/2$$

(38)
$$U(g,P) - L(g,P) < \frac{\epsilon}{2}.$$

Notice that for each $i \in \{1, 2, ..., n\}$ we have

(39)
$$m_i(f) \le f(x) \le M_i(f) \quad \forall x \in [x_{i-1}, x_i]$$

(40)
$$m_i(g) \le g(x) \le M_i(g) \quad \forall x \in [x_{i-1}, x_i],$$

and consequently

(41)
$$m_i(f) + m_i(g) \le f(x) + g(x) \le M_i(f) + M_i(g) \quad \forall x \in [x_{i-1}, x_i].$$

It follows that

(42)
$$m_i(f) + m_i(g) \le m_i(f+g) \le M_i(f+g) \le M_i(f) + M_i(g) \quad \forall i \in \{1, 2, \dots, n\}.$$

Multiplying (42) by Δx_i and summing over *i* we get

(43)
$$L(f, P) + L(g, P) \le L(f + g, P) \le U(f + g, P) \le U(f, P) + U(g, P).$$

It follows from (37), (38), and (43) that

(44)
$$U(f+g,P) - L(f+g,P) < \epsilon.$$

We conclude that $f + g \in \mathcal{R}[a, b]$. Notice that

(45)
$$L(f,P) \le \int_{a}^{b} f \le U(f,P),$$

(46)
$$L(g,P) \le \int_{a}^{b} g \le U(g,P),$$

(47)
$$L(f+g,P) \le \int_{a}^{b} (f+g) \le U(f+g,P).$$

Combining (37), (38), (45), (46), and (47) in a straightforward (but perhaps tedious) fashion we arrive at

(48)
$$-\epsilon + \int_a^b f + \int_a^b g < \int_a^b (f+g) < \int_a^b f + \int_a^b g + \epsilon.$$

Since $\epsilon > 0$ was arbitrary we conclude that

(49)
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g. \quad \blacksquare$$

The proofs of VI.7 (ii) and VI.7 (iv) are left as exercises.

Proof of VI.7(iii). The function $t \mapsto t^2$ is continuous on \mathbb{R} . Therefore, by Theorem VI.6, $F^2 \in \mathcal{R}[a, b]$ for every $F \in \mathcal{R}[a, b]$. We conclude that $(f + g)^2 \in \mathcal{R}[a, b]$ and $(f - g)^2 \in \mathcal{R}[a, b]$ by virtue of Theorem VI.7 (i), (ii) and the observation above. The fact that $f, g \in \mathcal{R}[a, b]$ now follows from the equation

(50)
$$fg = \frac{1}{4}[(f+g)^2 - (f-g)^2]$$

and another application of Theorem VI.7(i), (ii). ■

Proof of VI.7(v): The fact that $|f| \in \mathcal{R}[a, b]$ follows from Theorem VI.6 and continuity of the function $t \mapsto |t|$ on \mathbb{R} . The desired inequality follows form Theorem VI.7(ii), (iv) and the observation

(51)
$$f(x) \le |f(x)| \quad \forall x \in [a, b]$$

(52)
$$-f(x) \le |f(x)| \quad \forall x \in [a, b]. \blacksquare$$

Proof of VI.10: The uniform continuity of F is a homework problem. For $h \neq 0$ and |h| small enough so that $x_0 + h \in [a, b]$ we have

(53)

$$F(x_{0} + h) = \int_{c}^{x_{0} + h} f(t)dt$$

$$= \int_{c}^{x_{0}} f(t)dt + \int_{x_{0}}^{x_{0} + h} f(t)dt$$

$$= F(x_{0}) + \int_{x_{0}}^{x_{0} + h} f(t)dt$$

and consequently

(52)
$$\frac{F(x_0+h) - F(x_0)}{h} = \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt.$$

Let $\epsilon > 0$ be given. Since f is continuous at x_0 we may choose $\delta > 0$ such that

(53)
$$|f(t) - f(x_0)| < \frac{\epsilon}{2} \quad \forall t \in B_{\delta}(x_0) \cap [a, b].$$

Observe that for $h \neq 0$ we have

(56)
$$f(x_0) = \frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt.$$

Let $h \in B^*_{\delta}(0)$ be given such that $x_0 + h \in [a, b]$. Then we have

(57)
$$\frac{F(x_0+h) - F(x_0)}{h} - f(x_0) = \frac{1}{h} \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt$$

by virtue of (54) and (56). It follows from (55) and (57) that

(58)
$$\left| \frac{F(x_0+h) - F(x_0)}{h} f(x_0) \right| \le \frac{1}{|h|} \int_{x_0}^{x_0+h} |f(t) - f(x_0)| dt | \le \frac{1}{|h|} \frac{\epsilon}{2} |h| < \epsilon.$$

We conclude that F is differentiable at x_0 and $F'(x_0) = f(x_0)$. **Proof of VI.II**: Define \tilde{F} , $G : [a, b] \to \mathbb{R}$ by

(59)
$$\tilde{F}(x) = \int_{a}^{x} f(t)dt \quad \forall x \in [a, b]$$

(60)
$$G(x) = F(x) - \tilde{F}(x) \quad \forall x \in [a, b]$$

Notice that \tilde{F}, G are continuous on [a, b], differentiable on (a, b) and

(61)
$$G'(x) = F'(x) - \tilde{F}'(x) = f(x) - f(x) = 0 \quad \forall x \in (a, b).$$

We conclude that G is constant on [a, b], i.e.

(62)
$$G(x) = G(a) \quad \forall x \in [a, b];$$

in particular

(63)
$$G(b) = G(a).$$

Notice that

(64)
$$G(a) = F(a) - \tilde{F}(a) = F(a)$$

Combining (63) and (64) yields

$$(65) G(b) = F(a)$$

Observe that

(66)
$$\int_{a}^{b} f(t)dt = \tilde{F}(b) = F(b) - G(b) = F(a) - (a)$$

by virtue of (59), (60), and (65). \blacksquare

Proof of VI.12: Define $F : [a, b] \to \mathbb{R}$ by

(67)
$$F(x) = \int_{a}^{x} ft dt \quad \forall x \in [a, b]$$

Then F is continuous on [a, b], differentialbe on (a, b) and F'(x) = f(x) for all $x \in (a, b)$. By the Mean Value Theorem for derivatives we may choose $c \in (a, b)$ such that

(68)
$$f(c) = F'(c) = \frac{F(b) - F(a)}{b - a}$$
$$= \frac{1}{b - a} \left[\int_{a}^{b} f(t) dt - \int_{b}^{a} f(t) dt \right]$$
$$= \frac{1}{b - a} \int_{a}^{b} f(t) dt. \quad \bullet$$