V. Differentiation

This section contains basic results from differential calculus. The key observation about differentiation is that a function f is differentiable at a point x_{0} if and only if there is a line through the point $\left(x_{0}, f\left(x_{0}\right)\right)$ that approximates the graph of f near $\left(x_{0}, f\left(x_{0}\right)\right)$ in a sense that is made precise in Proposition V.1.

A. Definitions

Let S be a subset of \mathbb{R} and $f: S \rightarrow \mathbb{R}$ be given.
Definition 1: Let $x_{0} \in \operatorname{int}(S)$ be given. We say that f is differentiable at x_{0} if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists in \mathbb{R}. In this case we write

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{1}
\end{equation*}
$$

and we call $f^{\prime}\left(x_{0}\right)$ the derivative of f at x_{0}. If V is an open subset of S, we say that f is differentiable on V provided that f is differentiable at each $x \in V$.

Definition 2: Let $x_{0} \in S$ be given. We say that f attains
(i) a local minimum at x_{0} if $\exists \delta>0$ such that $f(x) \geq f\left(x_{0}\right)$ for all $x \in B_{\delta}\left(x_{0}\right) \cap S$.
(ii) a local maximum at x_{0} if $\exists \delta>0$ such that $f(x) \leq f\left(x_{0}\right)$ for all $x \in B_{\delta}\left(x_{0}\right) \cap S$.

Higher Derivatives: If f is differentiable on an open set V and f^{\prime} is itself differentiable, we denote the derivative of f^{\prime} by $f^{\prime \prime}$ and call it the second derivative of f. Continuing in this manner we obtain functions

$$
f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, f^{\prime \prime \prime \prime}, \ldots
$$

each of which is the derivative of the preceding one. For derivatives of order n, we often write $f^{(n)}$ rather than f followed by n super-scripted primes. We make the convention that $f^{(0)}=f$.

B. Some Key Results

Let $a, b \in \mathbb{R}$ with $a<b$, sets $S, T \subset \mathbb{R}$, and $x_{0} \in \operatorname{int}(S)$ be given.
V. 1 Proposition: Let $f: S \rightarrow \mathbb{R}$ and $\alpha \in \mathbb{R}$ be given. Then f is differentiable at x_{0} if and only if there exists a function $e\left(\cdot ; x_{0}\right): S \rightarrow \mathbb{R}$ such that $e\left(x_{0} ; x_{0}\right)=$ $0, \lim _{x \rightarrow x_{0}} e\left(x ; x_{0}\right)=0$, and

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\alpha\left(x-x_{0}\right)+e\left(x ; x_{0}\right)\left(x-x_{0}\right) \quad \forall x \in S . \tag{2}
\end{equation*}
$$

V. 2 Proposition: If $f: S \rightarrow \mathbb{R}$ is differentiable at x_{0} then f is continuous at x_{0}.
V. 3 Theorem: Let $f, g: S \rightarrow \mathbb{R}$ and $\alpha \in \mathbb{R}$ be given. Assume that f and g are differentiable at x_{0}. Then
(i) $f+g$ is differentiable at x_{0} and $(f+g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)$
(ii) αf is differentiable at x_{0} and $(\alpha f)^{\prime}\left(x_{0}\right)=\alpha f^{\prime}\left(x_{0}\right)$
(iii) $f g$ is differentiable at x_{0} and $(f g)^{\prime}\left(x_{0}\right)=f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)$
(iv) $\left(\frac{f}{g}\right)$ is differentiable at x_{0} and $\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{g\left(x_{0}\right) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}$ provided $g\left(x_{0}\right) \neq 0$.
V. 4 Theorem (Chain Rule): Let $g: S \rightarrow \mathbb{R}$ be given. Assume that $g[S] \subset$ $T, g\left(x_{0}\right) \in \operatorname{int}(T), g$ is differentiable at x_{0}, and that f is differentiable at $g\left(x_{0}\right)$. Then $f \circ g$ is differentiable at x_{0} and

$$
(f \circ g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)
$$

V. 5 Proposition: Assume tht f attains a local maximum or a local minimum at x_{0}. Then $f^{\prime}\left(x_{0}\right)=0$.
V. 6 Lemma (Rolle's Theorem): Assume that f is continuous on $[a, b]$, differentiable on (a, b), and that $f(a)=f(b)$. Then, there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
V. 7 Cauchy's Mean Value Theorem: Assume that f, g are continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)] .
$$

V. 8 Corollary (Mean Value Theorem): Assume that f is continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

V. 9 Corollary: Assume that f is continuous on $[a, b]$ and differentiable on (a, b).
(i) If $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$ then $f\left(x_{2}\right) \geq f\left(x_{1}\right)$ for all $x_{1}, x_{2} \in[a, b]$ with $x_{1} \leq x_{2}$.
(ii) If $f^{\prime}(x)>0$ for all $x \in(a, b)$ then $f\left(x_{2}\right)>f\left(x_{1}\right)$ for all $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$.
(iii) If $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$ then $f\left(x_{2}\right) \leq f\left(x_{1}\right)$ for all $x_{1}, x_{2} \in[a, b]$ with $x_{1} \leq x_{2}$.
(iv) If $f^{\prime}(x)<0$ for all $x \in(a, b)$ then $f\left(x_{2}\right)<f\left(x_{1}\right)$ for all $x \in[a, b]$ with $x_{1}<x_{2}$.
(v) If $f^{\prime}(x)=0$ for all $x \in(a, b)$ then f is constant on $[a, b]$.
V. 10 Theorem (L'Hôpital's Rule): Let $\eta>0, \ell \in \mathbb{R}$, and $f, g: B_{\eta}^{*}\left(x_{0}\right) \rightarrow \mathbb{R}$ be given. Assume that $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0$, that f and g are differentiable on $B_{\eta}^{*}\left(x_{0}\right)$ and $g^{\prime}(x) \neq 0$ for all $x \in B_{\eta}^{*}\left(x_{0}\right)$. If $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell$, then $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\ell$.
V. 11 Taylor's Theorem: Let $f:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N} \cup\{0\}$, and $x_{*} \in(a, b)$ be given. Assume that f is continuous on $[a, b]$ and $(n+1)$-times differentiable on (a, b).
Define $P_{n}\left(\cdot ; x_{*}\right), R_{n}\left(\cdot ; x_{*}\right):[a, b] \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& P_{n}\left(x ; x_{*}\right)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{*}\right)}{k!}\left(x-x_{*}\right)^{k} \quad \forall x \in[a, b] \\
& R_{n}\left(x ; x_{*}\right)=f(x)-P_{n}(x) \quad \forall x \in[a, b] .
\end{aligned}
$$

Then for each $x \in[a, b] \backslash\left\{x_{*}\right\}$ there exist c between x_{*} and x such that

$$
R_{n}\left(x ; x_{*}\right)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{*}\right)^{n+1} .
$$

C. Some Remarks

V. 12 Remark: It is useful to note that the definition of derivative can be rewritten so that (1) becomes

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} . \tag{*}
\end{equation*}
$$

V. 13 Remark: L'Hôpital's Rule can be adapted to handle indeterminant forms of the type $\frac{\infty}{\infty}$ and also limits as $x \rightarrow \pm \infty$ as well as one-sided limits.
V. 14 Remark: The function $P_{n}\left(\cdot, x_{*}\right)$ in Theorem V. 11 is called the Taylor polynomial of order n for f about x_{0}. The function $R_{n}\left(\cdot, x_{*}\right)$ is called the remainder. There are other useful expressions for the remainder. The one given here is referred to as the Lagrange form.

D. Some Proofs

Proof of V.1: Assume first that such a function $e\left(\cdot ; x_{0}\right)$ exists. Then for all $x \in$ $S \backslash\left\{x_{0}\right\}$ we have

$$
\begin{equation*}
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\alpha+e\left(x ; x_{0}\right) . \tag{3}
\end{equation*}
$$

Taking the limit as $x \rightarrow x_{0}$ in (3) we obtain

$$
\begin{align*}
f^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left(\alpha+e\left(x ; x_{0}\right)\right) \tag{4}\\
& =\alpha+\lim _{x \rightarrow x_{0}} e\left(x ; x_{0}\right)=\alpha
\end{align*}
$$

Assume now that f is differentiable at x_{0} and $f^{\prime}\left(x_{0}\right)=\alpha$.
Define $e\left(\cdot ; x_{0}\right): S \rightarrow \mathbb{R}$ by

$$
e\left(x ; x_{0}\right)=\left\{\begin{array}{c}
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-\alpha \quad \forall x \in S \backslash\left\{x_{0}\right\} \tag{5}\\
0, \quad x=x_{0} .
\end{array}\right.
$$

Observe that

$$
\begin{align*}
\lim _{x \rightarrow x_{0}} e\left(x ; x_{0}\right) & =\lim _{\left.x \rightarrow x_{0}\right)} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-\alpha \tag{6}\\
& =f^{\prime}\left(x_{0}\right)-\alpha=0 .
\end{align*}
$$

It follows readily from (5) that (2) holds.
Proof of V.2: Assume that f is differentiable at x_{0}. By Proposition V. 1 we may choose a function $e\left(\cdot ; x_{0}\right): S \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow x_{0}} e\left(x ; x_{0}\right)=0$ and

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+e\left(x ; x_{0}\right)\left(x-x_{0}\right) \forall x \in S . \tag{7}
\end{equation*}
$$

Taking the limit as $x \rightarrow x_{0}$ in (7) we find that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)+0+0=f\left(x_{0}\right) \tag{8}
\end{equation*}
$$

which implies that f is continuous at x_{0}.

Proof of V.4: By Proposition V. 1 we may choose a function $e\left(\cdot ; g\left(x_{0}\right)\right): T \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
f(u)=f\left(g\left(x_{0}\right)\right) & +f^{\prime}\left(g\left(x_{0}\right)\right)\left(u-g\left(x_{0}\right)\right) \\
& +e\left(u ; g\left(x_{0}\right)\right)\left(u-g\left(x_{0}\right)\right) \forall u \in T \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{u \rightarrow g\left(x_{0}\right)} e\left(u ; g\left(x_{0}\right)\right)=e\left(g\left(x_{0}\right) ; g\left(x_{0}\right)\right)=0 \tag{10}
\end{equation*}
$$

It follows from (9) that

$$
\begin{align*}
f(g(x))=f\left(g\left(x_{0}\right)\right) & +f^{\prime}\left(g\left(x_{0}\right)\right)\left(g(x)-g\left(x_{0}\right)\right) \\
& +e\left(g(x) ; g\left(x_{0}\right)\right)\left(g(x)-g\left(x_{0}\right)\right) \quad \forall x \in S \tag{11}
\end{align*}
$$

Consequently, we have

$$
\begin{align*}
\frac{f(g(x))-f\left(g\left(x_{0}\right)\right)}{x-x_{0}}= & f^{\prime}\left(g\left(x_{0}\right)\right) \frac{\left(g(x)-g\left(x_{0}\right)\right)}{x-x_{0}} \\
& +e\left(g(x) ; g\left(x_{0}\right)\right) \frac{\left(g(x)-g\left(x_{0}\right)\right)}{x-x_{0}} \quad \forall x \in S \backslash\left\{x_{0}\right\} . \tag{12}
\end{align*}
$$

Since g is differentiable at x_{0}, it is continuous at x_{0} so that $\lim _{x \rightarrow x_{0}} g(x)=g\left(x_{0}\right)$.
Using (10) we see that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} e\left(g(x) ; g\left(x_{0}\right)\right)=0 \tag{13}
\end{equation*}
$$

Taking the limit as $x \rightarrow x_{0}$ in (12) we find that

$$
\begin{align*}
\lim _{x \rightarrow x_{0}} \frac{f(g(x))-f\left(g\left(x_{0}\right)\right)}{x-x_{0}} & =f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)+0 \cdot g^{\prime}\left(x_{0}\right) \tag{14}\\
& =f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)
\end{align*}
$$

It follows that $f \circ g$ is differentiable at x_{0} and

$$
\begin{equation*}
(f \circ g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right) \tag{15}
\end{equation*}
$$

Proof of V.5: Assume that f attains a local minimum at x_{0}. We may choose $\delta>0$ such that $B_{\delta}\left(x_{0}\right) \subset S$ and

$$
\begin{equation*}
f(x) \geq f\left(x_{0}\right) \quad \forall x \in B_{\delta}\left(x_{0}\right) . \tag{16}
\end{equation*}
$$

It follows from (16) that

$$
\begin{equation*}
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq 0 \quad \forall x \in\left(x_{0}, x_{0}+\delta\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \leq 0 \quad \forall x \in\left(x_{0}-\delta, x_{0}\right) . \tag{18}
\end{equation*}
$$

Choose sequences $\left\{y_{n}\right\}_{n=1}^{\infty}$, and $\left\{z_{n}\right\}_{n=1}^{\infty}$ such that $y_{n} \in\left(x_{0}, x_{0}+\delta\right), z_{n} \in\left(x_{0}-\delta, x_{n}\right)$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} z_{n}=x_{0}$. Then, by (17) and (18) we have

$$
\begin{align*}
& \frac{f\left(y_{n}\right)-f\left(x_{0}\right)}{y_{n}-x_{0}} \geq 0 \quad \forall n \in \mathbb{N} \tag{19}\\
& \frac{f\left(z_{n}\right)-f\left(x_{0}\right)}{z_{n}-x_{0}} \leq 0 \quad \forall n \in \mathbb{N} \tag{20}
\end{align*}
$$

Since f is differentiable at x_{0} and $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} z_{n}=x_{0}$ we know that

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f\left(x_{0}\right)}{y_{n}-x_{0}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(z_{n}\right)-f\left(x_{0}\right)}{z_{n}-x_{0}} \tag{22}
\end{equation*}
$$

It follows from (19) and (21) that $f^{\prime}\left(x_{0}\right) \geq 0$. It follows from (20) and (22) that $f^{\prime}\left(x_{0}\right) \leq 0$. We conclude that $f^{\prime}\left(x_{0}\right)=0$. If f attains a local maximum at x_{0}, then $-f$ attains a local minimum at x_{0} and $(-f)^{\prime}\left(x_{0}\right)=-f^{\prime}\left(x_{0}\right)=0$.

Proof of V.6: Since f is continuous on $[a, b]$ and $[a, b]$ is nonempty and compact we may choose $\alpha, \beta \in[a, b]$ such that

$$
\begin{equation*}
f(\alpha) \leq f(x) \leq f(\beta) \quad \forall x \in[a, b] \tag{23}
\end{equation*}
$$

If $\{\alpha, \beta\} \subset\{a, b\}$ then $f(\alpha)=f(\beta)$ (since $f(a)=f(b))$ and f is constant on $[a, b]$. It follows that $f^{\prime}(x)=0$ for all $x \in(a, b)$. If $\{\alpha, \beta\} \not \subset\{a, b\}$ then f attains a local maximum or a local minimum at a point $c \in(a, b)$. By Proposition V.5, $f^{\prime}(c)=0$.

Proof of V.7: Define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F(x)=f(x)[g(b)-b(a)]-g(x)[f(b)-f(a)] \quad \forall x \in[a, b] . \tag{24}
\end{equation*}
$$

It follows easily that F is continuous on $[a, b]$, differentiable on (a, b) and that

$$
\begin{equation*}
F^{\prime}(x)=f^{\prime}(x)[g(b)-g(a)]-g^{\prime}(x)[f(b)-f(a)] \quad \forall x \in(a, b) . \tag{25}
\end{equation*}
$$

Using (24) we find that

$$
\begin{equation*}
F(a)=f(a) g(b)-g(a) f(b)=F(b) \tag{26}
\end{equation*}
$$

By Rolle's Theorem, we may choose $c \in(a, b)$ such that $F^{\prime}(c)=0$. It follows from (25) that

$$
\begin{equation*}
f^{\prime}(c)[g(b)-g(a)]-g^{\prime}(c)[f(b)-f(a)]=0 \tag{27}
\end{equation*}
$$

Proof of V.9: Apply Cauchy's Mean Value Theorem in the special case when $g(x)=$ x for all $x \in[a, b]$ and notice that $g(b)-g(a)=b-a$ and that $g^{\prime}(x)=1$ for all $x \in(a, b)$.

Proof of V.10: Define $F, G: B_{\eta}\left(x_{0}\right) \rightarrow \mathbb{R}$ by

$$
\begin{align*}
& F(t)=\left\{\begin{array}{cc}
f(t) & \forall t \in B_{\eta}^{*}\left(x_{0}\right) \\
0 & t=x_{0}
\end{array}\right. \tag{28}\\
& G(t)=\left\{\begin{array}{cc}
g(t) & \forall t \in B_{\eta}^{*}\left(x_{0}\right) \\
0 & t=x_{0}
\end{array}\right. \tag{29}
\end{align*}
$$

Notice that F and G are continuous on $B_{\eta}\left(x_{0}\right)$, differentiable on $B_{\eta}^{*}\left(x_{0}\right)$, and that

$$
\begin{equation*}
F^{\prime}(t)=f^{\prime}(t), \quad G^{\prime}(t)=g^{\prime}(t) \quad \forall t \in B_{\eta}^{*}\left(x_{0}\right) \tag{30}
\end{equation*}
$$

[Indeed, F and G are differentiable on $B_{\eta}^{*}\left(x_{0}\right)$ and (30) holds by virtue of the fact that $F(t)=f(t)$ and $G(t)=g(t)$ for all $t \in B_{\eta}^{*}\left(x_{0}\right)$. The continuity of F and G at x_{0} follows from the fact that $0=F\left(x_{0}\right)=\lim _{t \rightarrow x_{0}} F(t)=\lim _{t \rightarrow x_{0}} G(t)=G\left(x_{0}\right)$.]

Let $\varepsilon>0$ be given. Then we may choose $\delta>0$ with $\delta \leq \eta$ such that

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-\ell\right|<\varepsilon \quad \forall z \in B_{\delta}^{*}\left(x_{0}\right) . \tag{31}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
g(x) \neq 0 \quad \forall x \in B_{\delta}^{*}\left(x_{0}\right) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{f(x)}{g(x)}-\ell\right|<\varepsilon \quad \forall x \in B_{\delta}^{*}\left(x_{0}\right) \tag{33}
\end{equation*}
$$

For this purpose, let $x \in B_{\delta}^{*}\left(x_{0}\right)$ be given. If $g(x)=0$ then $G(x)=0$ and we may apply Rolle's Theorem to G to deduce the existence of a point c between x_{0} and x such that $G^{\prime}(c)=g^{\prime}(c)=0$. This is a contradiction and consequently $g(x) \neq 0$. By Cauchy's Mean Value Theorem we may choose c_{x} between x_{0} and x such that

$$
\begin{equation*}
\left[F(x)-F\left(x_{0}\right)\right] G^{\prime}\left(c_{x}\right)=\left[G(x)-G\left(x_{0}\right)\right] F^{\prime}\left(c_{x}\right) \tag{34}
\end{equation*}
$$

Using (28), (29), and (30) we may rewrite (34) as

$$
\begin{equation*}
f(x) g^{\prime}\left(c_{x}\right)=g(x) f^{\prime}\left(c_{x}\right) \tag{35}
\end{equation*}
$$

Since $g(x) \neq 0$, and $g^{\prime}\left(c_{x}\right) \neq 0$, we deduce from (35) that

$$
\begin{equation*}
\frac{f(x)}{g(x)}=\frac{f^{\prime}\left(c_{x}\right)}{g^{\prime}\left(c_{x}\right)} . \tag{36}
\end{equation*}
$$

Since c_{x} is between x_{0} and x and $x \in B_{\delta}^{*}\left(x_{0}\right)$ we conclude that $c_{x} \in B_{\delta}^{*}\left(x_{0}\right)$. Combining (31) and (36) we arrive at

$$
\begin{equation*}
\left|\frac{f(x)}{g(x)}-\ell\right|<\varepsilon \tag{37}
\end{equation*}
$$

Proof of V.11: Let $x \in[a, b] \backslash\left\{x_{*}\right\}$ be given and put

$$
\begin{equation*}
M=\frac{f(x)-P_{n}\left(x ; x_{*}\right)}{\left(x-x_{*}\right)^{n+1}} . \tag{38}
\end{equation*}
$$

Define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F(t)=f(t)-P_{n}\left(t ; x_{*}\right)-M\left(t-x_{*}\right)^{n+1} \quad \forall t \in[a, b] . \tag{39}
\end{equation*}
$$

It is not difficult to verify that F is continuous on $[a, b],(n+1)$-times differentiable on (a, b) and that

$$
\begin{gather*}
F^{(k)}\left(x_{*}\right)=0, \quad k=0,1,2, \ldots, n \tag{40}\\
F^{(n+1)}(t)=f^{(n+1)}(t)-M(n+1)!\quad \forall t \in(a, b) \tag{41}
\end{gather*}
$$

Moreover, it follows easily from (38) and (39) that

$$
\begin{equation*}
F(x)=0 . \tag{42}
\end{equation*}
$$

By Rolle's Theorem, we may choose c_{1} between x_{*} and x such that $F^{\prime}\left(c_{1}\right)=0$. Applying Rolle's Theorem to F^{\prime} we may choose c_{z} between x_{*} and c_{1} such that $F^{\prime \prime}\left(c_{2}\right)=0$. Continuing in this fashion we may eventually apply Rolle's Theorem to $F^{(n)}$ to choose a point c_{n+1} between x_{*} and x such that

$$
\begin{equation*}
F^{(n+1)}\left(c_{n+1}\right)=0 . \tag{43}
\end{equation*}
$$

It follows from (40) and (43) that

$$
\begin{gather*}
f^{(n+1)}\left(c_{n+1}\right)=M(n+1)!, \text { i.e., } \tag{44}\\
M=\frac{f^{(n+1)}\left(c_{n+1}\right)}{(n+1)!}
\end{gather*}
$$

Combining (38) and (45), we arrive at

$$
\begin{equation*}
R_{n}\left(x ; x_{*}\right)=\frac{f^{(n+1)}\left(c_{n+1}\right)\left(x-x_{*}\right)^{n+1}}{(n+1)!} \tag{46}
\end{equation*}
$$

