V. Differentiation

This section contains basic results from differential calculus. The key observation about differentiation is that a function f is differentiable at a point x_0 if and only if there is a line through the point $(x_0, f(x_0))$ that approximates the graph of f near $(x_0, f(x_0))$ in a sense that is made precise in Proposition V.1.

A. Definitions

Let S be a subset of \mathbb{R} and $f: S \to \mathbb{R}$ be given.

Definition 1: Let $x_0 \in int(S)$ be given. We say that f is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists in \mathbb{R} . In this case we write

(1)
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

and we call $f'(x_0)$ the derivative of f at x_0 . If V is an open subset of S, we say that f is differentiable on V provided that f is differentiable at each $x \in V$.

Definition 2: Let $x_0 \in S$ be given. We say that f attains

- (i) a local minimum at x_0 if $\exists \delta > 0$ such that $f(x) \ge f(x_0)$ for all $x \in B_{\delta}(x_0) \cap S$.
- (ii) a local maximum at x_0 if $\exists \delta > 0$ such that $f(x) \leq f(x_0)$ for all $x \in B_{\delta}(x_0) \cap S$.

Higher Derivatives: If f is differentiable on an open set V and f' is itself differentiable, we denote the derivative of f' by f'' and call it the second derivative of f. Continuing in this manner we obtain functions

$$f, f', f'', f''', f'''', \cdots$$

each of which is the derivative of the preceding one. For derivatives of order n, we often write $f^{(n)}$ rather than f followed by n super-scripted primes. We make the convention that $f^{(0)} = f$.

B. Some Key Results

Let $a, b \in \mathbb{R}$ with a < b, sets $S, T \subset \mathbb{R}$, and $x_0 \in int(S)$ be given.

V.1 Proposition: Let $f : S \to \mathbb{R}$ and $\alpha \in \mathbb{R}$ be given. Then f is differentiable at x_0 if and only if there exists a function $e(\cdot; x_0) : S \to \mathbb{R}$ such that $e(x_0; x_0) = 0$, $\lim_{x \to x_0} e(x; x_0) = 0$, and

(2)
$$f(x) = f(x_0) + \alpha(x - x_0) + e(x; x_0)(x - x_0) \quad \forall x \in S.$$

V.2 Proposition: If $f: S \to \mathbb{R}$ is differentiable at x_0 then f is continuous at x_0 .

V.3 Theorem: Let $f, g : S \to \mathbb{R}$ and $\alpha \in \mathbb{R}$ be given. Assume that f and g are differentiable at x_0 . Then

- (i) f + g is differentiable at x_0 and $(f + g)'(x_0) = f'(x_0) + g'(x_0)$
- (ii) αf is differentiable at x_0 and $(\alpha f)'(x_0) = \alpha f'(x_0)$
- (iii) fg is differentiable at x_0 and $(fg)'(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0)$

(iv)
$$\left(\frac{f}{g}\right)$$
 is differentiable at x_0 and $\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0)f'(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$
provided $g(x_0) \neq 0$.

V.4 Theorem (Chain Rule): Let $g : S \to \mathbb{R}$ be given. Assume that $g[S] \subset T$, $g(x_0) \in \operatorname{int}(T)$, g is differentiable at x_0 , and that f is differentiable at $g(x_0)$. Then $f \circ g$ is differentiable at x_0 and

$$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

V.5 Proposition: Assume the f attains a local maximum or a local minimum at x_0 . Then $f'(x_0) = 0$.

V.6 Lemma (Rolle's Theorem): Assume that f is continuous on [a, b], differentiable on (a, b), and that f(a) = f(b). Then, there exists $c \in (a, b)$ such that f'(c) = 0.

V.7 Cauchy's Mean Value Theorem: Assume that f, g are continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)].$$

V.8 Corollary (Mean Value Theorem): Assume that f is continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

V.9 Corollary: Assume that f is continuous on [a, b] and differentiable on (a, b).

- (i) If $f'(x) \ge 0$ for all $x \in (a,b)$ then $f(x_2) \ge f(x_1)$ for all $x_1, x_2 \in [a,b]$ with $x_1 \le x_2$.
- (ii) If f'(x) > 0 for all $x \in (a, b)$ then $f(x_2) > f(x_1)$ for all $x_1, x_2 \in [a, b]$ with $x_1 < x_2$.
- (iii) If $f'(x) \leq 0$ for all $x \in (a, b)$ then $f(x_2) \leq f(x_1)$ for all $x_1, x_2 \in [a, b]$ with $x_1 \leq x_2$.
- (iv) If f'(x) < 0 for all $x \in (a, b)$ then $f(x_2) < f(x_1)$ for all $x \in [a, b]$ with $x_1 < x_2$.
- (v) If f'(x) = 0 for all $x \in (a, b)$ then f is constant on [a, b].

V.10 Theorem (L'Hôpital's Rule): Let $\eta > 0, \ell \in \mathbb{R}$, and $f, g : B_{\eta}^*(x_0) \to \mathbb{R}$ be given. Assume that $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, that f and g are differentiable on $B_{\eta}^*(x_0)$ and $g'(x) \neq 0$ for all $x \in B_{\eta}^*(x_0)$. If $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$, then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.

V.11 Taylor's Theorem: Let $f : [a,b] \to \mathbb{R}$, $n \in \mathbb{N} \cup \{0\}$, and $x_* \in (a,b)$ be given. Assume that f is continuous on [a,b] and (n+1)-times differentiable on (a,b). Define $P_n(\cdot; x_*)$, $R_n(\cdot; x_*) : [a,b] \to \mathbb{R}$ by

$$P_n(x;x_*) = \sum_{k=0}^n \frac{f^{(k)}(x_*)}{k!} (x - x_*)^k \quad \forall x \in [a,b]$$

$$R_n(x;x_*) = f(x) - P_n(x) \quad \forall x \in [a,b].$$

Then for each $x \in [a, b] \setminus \{x_*\}$ there exist c between x_* and x such that

$$R_n(x;x_*) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_*)^{n+1}.$$

C. Some Remarks

V.12 Remark: It is useful to note that the definition of derivative can be rewritten so that (1) becomes

(1*)
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

V.13 Remark: L'Hôpital's Rule can be adapted to handle indeterminant forms of the type $\frac{\infty}{\infty}$ and also limits as $x \to \pm \infty$ as well as one-sided limits.

V.14 Remark: The function $P_n(\cdot, x_*)$ in Theorem V.11 is called the Taylor polynomial of order n for f about x_0 . The function $R_n(\cdot, x_*)$ is called the remainder. There are other useful expressions for the remainder. The one given here is referred to as the Lagrange form.

D. Some Proofs

Proof of V.1: Assume first that such a function $e(\cdot; x_0)$ exists. Then for all $x \in S \setminus \{x_0\}$ we have

(3)
$$\frac{f(x) - f(x_0)}{x - x_0} = \alpha + e(x; x_0).$$

Taking the limit as $x \to x_0$ in (3) we obtain

(4)
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} (\alpha + e(x; x_0))$$
$$= \alpha + \lim_{x \to x_0} e(x; x_0) = \alpha$$

Assume now that f is differentiable at x_0 and $f'(x_0) = \alpha$. Define $e(\cdot; x_0) : S \to \mathbb{R}$ by

(5)
$$e(x;x_0) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} - \alpha & \forall x \in S \setminus \{x_0\} \\ 0, \quad x = x_0. \end{cases}$$

Observe that

(6)
$$\lim_{x \to x_0} e(x; x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - \alpha$$
$$= f'(x_0) - \alpha = 0.$$

It follows readily from (5) that (2) holds. \blacksquare

Proof of V.2: Assume that f is differentiable at x_0 . By Proposition V.1 we may choose a function $e(\cdot; x_0) : S \to \mathbb{R}$ such that $\lim_{x \to x_0} e(x; x_0) = 0$ and

(7)
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + e(x; x_0)(x - x_0) \ \forall x \in S.$$

Taking the limit as $x \to x_0$ in (7) we find that

(8)
$$\lim_{x \to x_0} f(x) = f(x_0) + 0 + 0 = f(x_0)$$

which implies that f is continuous at x_0 .

Proof of V.4: By Proposition V.1 we may choose a function $e(\cdot; g(x_0)) : T \to \mathbb{R}$ such that

(9)
$$f(u) = f(g(x_0)) + f'(g(x_0))(u - g(x_0)) + e(u; g(x_0))(u - g(x_0)) \forall u \in T$$

and

(10)
$$\lim_{u \to g(x_0)} e(u; g(x_0)) = e(g(x_0); g(x_0)) = 0.$$

It follows from (9) that

(11)
$$f(g(x)) = f(g(x_0)) + f'(g(x_0))(g(x) - g(x_0)) + e(g(x); g(x_0))(g(x) - g(x_0)) \quad \forall x \in S$$

Consequently, we have

(12)
$$\frac{f(g(x)) - f(g(x_0))}{x - x_0} = f'(g(x_0)) \frac{(g(x) - g(x_0))}{x - x_0} + e(g(x); g(x_0)) \frac{(g(x) - g(x_0))}{x - x_0} \quad \forall x \in S \setminus \{x_0\}.$$

Since g is differentiable at x_0 , it is continuous at x_0 so that $\lim_{x \to x_0} g(x) = g(x_0)$. Using (10) we see that

(13)
$$\lim_{x \to x_0} e(g(x); g(x_0)) = 0$$

Taking the limit as $x \to x_0$ in (12) we find that

(14)
$$\lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} = f'(g(x_0))g'(x_0) + 0 \cdot g'(x_0) \\ = f'(g(x_0))g'(x_0).$$

It follows that $f \circ g$ is differentiable at x_0 and

(15)
$$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

Proof of V.5: Assume that f attains a local minimum at x_0 . We may choose $\delta > 0$ such that $B_{\delta}(x_0) \subset S$ and

(16)
$$f(x) \ge f(x_0) \quad \forall x \in B_{\delta}(x_0).$$

It follows from (16) that

(17)
$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \quad \forall x \in (x_0, x_0 + \delta)$$

and

(18)
$$\frac{f(x) - f(x_0)}{x - x_0} \le 0 \quad \forall x \in (x_0 - \delta, x_0).$$

Choose sequences $\{y_n\}_{n=1}^{\infty}$, and $\{z_n\}_{n=1}^{\infty}$ such that $y_n \in (x_0, x_0 + \delta)$, $z_n \in (x_0 - \delta, x_n)$ for every $n \in \mathbb{N}$ and $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = x_0$. Then, by (17) and (18) we have

(19)
$$\frac{f(y_n) - f(x_0)}{y_n - x_0} \ge 0 \quad \forall n \in \mathbb{N}$$

(20)
$$\frac{f(z_n) - f(x_0)}{z_n - x_0} \le 0 \quad \forall n \in \mathbb{N}$$

Since f is differentiable at x_0 and $\lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n = x_0$ we know that

(21)
$$f'(x_0) = \lim_{n \to \infty} \frac{f(y_n) - f(x_0)}{y_n - x_0}$$

and

(22)
$$f'(x_0) = \lim_{n \to \infty} \frac{f(z_n) - f(x_0)}{z_n - x_0}$$

It follows from (19) and (21) that $f'(x_0) \ge 0$. It follows from (20) and (22) that $f'(x_0) \le 0$. We conclude that $f'(x_0) = 0$. If f attains a local maximum at x_0 , then -f attains a local minimum at x_0 and $(-f)'(x_0) = -f'(x_0) = 0$.

Proof of V.6: Since f is continuous on [a, b] and [a, b] is nonempty and compact we may choose $\alpha, \beta \in [a, b]$ such that

(23)
$$f(\alpha) \le f(x) \le f(\beta) \quad \forall x \in [a, b].$$

If $\{\alpha, \beta\} \subset \{a, b\}$ then $f(\alpha) = f(\beta)$ (since f(a) = f(b)) and f is constant on [a, b]. It follows that f'(x) = 0 for all $x \in (a, b)$. If $\{\alpha, \beta\} \not\subset \{a, b\}$ then f attains a local maximum or a local minimum at a point $c \in (a, b)$. By Proposition V.5, f'(c) = 0.

Proof of V.7: Define $F : [a, b] \to \mathbb{R}$ by

(24)
$$F(x) = f(x)[g(b) - b(a)] - g(x)[f(b) - f(a)] \quad \forall x \in [a, b].$$

It follows easily that F is continuous on [a, b], differentiable on (a, b) and that

(25)
$$F'(x) = f'(x)[g(b) - g(a)] - g'(x)[f(b) - f(a)] \quad \forall x \in (a, b).$$

Using (24) we find that

(26)
$$F(a) = f(a)g(b) - g(a)f(b) = F(b).$$

By Rolle's Theorem, we may choose $c \in (a, b)$ such that F'(c) = 0. It follows from (25) that

(27)
$$f'(c)[g(b) - g(a)] - g'(c)[f(b) - f(a)] = 0. \blacksquare$$

Proof of V.9: Apply Cauchy's Mean Value Theorem in the special case when g(x) = x for all $x \in [a, b]$ and notice that g(b) - g(a) = b - a and that g'(x) = 1 for all $x \in (a, b)$.

Proof of V.10: Define $F, G : B_{\eta}(x_0) \to \mathbb{R}$ by

(28)
$$F(t) = \begin{cases} f(t) & \forall t \in B^*_{\eta}(x_0) \\ 0 & t = x_0 \end{cases}$$

(29)
$$G(t) = \begin{cases} g(t) & \forall t \in B^*_{\eta}(x_0) \\ 0 & t = x_0 \end{cases}$$

Notice that F and G are continuous on $B_{\eta}(x_0)$, differentiable on $B^*_{\eta}(x_0)$, and that

(30)
$$F'(t) = f'(t), \quad G'(t) = g'(t) \quad \forall t \in B^*_{\eta}(x_0).$$

[Indeed, F and G are differentiable on $B_{\eta}^*(x_0)$ and (30) holds by virtue of the fact that F(t) = f(t) and G(t) = g(t) for all $t \in B_{\eta}^*(x_0)$. The continuity of F and G at x_0 follows from the fact that $0 = F(x_0) = \lim_{t \to x_0} F(t) = \lim_{t \to x_0} G(t) = G(x_0)$.]

Let $\varepsilon > 0$ be given. Then we may choose $\delta > 0$ with $\delta \leq \eta$ such that

(31)
$$\left|\frac{f'(z)}{g'(z)} - \ell\right| < \varepsilon \quad \forall z \in B^*_{\delta}(x_0).$$

We shall show that

(32)
$$g(x) \neq 0 \quad \forall x \in B^*_{\delta}(x_0)$$

and

(33)
$$\left|\frac{f(x)}{g(x)} - \ell\right| < \varepsilon \quad \forall x \in B^*_{\delta}(x_0)$$

For this purpose, let $x \in B^*_{\delta}(x_0)$ be given. If g(x) = 0 then G(x) = 0 and we may apply Rolle's Theorem to G to deduce the existence of a point c between x_0 and xsuch that G'(c) = g'(c) = 0. This is a contradiction and consequently $g(x) \neq 0$. By Cauchy's Mean Value Theorem we may choose c_x between x_0 and x such that

(34)
$$[F(x) - F(x_0)]G'(c_x) = [G(x) - G(x_0)]F'(c_x).$$

Using (28), (29), and (30) we may rewrite (34) as

(35)
$$f(x)g'(c_x) = g(x)f'(c_x).$$

Since $g(x) \neq 0$, and $g'(c_x) \neq 0$, we deduce from (35) that

(36)
$$\frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}.$$

Since c_x is between x_0 and x and $x \in B^*_{\delta}(x_0)$ we conclude that $c_x \in B^*_{\delta}(x_0)$. Combining (31) and (36) we arrive at

(37)
$$\left|\frac{f(x)}{g(x)} - \ell\right| < \varepsilon. \blacksquare$$

Proof of V.11: Let $x \in [a, b] \setminus \{x_*\}$ be given and put

(38)
$$M = \frac{f(x) - P_n(x; x_*)}{(x - x_*)^{n+1}}.$$

Define $F : [a, b] \to \mathbb{R}$ by

(39)
$$F(t) = f(t) - P_n(t; x_*) - M(t - x_*)^{n+1} \quad \forall t \in [a, b].$$

It is not difficult to verify that F is continuous on [a, b], (n + 1)-times differentiable on (a, b) and that

(40)
$$F^{(k)}(x_*) = 0, \quad k = 0, 1, 2, \dots, n$$

(41)
$$F^{(n+1)}(t) = f^{(n+1)}(t) - M(n+1)! \quad \forall t \in (a,b)$$

Moreover, it follows easily from (38) and (39) that

$$F(x) = 0.$$

By Rolle's Theorem, we may choose c_1 between x_* and x such that $F'(c_1) = 0$. Applying Rolle's Theorem to F' we may choose c_z between x_* and c_1 such that $F''(c_2) = 0$. Continuing in this fashion we may eventually apply Rolle's Theorem to $F^{(n)}$ to choose a point c_{n+1} between x_* and x such that

(43)
$$F^{(n+1)}(c_{n+1}) = 0.$$

It follows from (40) and (43) that

(44)
$$f^{(n+1)}(c_{n+1}) = M(n+1)!, \text{ i.e.},$$

(45)
$$M = \frac{f^{(n+1)}(c_{n+1})}{(n+1)!}$$

Combining (38) and (45), we arrive at

(46)
$$R_n(x;x_*) = \frac{f^{(n+1)}(c_{n+1})(x-x_*)^{n+1}}{(n+1)!}. \blacksquare$$