
21-355 Principles of Real Analysis I Fall 2004

III. Topology of R

A major goal of this course is to understand the behavior of real-valued functions
defined on interesting subsets of R. In order to give an efficient treatment of such
functions it is useful to identify and study certain classes of subsets of R. Two very
important kinds of sets encountered in basic calculus are open intervals and closed
intervals. An important generalization of open interval is provided by the notation
of an open set; similarly an important generalization of closed interval is provided by
the notion of a closed set. We shall show that a set S ⊂ R is closed if and only if its
complement Sc = {x ∈ R : x /∈ S} is open. Consequently, each statement that we
prove about open sets leads immediately to a result about closed sets, and vice versa.

The branch of mathematics called Topology is concerned with the study of situ-
ations in which the notion of open set is fundamental. Our treatment of topology
will be limited to open subsets of R. However, I will try to present the basic defini-
tions and results in such a way that extensions to more general frameworks will be
as straightforward as possible.

Our definitions will be based on the notions of ball and punctured ball. For each
δ > 0 and x0 ∈ R, put

Bδ(x0) = {x ∈ R : |x− x0| < δ},

B∗
δ (x0) = Bδ(x0)\{x0}.

We refer to Bδ(x0) as the ball of radius δ centered at x0 and to B∗
δ (x0) as the punctured

ball of radius δ centered at x0.

A. Definitions

Let S be a subset of R.

Definition 1: A point x0 ∈ R is said to be an interior point of S if ∃δ > 0 such
that Bδ(x0) ⊂ S. The set of all interior points of S is called the interior of S and is
denoted by int(S).

Definition 2: A point x0 ∈ R is said to be a point of closure of S if
∀δ > 0, Bδ(x0) ∩ S 6= Ø. The set of all points of closure of S is called the closure of
S and is denoted by cl(S).

Definition 3: A point x0 ∈ R is said to be an accumulation point or a limit point of
S if ∀δ > 0, B∗

δ (x0) ∩ S 6= Ø. The set of all accumulation points of S is denoted by
acc(S).

Definition 4: We say that S is open if S = int(S).
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Definition 5: We say that S is closed if S = cl(S).

Definition 6: We say that S is dense (in R) if cl(S) = R.

Definition 7: Let C be a collection of subsets of R. We say that C covers S if S ⊂ ∪C.

Definition 8: We say that S is compact if every collection of open sets that covers
S has a finite subcollection that also covers S.

Definition 9: We say that S is an interval provided that tx + (1 − t)y ∈ S for all
x, y ∈ S and t ∈ R with 0 ≤ t ≤ 1.

Definition 10: We say that S is

(a) of class Gδ if S can be expressed as the intersection of a countable collection of
open sets.

(b) of class Fσ is S can be expressed as the union of a countable collection of closed
sets.

B. Some Key Results

III.1 Proposition: Let a, b ∈ R with a < b be given, Then the intervals (−∞, b),
(a, b), and (a,∞) are open. The intervals (−∞, b], [a, b], and [a,∞) are closed.

III.2 Proposition: Let S be a subset of R. Then int(S) is open and cl(S) is closed.

III.3 Theorem: Let S be a subset of R. Then S is closed if and only if Sc is open.

III.4 Theorem:
(i) The union of any collection of open sets is open. (ii) The intersection of any

finite collection of open sets is open. (iii) The intersection of any collection of closed
sets is closed. (iv) The union of any finite collection of closed sets is closed.

III.5 Proposition: Let S be a subset of R and ` ∈ R be given. Then ` ∈ cl(S) if
and only if there is a sequence {xn}∞n=1 with xn ∈ S for every n ∈ N and xn → ` as
n →∞.

III.6 Proposition: Let S be a subset of R. Then S is closed if and only if for every
convergent sequence {xn}∞n=1 with xn ∈ S for all n ∈ N we have ( lim

n→∞
xn) ∈ S.
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III.7 Proposition: Let S be a subset of R. Then acc(S) is closed and cl(S) =
S ∪ acc(S).

III.8 Heine-Borel Theorem: Let S be a subset of R. Then S is compact if and
only if S is closed and bounded.

III.9 Theorem: Let S be an open subset of R. Then there is a collection {Ii : i ∈ N}
of open intervals such that Ii ∩ Ij = Ø for all i, j ∈ N with i 6= j and S = ∪∞i=1Ii.

III.10 Theorem: Let S be a subset of R. If S is both open and closed then S = R
or S = Ø.

C. Some Remarks

III.11 Remark: For every set S ⊂ R we have int(S) ⊂ S ⊂ cl(S). To show that S
is open it suffices to verify that S ⊂ int(S). To show that S is closed it suffices to
verify that cl(S) ⊂ S.

III.12 Remark: Since (Sc)c = S, it follows from Theorem III.3 that S is open if and
only if Sc is closed.

III.13 Remark: Every finite subset of R is compact.

III.14 Remark: It follows from Proposition III.6, Theorem III.8, and the Bolzano-
Weierstrass Theorem that a set S ⊂ R is compact if and only if every sequence
{xn}∞n=1 such that xn ∈ S ∀n ∈ N has a convergent subsequence {xnk

}∞k=1 with
( lim
k→∞

xnk
) ∈ S.

III.15 Remark: It is not difficult to show that if I ⊂ R is an interval, then I must
have one of the forms below:

I = Ø, I = R, I = {a}, I = (−∞, b),

I = (−∞, b], I = (a,∞), I = [a,∞),

I = (a, b), I = (a, b], I = [a, b),

I = [a, b].

Conversely, each of the above sets is an interval.

D. Some Proofs

Proof of III.3: Assume first that S is closed. We shall show that Sc is open. Let
x0 ∈ Sc be given. We want to show that x0 ∈ int(Sc). Since S is closed and x0 /∈ S,
we know that x0 /∈ cl(S). Therefore we may choose δ > 0 such that Bδ(x0) ∩ S = Ø.
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It follows that Bδ(x0) ⊂ Sc and x0 ∈ int(Sc).
Assume now that Sc is open. We shall show that S is closed. For this purpose

let x0 ∈ cl(S) be given. We want to show that x0 ∈ S. For every δ > 0 we have
Bδ(x0) ∩ S 6= Ø. It follows that for every δ > 0, Bδ(x0) 6⊂ Sc. We conclude that
x0 /∈ int(Sc). Since Sc is open, it follows that x0 /∈ Sc, i.e. x0 ∈ S.

Proof of III.4. (i) Let {Si : i ∈ I} be a collection of open sets and put U = ∪
i∈I

Si.

Let x0 ∈ U be given. Then we may choose j ∈ I such that x0 ∈ Sj. Since Sj is
open we may choose δ > 0 such that Bδ(x0) ⊂ Sj. It follows that Bδ(x0) ⊂ U and
x0 ∈ int(U). We conclude that U is open.

(ii) Let F be a finite set and {Si : i ∈ F} be a collection of open sets. Put
V = ∩

i∈F
Si. If F = Ø then V = R and hence V is open. Assume that F 6= Ø and

let x0 ∈ V be given. Then x0 ∈ Si = int(Si) for every i ∈ F . Consequently, for each
i ∈ F we may choose δi > 0 such that Bδi

(x0) ⊂ Si. Since {δi : i ∈ F} is nonempty
and finite it has a smallest element. Let δ = min{δi : i ∈ F} and note that δ > 0.
Then for all i ∈ F we have

(1) Bδ(x0) ⊂ Bδi
(xo) ⊂ Si.

We conclude that Bδ(x0) ⊂ V . It follows that x0 ∈ int(V ) and V is open.
(iii) and (iv) follow by applying Theorem III.3 and DeMorgan’s Laws to (i) and

(ii).

Proof of III.5: Assume first that l ∈ cl(S). Then for each δ > 0 we have Bδ(l)∩S 6=
Ø. For each n ∈ N we choose xn ∈ B 1

n
(l) ∩ S. Notice that

(2) l − 1

n
< xn < l +

1

n
∀n ∈ N.

The Squeeze Theorem implies that xn → l as n →∞.
To prove the converse, let {xn}∞n=1 be a sequence such that xn ∈ S ∀n ∈ N and

xn → l as n →∞. Let δ > 0 be given. Then we may choose N ∈ N such that

(3) |xn − l| < δ ∀n ∈ N, n ≥ N, i.e.

(4) xn ∈ Bδ(l) ∀n ∈ N, n ≥ N.

In particular xN ∈ Bδ(l). Since xN ∈ S, we conclude that Bδ(l)∩S 6= Ø. Since δ > 0
was arbitrary, it follows that l ∈ cl(S).

Proof of Theorem III.8: The proof will be partioned into 4 lemmas.

Lemma 1: Let S be a compact subset of R. Then S is bounded.
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Proof of Lemma 1: The collection {B1(x) : x ∈ S} of open sets covers S. Since S
is compact we may choose a finite set F ⊂ S such that

(5) S ⊂ ∪
i∈F

B1(i).

Let β be an upper bound for F and α be a lower bound for F . Then

(6) α− 1 < x < β + 1 ∀i ∈ F, x ∈ B1(i).

It follows from (5) and (6) that

(7) α− 1 < x < β + 1 ∀x ∈ S

and S is bounded.

Lemma 2: Let S be a compact subset of R. Then S is closed.

Proof of Lemma 2: We shall show that Sc is open. Let x0 ∈ Sc be given. For each
x ∈ S, put

(8) δx =
1

3
|x− x0|

and notice that δx > 0. Now, for each x ∈ S, put

(9) Ux = Bδx(x),

(10) Ox = Bδx(x0).

Observe that

(11) Ux ∩ Ox = Ø ∀x ∈ S.

The collection {Ux : x ∈ S} of open sets covers S. Since S is compact we may choose
a finite set F ⊂ S such that

(12) S ⊂ ∪
x∈F

Ux.

If F = Ø, then S = Ø and Sc = R so we are done. Assume that F 6= Ø. Then
{δx : x ∈ F} has a smallest element. Let δ = min{δx : x ∈ F} and note that δ > 0.
Now, let
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(13) O = ∩
x∈F

Ox = Bδ(x0).

Observe that

(14) Bδ(x0) ∩ Ux = Ø ∀x ∈ F

by virtue of (11) and the fact that O ⊂ Ox for every x ∈ F . We shall show that
Bδ(x0) ⊂ Sc. It follows from (14) that

(15) Bδ(x0) ∩ ( ∪
x∈F

Ux) = Ø

which yields

(16) Bδ(x0) ∩ S = Ø

by virtue of (12). We infer from (16) that Bδ(x0) ⊂ Sc and consequently Sc is open.

Lemma 3: Let a, b ∈ R with a < b be given. The interval [a, b] is compact.

Proof of Lemma 3: Let C be a collection of open sets that covers [a, b]. We define
E to be the set of all x ∈ (a, b] such that the interval [a, x] can be covered by a finite
subcollection of C. Our goal is to show that b ∈ E.

Claim 1: E 6= Ø.

Proof of Claim 1: Choose Oa ∈ C such that a ∈ Oa and then choose δa > 0 such
that Bδa(a) ⊂ Oa. Let xa = min {b, a + 1

2
δa} and notice that xa ∈ (a, b] and

(17) [a, xa] ⊂ Oa.

It follows that xa ∈ E and E 6= Ø. //

Claim 2: E is bounded above.

Proof of Claim 2: b is an upper bound for E. //

Let c = sup(E). We shall show that c = b and c ∈ E.

Claim 3: c = b.

Proof of Claim 3: Observe that c ≤ b, since b is an upper bound for E. Observe
also that c > a. Suppose that c < b. Choose Oc ∈ C such that c ∈ Oc and then
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choose δc > 0 such that Bδc(c) ⊂ Oc. Since c − δc is not an upper bound for E, we
may choose γ ∈ (c− δc, c] with γ ∈ E. Let F be a finite subcollection of C that covers
[a, γ]. Then the finite subcollection F ∪ {Oc} of C covers [a, c + δc). Since c < b, we
can produce an element of E that is strictly greater than c. [xc = min {b, c + 1

2
δc}

will do.] This contradicts the fact that c is an upper bound for E. //

Claim 4: b ∈ E

Proof of Claim 4: Choose U ∈ C such that b ∈ U and then choose δ > 0 such that
Bδ(b) ⊂ U . Since b − δ is not an upper bound for E we may choose Γ ∈ (b − δ, b]
with Γ ∈ E. Let G be a finite subcollection of C that covers [a, Γ]. Then the finite
subcollection G∪{U} of C covers [a, b+δ); in particular this finite subcollection covers
[a, b]. It follows that b ∈ E. //

This completes the proof of Lemma 3.

Lemma 4: Let S be a compact subset of R and K be a closed subset of S. Then K
is compact.

Proof of Lemma 4: Let C be a collection of open sets that covers K. Then C∪{Kc}
is a collection of open sets that covers R and hence also covers S. Since S is compact
we may choose a finite subcollection F of C ∪ {Kc} that covers S. Then F\{Kc} is
a finite subcollection of C that covers K and K is compact.

The Heine-Borel Theorem follows easily from Lemmas 1 through 4. If S is compact
then S is closed and bounded by Lemmas 1 and 2. Suppose now that S is closed and
bounded and choose a, b ∈ R with a < b such that

(18) a ≤ x ≤ b ∀x ∈ S.

Then [a, b] is compact by Lemma 3. Since S is a closed subset of [a, b], we deduce
from Lemma 4 that S is compact.
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