II. Sequences

By a real sequence we mean a function $x: \mathbb{N} \rightarrow \mathbb{R}$, i.e. a function whose domain is the set of natural numbers and whose values are real numbers. For each $n \in \mathbb{N}$ the function value $x(n)$ is called the nth term of the sequence. It is customary to write x_{n} in place of $x(n)$ and to denote the sequence by $\left\{x_{n}\right\}_{n=1}^{\infty}$. Although we will generally adopt the customary notation, it is important to bear in mind that a sequence is a function. Throughout this section we use the term sequence to mean real sequence. Most of our effort with sequences will be devoted to understanding how the terms x_{n} behave when the index n is large.

The central notion pertaining to sequences is that of a limit. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence and $l \in \mathbb{R}$ be given. We say that l is a limit of $\left\{x_{n}\right\}_{=1}^{\infty}$ and we write $x_{n} \rightarrow l$ as $n \rightarrow \infty$ provided that for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-l\right|<\epsilon$ for all $n \in \mathbb{N}$ with $n \geq N$. A sequence can have at most one limit. (See Proposition II.1.) Therefore, if $x_{n} \rightarrow l$ as $n \rightarrow \infty$, we refer to l as the limit of the sequence and we write $\lim _{n \rightarrow \infty} x_{n}=l$.

A. Some Definitions

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence.
Definition 1: We say that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent if there exists $l \in \mathbb{R}$ such that $x_{n} \rightarrow l$ as $n \rightarrow \infty$.

Definition 2: We say that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is
(i) bounded below if there exists $\alpha \in \mathbb{R}$ such that $x_{n} \geq \alpha$ for all $n \in \mathbb{N}$.
(ii) bounded above if there exists $\beta \in \mathbb{R}$ such that $x_{n} \leq \beta$ for all $n \in \mathbb{N}$.
(iii) bounded if there exists $M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

Definition 3: We say that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is
(i) increasing if $x_{n+1} \geq x_{n}$ for all $n \in \mathbb{N}$.
(ii) strictly increasing if $x_{n+1}>x_{n}$ for all $n \in \mathbb{N}$.
(iii) decreasing if $x_{n+1} \leq x_{n}$ for all $n \in \mathbb{N}$.
(iv) strictly decreasing if $x_{n+1}<x_{n}$ for all $n \in \mathbb{N}$.
(v) monotonic if it is either increasing or decreasing.
(vi) strictly monotonic if it is either strictly increasing or strictly decreasing.

Definition 4: We say that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence provided that for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{m}-x_{n}\right|<\epsilon$ for all $m, n \in \mathbb{N}$ with $m, n \geq N$.

Definition 5: By a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ we mean a sequence of the form $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ where $\left\{n_{k}\right\}_{k=1}^{\infty}$ is a strictly increasing sequence of natural numbers.

Definition 6: Let $l \in \mathbb{R}$ be given. We say that l is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$ provided that for every $\epsilon>0,\left\{n \in \mathbb{N}:\left|x_{n}-l\right|<\epsilon\right\}$ is infinite.

Definition 7: Assume that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded. For each $n \in \mathbb{N}$ put

$$
\begin{aligned}
& y_{n}=\inf \left\{x_{k}: k \in \mathbb{N}, k \geq n\right\}, \\
& z_{n}=\sup \left\{x_{k}: k \in \mathbb{N}, k \geq n\right\}
\end{aligned}
$$

Note that $\left\{y_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded above and that $\left\{z_{n}\right\}_{n=1}^{\infty}$ is decreasing and bounded below. We define

$$
\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} \text { and } \limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n} .
$$

(Note that $\left\{y_{n}\right\}_{n=1}^{\infty}$ and $\left\{z_{n}\right\}_{n=1}^{\infty}$ are convergent by virtue of Theorem II.6.)

B. Some Key Results

II. 1 Proposition: A sequence can have at most one limit.
II. 2 Proposition: Every convergent sequence is bounded.
II. 3 Proposition: Let $\ell, L, \alpha \in \mathbb{R}$ be given and $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences. Assume that $x_{n} \rightarrow \ell$ and $y_{n} \rightarrow L$ as $n \rightarrow \infty$. Then:
(i) $x_{n}+y_{n} \rightarrow \ell+L$ as $n \rightarrow \infty$;
(ii) $\alpha x_{n} \rightarrow \alpha \ell$ as $n \rightarrow \infty$;
(iii) $x_{n} y_{n} \rightarrow \ell L$ as $n \rightarrow \infty$;
(iv) If $x_{n} \neq 0$ for all $n \in \mathbb{N}$ and $\ell \neq 0$, we have $\frac{1}{x_{n}} \rightarrow \frac{1}{\ell}$ as $n \rightarrow \infty$.
II. 4 Proposition: Let $\ell, L \in \mathbb{R}$ be given and $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences. If $x_{n} \leq y_{n}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow \ell, y_{n} \rightarrow L$ as $n \rightarrow \infty$ then $\ell \leq L$.
II. 5 Squeeze Theorem: Let $\ell \in \mathbb{R}$ be given and $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty},\left\{z_{n}\right\}_{n=1}^{\infty}$ be sequences. Assume that $x_{n} \leq y_{n} \leq z_{n}$ for all $n \in \mathbb{N}$ and that $x_{n} \rightarrow \ell, z_{n} \rightarrow \ell$ as $n \rightarrow \infty$. Then $y_{n} \rightarrow \ell$ as $n \rightarrow \infty$.
II. 6 Theorem: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence.
(i) If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded above then $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent.
(ii) If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is decreasing and bounded below then $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent.
II. 7 Proposition: Let $\ell \in \mathbb{R}$ be given and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence. Then ℓ is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$ if and only if there is a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ such that $x_{n_{k}} \rightarrow \ell$ as $k \rightarrow \infty$.
II. 8 Proposition: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be bounded sequences and $\alpha \in \mathbb{R}$ be given. Then:
(i) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq\left(\limsup _{n \rightarrow \infty} x_{n}\right)+\left(\limsup _{n \rightarrow \infty} y_{n}\right)$;
(ii) $\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq\left(\liminf _{n \rightarrow \infty} x_{n}\right)+\left(\liminf _{n \rightarrow \infty} y_{n}\right)$;
(iii) If $\alpha \geq 0$ we have $\limsup _{n \rightarrow \infty}\left(\alpha x_{n}\right)=\alpha \limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty}\left(\alpha x_{n}\right)=\alpha \liminf _{n \rightarrow \infty} x_{n}$;
(iv) $\limsup _{n \rightarrow \infty}\left(-x_{n}\right)=-\liminf _{n \rightarrow \infty}^{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty}^{n \rightarrow \infty}\left(-x_{n}\right)=-\limsup _{n \rightarrow \infty} x_{n}$
II. 9 Lemma: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence and $l_{s} \in \mathbb{R}$ be given. Then $l_{s}=\lim \sup _{n \rightarrow \infty} x_{n}$ if and only if (i) and (ii) below hold.
(i) $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that $x_{n}<l_{s}+\epsilon$ for all $n \in \mathbb{N}$ with $n \geq N$.
(ii) $\forall \epsilon>0, \forall N \in \mathbb{N}, \exists n \in \mathbb{N}$ with $n \geq N$ such that $x_{n}>l_{s}-\epsilon$.
II. 10 Proposition: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence. Then $\limsup _{n \rightarrow \infty} x_{n}$ is the largest cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\liminf _{n \rightarrow \infty} x_{n}$ is the smallest cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.
II. 11 Proposition: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence and put $l_{i}=\liminf _{n \rightarrow \infty} x_{n}$ and $l_{s}=\limsup _{n \rightarrow \infty} x_{n}$. Let $\epsilon>0$ be given. Then there exists $N \in \mathbb{N}$ such that

$$
l_{i}-\epsilon<x_{n}<l_{s}+\epsilon
$$

for all $n \in \mathbb{N}$ with $n \geq N$.
II. 12 Proposition: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence. Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent if and only if

$$
\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n} .
$$

II.13 Bolzano-Weierstrass Theorem: Every bounded sequence has a convergent subsequence.
II. 14 Theorem (Cauchy's Criterion): A sequence is convergent if and only if it is a Cauchy sequence.
II.15 Lemma: Every sequence has a monotonic subsequence.

C. Some Remarks.

II. 16 Remark: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence. Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ is
(i) increasing if and only if $x_{m} \geq x_{n}$ for all $m, n \in \mathbb{N}$ with $m \geq n$.
(ii) strictly increasing if and only if $x_{m}>x_{n}$ for all $m, n \in \mathbb{N}$ with $m>n$.
(iii) decreasing if and only if $x_{m} \leq x_{n}$ for all $m, n \in \mathbb{N}$ with $m \geq n$.
(iv) strictly decreasing if and only if $x_{m}<x_{n}$ for all $m, n \in \mathbb{N}$ with $m>n$.
II.17 Remark: Let $\left\{n_{k}\right\}_{k=1}^{\infty}$ be a strictly increasing sequence of natural numbers. Then $n_{k} \geq k$ for all $k \in \mathbb{N}$.
II. 18 Remark: Let \mathbb{K} be an infinite subset of \mathbb{N}. Then there is exactly one strictly increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of natural numbers such that $\left\{n_{k}: k \in \mathbb{N}\right\}=\mathbb{K}$.
II. 19 Remark: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence and $l \in \mathbb{R}$ be given. Then l is a cluster point of $\left\{x_{n}\right\}$ if and only if for every $\epsilon>0$ and every $N \in \mathbb{N}$, there exists $n \in \mathbb{N}$ with $n \geq N$ such that $\left|x_{n}-l\right|<\epsilon$.

D. Some Proofs.

Proof of II.1: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence and let $l, L \in \mathbb{R}$ be given. Suppose that $x_{n} \rightarrow l$ as $n \rightarrow \infty$ and that $x_{n} \rightarrow L$ as $n \rightarrow \infty$. We shall show that $L=l$. Let $\epsilon>0$ be given. Choose $N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\begin{align*}
& \left|x_{n}-l\right|<\epsilon \quad \forall n \in \mathbb{N}, n \geq N_{1}, \tag{1}\\
& \left|x_{n}-L\right|<\epsilon \quad \forall n \in \mathbb{N}, n \geq N_{2} . \tag{2}
\end{align*}
$$

Put $N=\max \left\{N_{1}, N_{2}\right\}$ and notice that

$$
\begin{equation*}
\left|x_{N}-l\right|<\epsilon, \quad\left|x_{N}-L\right|<\epsilon . \tag{3}
\end{equation*}
$$

Now we observe that

$$
\begin{equation*}
l-L=l-x_{N}+x_{N}-L \tag{4}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
|l-L| \leq\left|l-x_{N}\right|+\left|x_{N}-L\right|<\epsilon+\epsilon=2 \epsilon \tag{5}
\end{equation*}
$$

by virtue of the triangle inequality and (3). Since $\epsilon>0$ was arbitrary, it follows from (5) that $l-L=0$. [Indeed, if $l-L \neq 0$ then we may put $\epsilon=\frac{1}{2}|l-L|$ in (5) which yields $|l-L|<|l-L|$ and this is impossible.]

Proof of II.2: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence and put $l=\lim _{n \rightarrow \infty} x_{n}$. Using the definition of limit with $\epsilon=1$, we choose $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|x_{n}-l\right|<1 \quad \forall n \in \mathbb{N}, n \geq N . \tag{6}
\end{equation*}
$$

Let $S=\left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\left|x_{N}\right|\right\}$. Since S is nonempty and finite, it has a largest element. Let $K=\max (S)$ and $M=\max \{1+|l|, K\}$. Let $n \in \mathbb{N}$ be given. If $n \leq N$ then $\left|x_{n}\right| \in S$ so that

$$
\begin{equation*}
\left|x_{n}\right| \leq K \leq M . \tag{7}
\end{equation*}
$$

If $n \geq N$, then we have

$$
\begin{equation*}
x_{n}=l+x_{n}-l \tag{8}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\left|x_{n}\right| \leq|l|+\left|x_{n}-l\right| \leq|l|+1 \leq M \tag{9}
\end{equation*}
$$

by virtue of the triangle inequality, (6), and the definition of M. We conclude that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$, i.e. $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded.

Proof of II. 3 (i): Let $\epsilon>0$ be given. Choose $N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\begin{align*}
& \left|x_{n}-l\right|<\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq N_{1}, \tag{10}\\
& \left|y_{n}-L\right|<\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq N_{2}
\end{align*}
$$

and put $N=\max \left\{N_{1}, N_{2}\right\}$. Then for all $n \in \mathbb{N}$ with $n \geq N$ we have

$$
\begin{align*}
& \left|x_{n}+y_{n}-(l+L)\right|=\left|\left(x_{n}-l\right)+\left(y_{n}-L\right)\right| \\
& \leq\left|x_{n}-l\right|+\left|y_{n}-L\right| \tag{12}\\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{align*}
$$

by virtue of the triangle inequality and (10), (11).
Proof of II. 3 (iii): Since $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent we may choose $M>0$ such that

$$
\begin{equation*}
\left|x_{n}\right| \leq M \quad \forall n \in \mathbb{N} . \tag{13}
\end{equation*}
$$

Let $\epsilon>0$ be given. Choose $N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\begin{gather*}
\left|x_{n}-l\right|<\frac{\epsilon}{2(|L|+1)} \quad \forall n \in \mathbb{N}, n \geq N_{1} \tag{14}\\
\left|y_{n}-L\right|<\frac{\epsilon}{2 M} \quad \forall n \in \mathbb{N}, n \geq N_{2} . \tag{15}
\end{gather*}
$$

Put $N=\max \left\{N_{1}, N_{2}\right\}$. Then, for all $n \in \mathbb{N}$ with $n \geq N$ we have

$$
\begin{align*}
& \left|x_{n} y_{n}-l L\right|=\left|x_{n} y_{n}-L x_{n}+L x_{n}-l L\right| \\
& =\left|x_{n}\left(y_{n}-L\right)+L\left(x_{n}-l\right)\right| \\
& \leq\left|x_{n}\right| \cdot\left|y_{n}-L\right|+|L| \cdot\left|x_{n}-l\right| \tag{16}\\
& <M\left(\frac{\epsilon}{2 M}\right)+\frac{|L| \epsilon}{2(|L|+1)}<\epsilon
\end{align*}
$$

by virtue of (13), (14), (15).
Proof of II.4: Assume that $x_{n} \leq y_{n}$ for all $n \in \mathbb{N}$ and that $x_{n} \rightarrow l, y_{n} \rightarrow L$ as $n \rightarrow \infty$. Put

$$
\begin{gather*}
z_{n}=y_{n}-x_{n} \quad \forall n \in \mathbb{N}, \tag{17}\\
\alpha=L-l \tag{18}
\end{gather*}
$$

and notice that $z_{n} \geq 0$ for all $n \in \mathbb{N}$ and that $z_{n} \rightarrow \alpha$ as $n \rightarrow \infty$. We shall show that $\alpha \geq 0$, which yields $l \leq L$.

Suppose that $\alpha<0$. Then we may choose $N \in \mathbb{N}$ such

$$
\begin{align*}
& \left|z_{n}-\alpha\right|<-\frac{\alpha}{2} \quad \forall n \in \mathbb{N}, n \geq N, \text { i.e. } \tag{19}\\
& \frac{\alpha}{2}<z_{n}-\alpha<-\frac{\alpha}{2} \quad \forall n \in \mathbb{N}, n \geq N . \tag{20}
\end{align*}
$$

$$
z_{N}<\frac{\alpha}{2}<0
$$

and this is a contradiction (since $z_{n} \geq 0$ for all $n \in \mathbb{N}$). We therefore conclude that $\alpha \geq 0$ and hence that $l \leq L$.

Proof of II. 6 (i): Assume that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded above. Put $S=\left\{x_{n}: n \in \mathbb{N}\right\}$ and observe that S is nonempty and bounded above. Let

$$
\begin{equation*}
l=\sup (S) \tag{22}
\end{equation*}
$$

We shall show that $x_{n} \rightarrow l$ as $n \rightarrow \infty$. Let $\epsilon>0$ be given. Then $l-\epsilon$ is not an upper bound for S. We may therefore choose $N \in \mathbb{N}$ such that

$$
\begin{equation*}
x_{N}>l-\epsilon \tag{23}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
x_{n} \leq l \quad \forall n \in \mathbb{N} . \tag{24}
\end{equation*}
$$

Since $\left\{x_{n}\right\}_{n=1}^{\infty}$ is increasing we deduce from (23) and (24) that

$$
\begin{equation*}
l-\epsilon<x_{N} \leq x_{n} \leq l \quad \forall n \in \mathbb{N}, n \geq N \tag{25}
\end{equation*}
$$

It follows from (25) that

$$
\begin{equation*}
\left|x_{n}-l\right|<\epsilon \quad \forall n \in \mathbb{N}, n \geq N \tag{26}
\end{equation*}
$$

Proof of II.9: For each $n \in \mathbb{N}$, put

$$
\begin{gather*}
T_{n}=\left\{x_{k}: k \in \mathbb{N}, k \geq n\right\}, \tag{27}\\
z_{n}=\sup \left(T_{n}\right) . \tag{28}
\end{gather*}
$$

Recall that $\left\{z_{n}\right\}_{n=1}^{\infty}$ is decreasing and that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\limsup _{n \rightarrow \infty} x_{n} \tag{29}
\end{equation*}
$$

Assume first that $l_{s}=\lim \sup x_{n}$. We shall show that (i) and (ii) hold. Let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|z_{n}-l_{s}\right|<\epsilon \quad \forall n \in \mathbb{N}, n \geq N \tag{30}
\end{equation*}
$$

Then, for all $n \in \mathbb{N}$ with $n \geq N$ we have

$$
\begin{gather*}
z_{n}-l_{s}<\epsilon, \quad \text { i.e. } \tag{31}\\
z_{n}<l_{s}+\epsilon \tag{32}
\end{gather*}
$$

which yields

$$
\begin{equation*}
x_{n} \leq z_{n}<l_{s}+\epsilon \tag{33}
\end{equation*}
$$

and consequently (i) holds. To verify (ii), let $\epsilon>0$ and $N \in \mathbb{N}$ be given. Since $\left\{z_{n}\right\}_{n=1}^{\infty}$ is decreasing and $z_{n} \rightarrow l_{s}$ as $n \rightarrow \infty$, we know that

$$
\begin{equation*}
z_{n} \geq l_{s}>l_{s}-\epsilon \quad \forall n \in \mathbb{N} . \tag{34}
\end{equation*}
$$

It follows from (34) that $l-\epsilon$ is not an upper bound for T_{N}. We may therefore choose $y \in T_{N}$ with $y>l_{s}-\epsilon$. By the definition of $T_{N}, y=x_{n}$ for some $n \in \mathbb{N}$ with $n \geq N$.

Conversely, assume now that (i) and (ii) hold. We shall show that $l_{s}=\lim \sup _{n \rightarrow \infty} x_{n}$. Let $\epsilon>0$ be given. It follows from (ii) that

$$
\begin{equation*}
z_{n}>l_{s}-\epsilon \quad \forall n \in \mathbb{N} . \tag{35}
\end{equation*}
$$

Using (i), we choose $N \in \mathbb{N}$ such that

$$
\begin{equation*}
x_{n}<l_{s}+\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq N . \tag{36}
\end{equation*}
$$

It follows from (36) that

$$
\begin{equation*}
z_{n} \leq l_{s}+\frac{\epsilon}{2}<l_{s}+\epsilon \tag{37}
\end{equation*}
$$

Since $\left\{z_{n}\right\}_{n=1}^{\infty}$ is decreasing, (37) yields

$$
\begin{equation*}
z_{n}<l_{s}+\epsilon \quad \forall n \in \mathbb{N}, n \geq N . \tag{38}
\end{equation*}
$$

Combining (35) and (38) we arrive at

$$
\begin{equation*}
\left|z_{n}-l_{s}\right|<\epsilon \quad \forall n \in \mathbb{N}, n \geq N . \tag{39}
\end{equation*}
$$

We conclude that $z_{n} \rightarrow l_{s}$ as $n \rightarrow \infty$ and consequently $l_{s}=\lim \sup _{n \rightarrow \infty} x_{n}$.
Proof of II.12: For each $n \in \mathbb{N}$, put

$$
\begin{gather*}
T_{n}=\left\{x_{k}: k \in \mathbb{N}, k \geq n\right\}, \tag{40}\\
y_{n}=\inf \left(T_{n}\right), \tag{41}
\end{gather*}
$$

$$
\begin{equation*}
z_{n}=\sup \left(T_{n}\right) \tag{42}
\end{equation*}
$$

Let $l \in \mathbb{R}$ be given. Assume first that $\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=l$. We shall show that $x_{n} \rightarrow l$ as $n \rightarrow \infty$. Observe that

$$
\begin{equation*}
y_{n} \leq x_{n} \leq z_{n} \quad \forall n \in \mathbb{N} . \tag{43}
\end{equation*}
$$

Since $y_{n} \rightarrow l$ and $z_{n} \rightarrow l$ as $n \rightarrow \infty$, it follows from the Squeeze Theorem that $x_{n} \rightarrow l$ as $n \rightarrow \infty$.

Assume now that $x_{n} \rightarrow l$ as $n \rightarrow \infty$. We shall show that $y_{n} \rightarrow l$ and $z_{n} \rightarrow l$ as $n \rightarrow \infty$. Let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that

$$
\begin{align*}
& \left|x_{n}-l\right|<\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq \mathbb{N}, \text { i.e. } \tag{44}\\
& -\frac{\epsilon}{2}<x_{n}-l<\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq N \tag{45}
\end{align*}
$$

It follows from (45) that

$$
\begin{equation*}
l-\frac{\epsilon}{2}<x_{n}<l+\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq N \tag{46}
\end{equation*}
$$

Using (46) we conclude that $l-\frac{\epsilon}{2}$ is a lower bound for T_{N} and $l+\frac{\epsilon}{2}$ is an upper bound for T_{N}. It therefore follows that

$$
\begin{align*}
& y_{N} \geq l-\frac{\epsilon}{2} \tag{47}\\
& z_{N} \leq l+\frac{\epsilon}{2} . \tag{48}
\end{align*}
$$

Since $\left\{y_{n}\right\}_{n=1}^{\infty}$ is increasing and $\left\{z_{n}\right\}_{n=1}^{\infty}$ is decreasing we infer from (47), (48) that

$$
\begin{equation*}
l-\frac{\epsilon}{2} \leq y_{N} \leq y_{n} \leq z_{n} \leq z_{N} \leq l+\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq N \tag{49}
\end{equation*}
$$

It follows immediately from (49) that

$$
\begin{equation*}
\left|y_{n}-l\right| \leq \frac{\epsilon}{2}<\epsilon \quad \forall n \in \mathbb{N}, n \geq N \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
\left|z_{n}-l\right| \leq \frac{\epsilon}{2}<\epsilon \quad \forall n \in \mathbb{N}, n \geq N \tag{51}
\end{equation*}
$$

i.e. $y_{n} \rightarrow l$ and $z_{n} \rightarrow l$ as $n \rightarrow \infty$.

Proof of II.13: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence and put $l_{s}=\limsup _{n \rightarrow \infty} x_{n}$. It follows easily from Lemma II. 9 that l_{s} is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$. By Proposition II.7, there is a subsequence $\left\{x_{n_{k}}\right\}_{n=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $x_{n_{k}} \rightarrow l_{s}$ as $n \rightarrow \infty$.

Proof of II.14: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence. Assume first that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent and put $l=\lim _{n \rightarrow \infty} x_{n}$. Let $\epsilon>0$ be given and choose $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|x_{n}-l\right|<\frac{\epsilon}{2} \quad \forall n \in \mathbb{N}, n \geq N \tag{52}
\end{equation*}
$$

Observe that for all $m, n \in \mathbb{N}$ with $m, n \geq N$ we have

$$
\begin{equation*}
x_{m}-x_{n}=x_{m}-l+l-x_{n}, \tag{53}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\left|x_{m}-x_{n}\right| \leq\left|x_{m}-l\right|+\left|l-x_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \tag{54}
\end{equation*}
$$

by virtue of the triangle inequality and (54).
Assume now that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. We shall first show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded. For this purpose, we choose $N^{*} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|x_{m}-x_{n}\right|<1 \quad \forall m, n \in \mathbb{N}, m, n \geq N^{*} \tag{55}
\end{equation*}
$$

Put $S=\left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\left|x_{N^{*}}\right|\right\}$ and let $K=\max (S)$. Then, put $M=\max \left\{K,\left|x_{N^{*}}\right|+\right.$ $1\}$. Let $n \in \mathbb{N}$ be given. If $n \leq N^{*}$ then

$$
\begin{equation*}
\left|x_{n}\right| \leq K \leq M . \tag{56}
\end{equation*}
$$

If $n \geq N^{*}$ then

$$
\begin{equation*}
\left|x_{n}\right| \leq\left|x_{n}-x_{N^{*}}\right|+\left|x_{N^{*}}\right|<1+\left|x_{N^{*}}\right| \leq M . \tag{57}
\end{equation*}
$$

We conclude that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$, i.e. $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded.
By the Bolzano-Weierstrass Theorem we may choose a convergent subsequence $\left\{x_{n_{k}}\right\}_{n=1}^{\infty}$. Let $l=\lim _{k \rightarrow \infty} x_{n_{k}}$. We shall show that $x_{n} \rightarrow l$ as $n \rightarrow \infty$. Let $\epsilon>0$ be given. Choose $K, N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|x_{n_{k}}-l\right|<\frac{\epsilon}{2} \quad \forall k \in \mathbb{N}, k \geq K \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
\left|x_{m}-x_{n}\right|<\frac{\epsilon}{2} \quad \forall m, n \in \mathbb{N}, m, n \geq N \tag{59}
\end{equation*}
$$

We choose $k^{*} \in \mathbb{N}$ such that $k^{*} \geq K$ and $n_{k^{*}} \geq N$. (Notice that $k^{*}=\max \{K, N\}$ will do.) Then, for all $n \in \mathbb{N}$ with $n \geq N$ we have

$$
\begin{equation*}
x_{n}-l=x_{n}-x_{n_{k^{*}}}+x_{n_{k^{*}}}-l, \tag{60}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left|x_{n}-l\right| \leq\left|x_{n}-x_{n_{k^{*}}}\right|+\left|x_{n_{k^{*}}}-l\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \tag{61}
\end{equation*}
$$

by virtue of (58), (59), and the triangle inequality.

