Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

IV. Existence, Uniqueness, Continuation, and Continuous Dependence

Let D be an open subset of $\mathbb{R} \times \mathbb{R}^n$ and let $f : D \to \mathbb{R}^n$ be given. By a solution of the differential equation

(DE)
$$\dot{x}(t) = f(t, x(t)),$$

we mean a differentiable function $x : \text{Dom}(x) \to \mathbb{R}^n$ such that Dom(x) is an interval with nonempty interior, $Gr(x) \subset D$, and (DE) holds for all $t \in \text{Dom}(x)$. [Here Dom(x) is the *domain* of x and Gr(x) is the graph of x, i.e. $\text{Gr}(x) = \{(t, x(t)) : t \in \text{Dom}(x)\}$.] Given $(t_o, x_o) \in D$, a solution of the *initial-value problem*

(IVP)
$$\dot{x}(t) = f(t, x(t)); \ x(t_o) = x_o,$$

is a solution x of (DE) such that $t_o \in \text{Dom}(x)$ and $x(t_o) = x_o$. We say that f has the uniqueness property if for each $(t_o, x_o) \in D$ and every pair x, x^* of solutions of (IVP) we have $x(t) = x^*(t)$ for all $t \in \text{Dom}(x) \cap \text{Dom}(x^*)$. Let x be a solution of (DE). By a continuation (or extension) of x we mean a solution x^* of (DE) such that $Gr(x) \subset Gr(x^*)$; we say that x^* is a proper continuation (or proper extension) of x if x^* is a solution of (DE) such that $Gr(x) \subsetneq Gr(x^*)$. Finally, we say that x is noncontinuable (or inextensible) if x has no proper continuation.

The following lemma (which is an immediate consequence of the fundamental theorem of calculus) plays an important role in the fundamental theory of (IVP).

Lemma 4.1 Assume that $f: D \to \mathbb{R}^n$ is continuous and let $(t_o, x_o) \in D$ be given. Let I be an interval with nonempty interior and $t_o \in I$. A continuous function $x: I \to \mathbb{R}^n$ is a solution of (IVP) if and only if x satisfies

(IE)
$$x(t) = x_o + \int_{t_o}^t f(s, x(s)) ds$$

for every $t \in I$.

Theorem 4.2 (Peano) Assume that f is continuous and let $(t_o, x_o) \in D$ be given. Then there exists h > 0 such that (IVP) has at least one solution on $[t_o - h, t_o + h]$.

Continuity of f does not imply the uniqueness property, as the following example shows.

Example 4.3: Let n = 1 and consider the initial-value problem

(4.1)
$$\dot{x}(t) = x(t)^{1/3}; \ x(0) = 0.$$

For each $t_* \geq 0$, define $x_{t^*} : \mathbb{R} \to \mathbb{R}$ by

(4.2)
$$x_{t^*}(t) = \begin{cases} 0, & t \le t_* \\ \left(\frac{2}{3}(t-t_*)\right)^{3/2}, & t > t_*. \end{cases}$$

It is straightforward to show that for each $t_* \geq 0$, x_{t^*} and $-x_{t^*}$ are solutions of (4.1). The zero function is also a solution of (4.1). This initial value problem has uncountably many solutions having the same domain \mathbb{R} .

We say that f is *locally Lipschitzean* on D provided that for each closed and bounded set $K \subset D$ there exists $L_K \in \mathbb{R}$ such that

(4.3)
$$||f(t,z) - f(t,y)|| \le L_K ||z-y||$$
 for all $(t,y), (t,z) \in K$.

We say that f is globally Lipschitzean on D if there exists $L \in \mathbb{R}$ such that

(4.4)
$$||f(t,z) = f(t,y)|| \le L ||z-y||$$
 for all $(t,y) \in D$.

Proposition 4.4:

- (a) If the partial derivatives $f_{,2}, f_{,3}, \ldots f_{,n+1}$ are continuous on D then f is locally Lipschitzean on D.
- (b) If D is convex and the partial derivatives $f_{,2}, f_{,3}, \ldots f_{,n+1}$ are bounded and continuous on D then f is globally Lipschitzean on D.

If f is continuous and locally Lipschitzean on D, then f has the uniqueness property; moreover, the method of *successive approximation* or *Picard iteration* can be used to construct solutions. Given $(t_o, x_o) \in D$ the *Picard iterates* $\{x_{(m)}\}_{m=0}^{\infty}$ for (IVP) are defined recursively as follows:

$$x_{(0)}(t) = x_a$$

(4.5)

$$x_{(m+1)}(t) = x_o + \int_{t_o}^t f(s, x_{(m)}(s)) ds$$
 for all $m \in \mathbb{N} \cup \{0\}$.

Theorem 4.5 (Picard-Lindelöf): Assume that f is continuous and locally Lipschitzean on D. Then f has the uniqueness property. Furthermore, for each $(t_o, x_o) \in$ D there exists h > 0 such that the Picard iterates for (IVP) converge uniformly on $[t_o - h, t_o + h]$ to the solution of (IVP).

Even if the domain of f is all of $\mathbb{R} \times \mathbb{R}^n$ and x is a noncontinuable solution of (DE) the domain of x may be a proper subset of \mathbb{R} , as the following example shows.

Example 4.6: Let n = 1. Let $x_o > 0$ be given and consider the initial value problem

(4.6)
$$\dot{x}(t) = x(t)^2; \ x(0) = x_o.$$

It is straightforward to check that the function $x: (-\infty, 1/x_o) \to \mathbb{R}$ defined by

(4.7)
$$x(t) = \frac{x_o}{1 - tx_o} \quad \text{for all } t \in (-\infty, \ 1/x_o)$$

is a noncontinuable solution of (4.6).

Theorem 4.7: Assume that f is continuous and let x be a noncontinuable solution of (DE). Them Dom(x) is an open interval. Furthermore, for each closed and bounded set $K \subset D$ there exist $t_*, t^* \in Dom(x)$ such that

(4.8)
$$(t, x(t)) \notin K \quad \text{for all } t \in \text{Dom}(x) \cap (-\infty, t_*)$$
$$(t, x(t)) \notin K \quad \text{for all } t \in \text{Dom}(x) \cap (t^*, \infty).$$

Corollary 4.8: Let $D = \mathbb{R} \times \mathbb{R}^n$ and assume that f is continuous. Let x be a noncontinuable solution of (DE) with $\text{Dom}(x) = (\eta_-, \eta_+)$. If $\eta_- > -\infty$ then $||x(t)|| \to \infty$ as $t \downarrow \eta^-$. If $\eta_+ < \infty$ then $||x(t)|| \to \infty$ as $t \uparrow \eta^+$.

Theorem 4.9: Let $D = \mathbb{R} \times \mathbb{R}^n$. Assume that f is continuous and that either f is bounded on $\mathbb{R} \times \mathbb{R}^n$ or f is globally Lipschitzean on $\mathbb{R} \times \mathbb{R}^n$. If x is an inextensible solution of (DE) then $\text{Dom}(x) = (-\infty, \infty)$.

Theorem 4.10: Assume that f is continuous and let x be a solution of (DE). Then x has a continuation x^* such that x^* is inextensible.

Theorem 4.11: Assume that f is continuous and has the uniqueness property. For each $(t_o, x_o) \in D$ let $(\eta_-(t_o, x_o), \eta_+(t_o, x_o))$ denote the domain of the unique noncontinuable solution of (IVP). Define $E \subset \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n$ by

$$E = \{ (t, t_o, x_o) : \eta_- (t_o, x_o) < t < \eta_+ (t_o, x_o), (t_o, x_o) \in D \}$$

and $\varphi : E \to \mathbb{R}^n$ by $\varphi(t, t_o, x_o)$ is the value at time t of the solution of (IVP). Then E is open and φ is continuous on E.