Take-Home Midterm Exam

Due by 4:30 P.M. on Friday, October 31

1. Determine as much as you can about solutions of the first-order scalar equation

$$
\begin{equation*}
\dot{x}(t)=-x(t)^{3}+\sin t . \tag{1}
\end{equation*}
$$

2. Consider the autonomous system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}-x_{2}^{3} \tag{2}\\
\dot{x}_{2}=x_{1} .
\end{array}\right.
$$

(a) Sketch the phase portrait for (2).
(b) What can you deduce about solutions of (2) from the phase portrait?
3. Assume that $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is continuously differentiable and satisfies $g(t, y, z, 0)=$ 0 for all $t, y, z \in \mathbb{R}$. Show that every solution of third-order scalar equation

$$
\begin{equation*}
u^{(3)}(t)=g(t, u(t), \dot{u}(t), \ddot{u}(t)) \tag{3}
\end{equation*}
$$

is either convex or concave, i.e. show that if u is a solution of (3) then either $\ddot{u}(t) \geq 0$ for all $t \in \operatorname{Dom}(u)$ or $\ddot{u}(t) \leq 0$ for all $t \in \operatorname{Dom}(u)$.
4. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, h: \mathbb{R} \rightarrow \mathbb{R}^{n}, x_{0} \in \mathbb{R}^{n}$, and $\delta>0$ be given. Assume that g and h are continuous, h is bounded, and that g satisfies $g(0)=0$ and $(g(z)-g(y)) \cdot(z-y) \leq 0$ for all $y, z \in \mathbb{R}^{n}$. Consider the initial value problem

$$
\begin{equation*}
\dot{x}(t)=g(x(t))+h(t) ; x(0)=x_{0} . \tag{4}
\end{equation*}
$$

(a) Show that if x and x^{*} are solutions of (4) on $[0, \delta)$ then $x(t)=x^{*}(t)$ for all $t \in[0, \delta)$.
(b) Show that if x is a noncontinuable solution of (4) then $[0, \infty) \subset \operatorname{Dom}(x)$.
5. Show that the second-order scalar equation

$$
\begin{equation*}
\ddot{u}(t)+2 \dot{u}(t)+2 u(t)+(u(t)+\dot{u}(t))^{3}=\cos t \tag{5}
\end{equation*}
$$

has a 2π-periodic solution. (Suggestion: Rewrite (5) as a system by letting $\left.x_{1}=u, x_{2}=u+\dot{u}.\right)$

6 . Let $a, b>0$ be given. The autonomous system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-a x_{1}+b x_{1} x_{2} \tag{6}\\
\dot{x}_{2}=-b x_{1} x_{2} \\
\dot{x}_{3}=a x_{1}
\end{array}\right.
$$

provides a simple model for the spread of a disease. Here x_{1} represents the number of infected individuals, x_{2} represents the number of susceptible individuals, and x_{3} represents the number of immune individuals. Determine as much as you can about solutions of (6).
7. (Extra Credit) Let $f: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \lambda, \delta>0$, and $x_{0} \in \mathbb{R}^{n}$ be given. Assume that f is continuous and satisfies

$$
\|f(t, y)-f(t, z)\|_{2} \leq \frac{\lambda}{t}\|y-z\|_{2} \quad \text { for all } t \in(0, \delta), y, z \in \mathbb{R}^{n}
$$

and consider the initial value problem

$$
\dot{x}(t)=f(t, x(t)) ; x(0)=x_{0} .
$$

(a) Assume $\lambda<1$. Show that if x and x^{*} are solutions of (7) on $[0, \delta)$ then $x(t)=x^{*}(t)$ for all $t \in[0, \delta)$.
(b) What is the situation regarding forward uniqueness for (7) if $\lambda \geq 1$?

