Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

Take-Home Midterm Exam

Due by 4:30 P.M. on Friday, October 31

1. Determine as much as you can about solutions of the first-order scalar equation

(1)
$$\dot{x}(t) = -x(t)^3 + \sin t.$$

2. Consider the autonomous system

(2)
$$\begin{cases} \dot{x}_1 = x_2 - x_2^3 \\ \dot{x}_2 = x_1. \end{cases}$$

- (a) Sketch the phase portrait for (2).
- (b) What can you deduce about solutions of (2) from the phase portrait?
- 3. Assume that $g : \mathbb{R}^4 \to \mathbb{R}$ is continuously differentiable and satisfies g(t, y, z, 0) = 0 for all $t, y, z \in \mathbb{R}$. Show that every solution of third-order scalar equation

(3)
$$u^{(3)}(t) = g(t, u(t), \dot{u}(t), \ddot{u}(t))$$

is either convex or concave, i.e. show that if u is a solution of (3) then either $\ddot{u}(t) \ge 0$ for all $t \in \text{Dom}(u)$ or $\ddot{u}(t) \le 0$ for all $t \in \text{Dom}(u)$.

4. Let $g : \mathbb{R}^n \to \mathbb{R}^n$, $h : \mathbb{R} \to \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$, and $\delta > 0$ be given. Assume that g and h are continuous, h is bounded, and that g satisfies g(0) = 0 and $(g(z) - g(y)) \cdot (z - y) \leq 0$ for all $y, z \in \mathbb{R}^n$. Consider the initial value problem

(4)
$$\dot{x}(t) = g(x(t)) + h(t); \ x(0) = x_0.$$

(a) Show that if x and x^* are solutions of (4) on $[0, \delta)$ then $x(t) = x^*(t)$ for all $t \in [0, \delta)$.

- (b) Show that if x is a noncontinuable solution of (4) then $[0, \infty) \subset \text{Dom}(x)$.
- 5. Show that the second-order scalar equation

(5)
$$\ddot{u}(t) + 2\dot{u}(t) + 2u(t) + (u(t) + \dot{u}(t))^3 = \cos t$$

has a 2π -periodic solution. (Suggestion: Rewrite (5) as a system by letting $x_1 = u, x_2 = u + \dot{u}$.)

6. Let a, b > 0 be given. The autonomous system

(6)
$$\begin{cases} \dot{x}_1 = -ax_1 + bx_1x_2 \\ \dot{x}_2 = -bx_1x_2 \\ \dot{x}_3 = ax_1 \end{cases}$$

provides a simple model for the spread of a disease. Here x_1 represents the number of infected individuals, x_2 represents the number of susceptible individuals, and x_3 represents the number of immune individuals. Determine as much as you can about solutions of (6).

7. (Extra Credit) Let $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $\lambda, \delta > 0$, and $x_0 \in \mathbb{R}^n$ be given. Assume that f is continuous and satisfies

$$||f(t,y) - f(t,z)||_2 \le \frac{\lambda}{t} ||y - z||_2 \quad \text{for all } t \in (0,\delta), y, z \in \mathbb{R}^n,$$

and consider the initial value problem

$$\dot{x}(t) = f(t, x(t)); \ x(0) = x_0.$$

- (a) Assume $\lambda < 1$. Show that if x and x^* are solutions of (7) on $[0, \delta)$ then $x(t) = x^*(t)$ for all $t \in [0, \delta)$.
- (b) What is the situation regarding forward uniqueness for (7) if $\lambda \ge 1$?