Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

II. Preliminaries

Let *n* be a positive integer. We denote by \mathbb{R}^n the set of all *n*-tuples of real numbers $x = (x_1, x_2, \ldots x_n)$ with the usual notions of addition and scalar multiplication. We use the same symbol 0 to denote the real number zero as well as the zero element of \mathbb{R}^n when there is no danger of confusion.

By a *norm* on \mathbb{R}^n we mean a function $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ satisfying

(i)
$$||x|| > 0$$
 for all $x \in \mathbb{R}^n \setminus \{0\}$,

- (ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$,
- (iii) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$.

Property (iii) is called the *triangle inequality*. An important consequence of this property is that if a and b are real numbers with a < b and $g : [a, b] \to \mathbb{R}^n$ is continuous then

(2.1)
$$\|\int_{a}^{b} g(t)dt\| \leq \int_{a}^{b} \|g(t)\|dt.$$

All norms on \mathbb{R}^n are *equivalent* in the sense that if $\|\cdot\|$ and $\|\cdot\|\cdot\|\|$ are norms then there exist constants m, M > 0 such that

(2.2)
$$m\|x\| \le \||x\|| \le M\|x\| \quad \text{for all } x \in \mathbb{R}^n.$$

For each $p \in [1, \infty)$ the function $\|\cdot\|_p : \mathbb{R}^n \to \mathbb{R}$ defined by

(2.3)
$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ for all } x \in \mathbb{R}^n$$

is a norm. In addition, the function $\|\cdot\|_{\infty}:\mathbb{R}^n\to\mathbb{R}$ defined by

(2.4)
$$||x||_{\infty} = \max\{|x_i|: i = 1, 2...n\}$$

is also a norm. Observe that

(2.5)
$$||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty} \quad \text{for all } x \in \mathbb{R}^n.$$

The case p = 2 is especially important because $\|\cdot\|_2$ is associated with an inner product. Recall that the *dot product* or *inner product* of $x, y \in \mathbb{R}^n$ is defined by

(2.6)
$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

so that

(2.7)
$$||x||_2 = \sqrt{x \cdot x}$$
 for all $x \in \mathbb{R}^n$.

The Cauchy-Schwarz inequality, which says that

(2.8)
$$|x \cdot y| \le ||x||_2 \quad \text{for all } x, y \in \mathbb{R}^n,$$

will play an important role in our analysis of differential equations.

The norm $\|\cdot\|_2$ is called the *Euclidean norm*. An especially useful feature of this norm is that if I is an interval, $g: I \to \mathbb{R}^n$ is differentiable then the function $t \mapsto \|g(t)\|_2^2$ is differentiable on I and

(2.9)
$$\frac{d}{dt} \left(\|g(t)\|_2^2 \right) = 2g(t) \cdot \dot{g}(t) \quad \text{for all } t \in I.$$

For each $\delta > 0$ and $x \in \mathbb{R}^n$, we put

(2.10)
$$B_{\delta}(x) = \{ y \in \mathbb{R}^n : \|y - x\|_2 < \delta \}.$$

Let D be a subset of \mathbb{R}^n . A point $x_0 \in D$ is said to be an *interior point* of D if there exists $\delta > 0$ such that $B_{\delta}(x_0) \subset D$. The set of all interior points of D is called the *interior* of D and is denoted by int(D). We say that D is *open* if int(D) = D. We say that D is *closed* if $\mathbb{R}^n \setminus D$ is open.

A point $x_0 \in \mathbb{R}^n$ is called a *boundary point* of D if

(2.11)
$$\forall \delta > 0, \ B_{\delta}(x_0) \cap D \neq \phi \quad \text{and} \quad B_{\delta}(x_0) \cap (\mathbb{R}^n \setminus D) \neq \phi,$$

i.e. for every $\delta > 0$, $B_{\delta}(x_0)$ contains points that belong to D as well as points that do not belong to D. The set of all boundary points of D is called the *boundary* of Dand is denoted by ∂D . It is not too difficult to show that D is closed if and only if $\partial D \subset D$. We say that D is *bounded* if there exists $M \in \mathbb{R}$ such that

$$||x||_2 \le M \text{ for all } x \in D.$$

Remark 2.1: In view of the equivalence of norms on \mathbb{R}^n , the notions of interior, boundary, open set, closed set, bounded set do not change if $\|\cdot\|_2$ is replaced by any other norm in (2.10).

We say that D is *convex* if

(2.13)
$$tx + (1-t)y \in D$$
 for all $x, y \in D, t \in [0, 1],$

i.e., D contains the line segment joining each pair of points in D. The following result will be very useful.

Brouwer's Fixed-Point Theorem: Let D be a nonempty, closed, bounded, convex subset of \mathbb{R}^n and assume that $f: D \to \mathbb{R}^n$ is continuous. If $f(x) \in D$ for every $x \in D$ then there is at least one point $x^* \in D$ such that $f(x^*) = x^*$.

Let m be a positive integer. Then $\mathbb{R}^m \times \mathbb{R}^n$ can be identified with \mathbb{R}^{m+n} .

Remark 2.2: Let S be a subset of \mathbb{R}^m and T be a subset of \mathbb{R}^n .

- (i) If both S and T are open, then $S \times T$ is open.
- (ii) If both S and T are closed, then $S \times T$ is closed.
- (iii) If both S and T are bounded, then $S \times T$ is bounded.
- (iv) If both S and T are convex, then $S \times T$ is convex.