II. Preliminaries

Let n be a positive integer. We denote by \mathbb{R}^{n} the set of all n-tuples of real numbers $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ with the usual notions of addition and scalar multiplication. We use the same symbol 0 to denote the real number zero as well as the zero element of \mathbb{R}^{n} when there is no danger of confusion.

By a norm on \mathbb{R}^{n} we mean a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying
(i) $\|x\|>0 \quad$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$,
(ii) $\|\alpha x\|=|\alpha|\|x\| \quad$ for all $x \in \mathbb{R}^{n}, \alpha \in \mathbb{R}$,
(iii) $\|x+y\| \leq\|x\|+\|y\| \quad$ for all $x, y \in \mathbb{R}^{n}$.

Property (iii) is called the triangle inequality. An important consequence of this property is that if a and b are real numbers with $a<b$ and $g:[a, b] \rightarrow \mathbb{R}^{n}$ is continuous then

$$
\begin{equation*}
\left\|\int_{a}^{b} g(t) d t\right\| \leq \int_{a}^{b}\|g(t)\| d t \tag{2.1}
\end{equation*}
$$

All norms on \mathbb{R}^{n} are equivalent in the sense that if $\|\cdot\|$ and $\|\|\cdot\||\mid$ are norms then there exist constants $m, M>0$ such that

$$
\begin{equation*}
m\|x\| \leq\| \| x\| \| \leq M\|x\| \quad \text { for all } x \in \mathbb{R}^{n} \tag{2.2}
\end{equation*}
$$

For each $p \in[1, \infty)$ the function $\|\cdot\|_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \text { for all } x \in \mathbb{R}^{n} \tag{2.3}
\end{equation*}
$$

is a norm. In addition, the function $\|\cdot\|_{\infty}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\|x\|_{\infty}=\max \left\{\left|x_{i}\right|: i=1,2 \ldots n\right\} \tag{2.4}
\end{equation*}
$$

is also a norm. Observe that

$$
\begin{equation*}
\|x\|_{\infty} \leq\|x\|_{1} \leq n\|x\|_{\infty} \quad \text { for all } x \in \mathbb{R}^{n} \tag{2.5}
\end{equation*}
$$

The case $p=2$ is especially important because $\|\cdot\|_{2}$ is associated with an inner product. Recall that the dot product or inner product of $x, y \in \mathbb{R}^{n}$ is defined by

$$
\begin{equation*}
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i} \tag{2.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\|x\|_{2}=\sqrt{x \cdot x} \quad \text { for all } x \in \mathbb{R}^{n} \tag{2.7}
\end{equation*}
$$

The Cauchy-Schwarz inequality, which says that

$$
\begin{equation*}
|x \cdot y| \leq\|x\|_{2}\|y\|_{2} \quad \text { for all } x, y \in \mathbb{R}^{n} \tag{2.8}
\end{equation*}
$$

will play an important role in our analysis of differential equations.
The norm $\|\cdot\|_{2}$ is called the Euclidean norm. An especially useful feature of this norm is that if I is an interval, $g: I \rightarrow \mathbb{R}^{n}$ is differentiable then the function $t \mapsto\|g(t)\|_{2}^{2}$ is differentiable on I and

$$
\begin{equation*}
\frac{d}{d t}\left(\|g(t)\|_{2}^{2}\right)=2 g(t) \cdot \dot{g}(t) \quad \text { for all } t \in I \tag{2.9}
\end{equation*}
$$

For each $\delta>0$ and $x \in \mathbb{R}^{n}$, we put

$$
\begin{equation*}
B_{\delta}(x)=\left\{y \in \mathbb{R}^{n}:\|y-x\|_{2}<\delta\right\} \tag{2.10}
\end{equation*}
$$

Let D be a subset of \mathbb{R}^{n}. A point $x_{0} \in D$ is said to be an interior point of D if there exists $\delta>0$ such that $B_{\delta}\left(x_{0}\right) \subset D$. The set of all interior points of D is called the interior of D and is denoted by $\operatorname{int}(D)$. We say that D is open if $\operatorname{int}(D)=D$. We say that D is closed if $\mathbb{R}^{n} \backslash D$ is open.

A point $x_{0} \in \mathbb{R}^{n}$ is called a boundary point of D if

$$
\begin{equation*}
\forall \delta>0, B_{\delta}\left(x_{0}\right) \cap D \neq \phi \quad \text { and } \quad B_{\delta}\left(x_{0}\right) \cap\left(\mathbb{R}^{n} \backslash D\right) \neq \phi \tag{2.11}
\end{equation*}
$$

i.e. for every $\delta>0, B_{\delta}\left(x_{0}\right)$ contains points that belong to D as well as points that do not belong to D. The set of all boundary points of D is called the boundary of D and is denoted by ∂D. It is not too difficult to show that D is closed if and only if $\partial D \subset D$. We say that D is bounded if there exists $M \in \mathbb{R}$ such that

$$
\begin{equation*}
\|x\|_{2} \leq M \text { for all } x \in D \tag{2.12}
\end{equation*}
$$

Remark 2.1: In view of the equivalence of norms on \mathbb{R}^{n}, the notions of interior, boundary, open set, closed set, bounded set do not change if $\|\cdot\|_{2}$ is replaced by any other norm in (2.10).

We say that D is convex if

$$
\begin{equation*}
t x+(1-t) y \in D \quad \text { for all } x, y \in D, t \in[0,1] \tag{2.13}
\end{equation*}
$$

i.e., D contains the line segment joining each pair of points in D. The following result will be very useful.
Brouwer's Fixed-Point Theorem: Let D be a nonempty, closed, bounded, convex subset of \mathbb{R}^{n} and assume that $f: D \rightarrow \mathbb{R}^{n}$ is continuous. If $f(x) \in D$ for every $x \in D$ then there is at least one point $x^{*} \in D$ such that $f\left(x^{*}\right)=x^{*}$.

Let m be a positive integer. Then $\mathbb{R}^{m} \times \mathbb{R}^{n}$ can be identified with \mathbb{R}^{m+n}.
Remark 2.2: Let S be a subset of \mathbb{R}^{m} and T be a subset of \mathbb{R}^{n}.
(i) If both S and T are open, then $S \times T$ is open.
(ii) If both S and T are closed, then $S \times T$ is closed.
(iii) If both S and T are bounded, then $S \times T$ is bounded.
(iv) If both S and T are convex, then $S \times T$ is convex.

