- 1. Let $n \in \mathbb{Z}$ be given. A town of population of population n wishes to form clubs according to the following rules.
 - (i) No two clubs can have identical membership.
 - (ii) Every club must have an even number of members.
 - (iii) Each club must have an odd number of members in common with every other club.

What can you say about the maximum number of clubs that can be formed?

- 2.* Let $m, n \in \mathbb{Z}$ be given. A town of population n has m red clubs R_1, R_2, \ldots, R_m and m blue clubs B_1, B_2, \ldots, B_m . Assume that
 - (i) No two red clubs have identical membership.
 - (ii) No two blue clubs have identical membership.
 - (iii) $|R_i \cap B_i|$ is odd for every $i \in \{1, 2, \dots, m\}$
 - (iv) $|R_i \cap B_j|$ is even for every $i, j \in \{1, 2, \dots, m\}$ with $i \neq j$.

Show that $m \leq n$.

3. Let $m \in \mathbb{Z}^+$ and $A \in \mathbb{R}^{m \times m}$ be given. Assume that A satisfies

$$A_{ii} > \sum_{\substack{j=1 \ i \neq j}}^{m} |A_{ij}| \text{ for all } i \in \{1, 2, \dots m\}.$$

(Such a matrix is said to be diagonally dominant.) Show that $\det A \neq 0$.

4.* Let $n \in \mathbb{Z}^+$ and $\epsilon, \alpha, \beta > 0$ with $\alpha \neq \beta$ be given. Let $S \subset \mathbb{R}^n$ such that

$$||x - y||_2 \in (\alpha - \epsilon, \alpha + \epsilon) \cup (\beta - \epsilon, \beta + \epsilon) \quad \forall x, y \in S \text{ with } x \neq y.$$

Show that if ϵ is sufficiently small then $|S| \leq \frac{1}{2}(n+1)(n+4)$.

- 5.* Let $n \in \mathbb{Z}^+$ and $\alpha, \beta, \gamma > 0$ be given. Let $S \subset \mathbb{R}^n$ and assume that $||x y||_2 \in \{\alpha, \beta, \gamma\} \quad \forall x, y \in S \text{ with } x \neq y.$ Find an upper bound for |S|.
- 6.* Let $n, m \in \mathbb{Z}^+$ be given. Let $A_1, A_2, \ldots A_m$ be subsets of $\{1, 2, \ldots n\}$ such that the pairwise symmetric differences $A_i \Delta A_j (i \neq j)$ have only two sizes.

- (a) Show that $m \le \frac{n}{2}(n+3)$ (Suggestion: Consider "incidence vectors" whose components are -1, 1.)
- (b) Can you improve the bound in part (a)?