Supplementary Problems for Assignment 3

1. * Let $n \in \mathbb{Z}^{+}$with $n \geq 2$ be given. Let $\mathbb{F}=\mathbb{R}$ and

$$
V=V^{\prime}=\left\{f \in P_{n}(\mathbb{R}): f(0)=f(1)=0\right\}
$$

and define $T \in L(V, V)$ by

$$
(T f)(t)=t(t-1) \ddot{f}(t) \quad \forall t \in \mathbb{R}, f \in V
$$

(Here $P_{n}(\mathbb{R})$ is the set of all real polynomials of degree $\leq n$ and \ddot{f} is the second derivative of f.)
Consider the bilinear form $B: V \times V^{\prime} \rightarrow \mathbb{R}$ defined by

$$
B(f, g)=\int_{0}^{1} f(t) g(t) d t \quad \forall f \in V, g \in V^{\prime}
$$

(You may take it for granted that B is nondegenerate.)
Find the transpose $T^{\prime} \in L\left(V^{\prime}, V^{\prime}\right)$ of T with respect to B.
2. * Let $q \in P_{99}(\mathbb{R})$ be given. Show that there exists $Q \in P_{99}(\mathbb{R})$ such that

$$
\int_{0}^{1} q(x) f(x) d x=\int_{-\pi}^{\pi} e^{x}\left(\sin ^{2} x\right) Q(x) f(x) d x \quad \text { for all } f \in P_{q q}(\mathbb{R})
$$

