Due on Monday, January 26

1. Let $\mathbb{F}=\mathbb{R}$ and $V=P(\mathbb{R})$, the set of all real polynomials. Define $T \in L(V, V)$ by

$$
(T f)(x)=x f^{\prime}(x)+f(x) \quad \forall x \in \mathbb{R}, f \in V,
$$

where f^{\prime} is the derivative of f. Find the eigenvalues and eigenvectors for T.
2.* Let $A=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. Find the eigenvalues and eigenvectors for A
(a) if $\mathbb{F}=\mathbb{R}$.
(b) if $\mathbb{F}=\mathbb{C}$.
(c) if $\mathbb{F}=\mathbb{Z}_{5}$.
(d) if $\mathbb{F}=\mathbb{Z}_{3}$.
3. Let $\mathbb{F}=\mathbb{C}$ and

$$
A=\left(\begin{array}{rrr}
0 & 0 & 3 \\
0 & 2 & 0 \\
-3 & 0 & 0
\end{array}\right)
$$

Find the eigenvalues and eigenvectors for A.
4.* Let $\mathbb{F}=\mathbb{C}$ and

$$
A=\left(\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

(a) Find the minimal polynomial for A.
(b) Find the characteristic polynomial for A.
5.* Let \mathbb{F} be a field and V be a vector space over \mathbb{F} with $\operatorname{dim} V=n$. Let $S, T \in$ $L(V, V)$ be given and assume that S, T each have n distinct eigenvalues. Show that $S T=T S$ if and only if S and T have the same eigenvectors.
6.* Let \mathbb{F} be a field and V be a finite dimensional vector space over \mathbb{F} with $\operatorname{dim} V=$ n. Let $S, T \in L(V, V)$ be given. Show that $\operatorname{rank}(S T) \geq \operatorname{rank}(S)+\operatorname{rank}(T)-n$.
7. Prove or Disprove: Let $\mathbb{F}=\mathbb{C}$ and $T \in L\left(\mathbb{C}^{5}, \mathbb{C}^{3}\right)$ be given. Assume that $<1,0, i, 0,2\rangle,<-1,1,0,1, i>$ is a basis for $W(T)$. Then T is surjective.
8. Let $\mathbb{F}=\mathbb{R}$ and $V=\mathbb{R}^{3}$ equipped with the standard inner product $(x, y)=$ $\sum_{i=1}^{3} x_{i} y_{i}$ and let $u_{1}=\frac{1}{\sqrt{2}}<1,0,1>, u_{2}=<0,-1,0>, u_{3}=\frac{1}{\sqrt{2}}<1,0,-1>$. Let $T \in L(V, V)$ be given and assume that $T u_{1}=<1,1,1>, T u_{2}=<0,0,1>$, $T u_{3}=<1,1,0>$. Find the matrix for T relative to the basis u_{1}, u_{2}, u_{3}.
9.* Let $n \in \mathbb{Z}^{+}$be given, let $p_{1}, p_{2}, \ldots, p_{n}$ be distinct prime numbers and let $P=$ $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Let $a_{1}, a_{2}, \ldots a_{n+1}$ be positive integers such that for each $i \in$ $\{1,2, \ldots, n+1\}$ the prime factorization of a_{i} involves only primes from the set P. Use a linear algebra argument to show that there is a nonempty set $I \subset\{1,2, \ldots, n+1\}$ such that $\prod_{i \in I} a_{i}$ is a perfect square.
(Comment: The field \mathbb{Z}_{2} may be useful.)
*Problems marked with an asterisk should be written up and handed in.

