Supplementary Problems for Assignment 2

1. Let $P(\mathbb{R})$ denote the vector space of all real polynomials over the field \mathbb{R}. For each $n \in \mathbb{Z}^{+}$, let $P_{n}(\mathbb{R})$ denote the subset of $P(\mathbb{R})$ consisting of all polynomials of degree $\leq n$. Let $P_{0}(\mathbb{R})=\{0\}$, the set consisting of the zero polynomial.
(a) Let $S=\left\{f \in P_{2}(\mathbb{R}): \int_{0}^{1} f(x) d x=0\right\}$. Show that S is a subspace of $P(\mathbb{R})$ and find a basis for S.
(b) Let $T=\left\{f \in P_{4}(\mathbb{R}): f^{\prime}(0)=f(1)=0\right\}$. Show that T is a subspace of $P(\mathbb{R})$ and find a basis for T.
2. Let $\mathcal{F}(\mathbb{R})$ be the vector space of all real-valued functions on \mathbb{R} over the field \mathbb{R}. Define $f_{1}, f_{2}, f_{3} \in \mathcal{F}(\mathbb{R})$ by $f_{1}(x)=x, \quad f_{2}(x)=e^{x}, \quad f_{3}(x)=\sin x \quad$ forall $x \in \mathbb{R}$. Show that f_{1}, f_{2}, f_{3} are linearly independent.
3. Let \mathbb{F} be a field and V, W be vector spaces over \mathbb{F}. Let $L: V \rightarrow W$ be a mapping (i.e. function) satisfying $L(u+v)=L(u)+L(v), \quad L(\lambda u)=\lambda L(u)$ for all $u, v \in$ $V, \lambda \in \mathbb{F}$. Let $S=\{u \in V: L(u)=0\}$. Show that S is a subspace of V.
4. Let \mathbb{F} be a field, V be a vector space over \mathbb{F} and S_{1}, S_{2} be subspaces of V. Let $T=\left\{u+v: u \in S_{1}, v \in S_{2}\right\}$. Show that T is a subspace of V.
5. Let $\mathbb{F}=\mathbb{Z}_{5}$ and $V=\mathbb{F}^{3}$, i.e. the set of all ordered 3-tuples from \mathbb{F}. Determine whether or not the vectors $\langle 1,0,0\rangle,\langle 1,4,1\rangle,\langle 4,1,4\rangle$ are linearly independent.
6. Let $\mathbb{F}=\mathbb{R}$ and $V=\mathbb{R}^{3}$. Determine whether or not the vectors $\langle 1,0,0\rangle$, $<1,4,1\rangle,<4,1,4>$ are linearly independent.
