Linear Algebra I

Supplementary Problems for Assignment 2

- 1. Let $P(\mathbb{R})$ denote the vector space of all real polynomials over the field \mathbb{R} . For each $n \in \mathbb{Z}^+$, let $P_n(\mathbb{R})$ denote the subset of $P(\mathbb{R})$ consisting of all polynomials of degree $\leq n$. Let $P_0(\mathbb{R}) = \{0\}$, the set consisting of the zero polynomial.
 - (a) Let $S = \{f \in P_2(\mathbb{R}) : \int_0^1 f(x) dx = 0\}$. Show that S is a subspace of $P(\mathbb{R})$ and find a basis for S.
 - (b) Let $T = \{f \in P_4(\mathbb{R}) : f'(0) = f(1) = 0\}$. Show that T is a subspace of $P(\mathbb{R})$ and find a basis for T.
- 2. Let $\mathcal{F}(\mathbb{R})$ be the vector space of all real-valued functions on \mathbb{R} over the field \mathbb{R} . Define $f_1, f_2, f_3 \in \mathcal{F}(\mathbb{R})$ by $f_1(x) = x$, $f_2(x) = e^x$, $f_3(x) = \sin x$ for all $x \in \mathbb{R}$. Show that f_1, f_2, f_3 are linearly independent.
- 3. Let \mathbb{F} be a field and V, W be vector spaces over \mathbb{F} . Let $L: V \to W$ be a mapping (i.e. function) satisfying L(u+v) = L(u) + L(v), $L(\lambda u) = \lambda L(u)$ for all $u, v \in V$, $\lambda \in \mathbb{F}$. Let $S = \{u \in V : L(u) = 0\}$. Show that S is a subspace of V.
- 4. Let \mathbb{F} be a field, V be a vector space over \mathbb{F} and S_1, S_2 be subspaces of V. Let $T = \{u + v : u \in S_1, v \in S_2\}$. Show that T is a subspace of V.
- 5. Let $\mathbb{F} = \mathbb{Z}_5$ and $V = \mathbb{F}^3$, i.e. the set of all ordered 3-tuples from \mathbb{F} . Determine whether or not the vectors $\langle 1, 0, 0 \rangle$, $\langle 1, 4, 1 \rangle$, $\langle 4, 1, 4 \rangle$ are linearly independent.
- 6. Let $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{R}^3$. Determine whether or not the vectors $\langle 1, 0, 0 \rangle$, $\langle 1, 4, 1 \rangle$, $\langle 4, 1, 4 \rangle$ are linearly independent.