Supplementary Problems for Assignment 1

1. Let $n \in \mathbb{Z}^{+}$be given and let $\mathbb{Z}_{n}=\{0,1,2, \ldots n-1\}$ equipped with addition and multiplication modulo n.
(a) Show that if \mathbb{Z}_{n} is a field then n is prime.
(b) Show that if n is prime then \mathbb{Z}_{n} is a field. (Here you need to turn in only proof of the existence of additive and multiplicative inverses.)
2. Let \mathbb{F} be a field. Show that the characteristic of \mathbb{F} is either zero or prime.
3. Show that if \mathbb{F} is a finite field then the characteristic of \mathbb{F} is not zero.
4. Give an example of a field having exactly four elements.
5. Show that \mathbb{Q} has exactly one positive half.
6. Show that \mathbb{R} has exactly one positive half.
7. Show that \mathbb{C} does not have a positive half.
8. Let $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ together with the usual addition and multiplication on \mathbb{R}. You may take it for granted that $\mathbb{Q}(\sqrt{2})$ is a field. Find two different positive halves for $\mathbb{Q}(\sqrt{2})$.
