Supplementary Problems for Assignment 1

- 1. Let $n \in \mathbb{Z}^+$ be given and let $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ equipped with addition and multiplication modulo n.
 - (a) Show that if \mathbb{Z}_n is a field then n is prime.
 - (b) Show that if n is prime then \mathbb{Z}_n is a field. (Here you need to turn in only proof of the existence of additive and multiplicative inverses.)
- 2. Let \mathbb{F} be a field. Show that the characteristic of \mathbb{F} is either zero or prime.
- 3. Show that if \mathbb{F} is a finite field then the characteristic of \mathbb{F} is not zero.
- 4. Give an example of a field having exactly four elements.
- 5. Show that \mathbb{Q} has exactly one positive half.
- 6. Show that \mathbb{R} has exactly one positive half.
- 7. Show that \mathbb{C} does not have a positive half.
- 8. Let $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$ together with the usual addition and multiplication on \mathbb{R} . You may take it for granted that $\mathbb{Q}(\sqrt{2})$ is a field. Find two different positive halves for $\mathbb{Q}(\sqrt{2})$.