1. Evaluate each of the following.
(a) $\int_{0}^{1} \int_{0}^{y}\left(x^{2}+y^{2}\right) d x d y$
(b) $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{x^{2}+y^{2}} d y d x$
2. Let D be the region in the first quadrant that is bounded by $y=\sqrt{1-x^{2}}, y=x$, and the x-axis. Evaluate

$$
\int_{D} \int\left(1+\sqrt{x^{2}+y^{2}}\right) d A
$$

3. Find the volume of the region enclosed by $y=x^{2}, y=1, z=0$, and $z=2$.
4. Find the volume of the region that is inside the sphere $x^{2}+y^{2}+z^{2}=4$, but outside the cylinder $x^{2}+y^{2}=1$.
5. Let E be the region in the first octant that is bounded by the coordinate planes, the plane $x+y=1$ and the plane $z=3$. Evaluate

$$
\iint_{E} \int(1+2 z) d V
$$

6. Let E be the region in the first octant that is bounded by the coordinate planes and the sphere $x^{2}+y^{2}+z^{2}=1$. Evaluate

$$
\iint_{E} \int\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} d V
$$

7. Evaluate each of the following line integrals.
(a) $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=y \vec{i}-x \vec{j}+\left(x^{2}+y^{2}+z^{2}\right) \vec{k}$ and C is described by $\vec{r}(t)=\sin \vec{i}+\cos t \vec{j}+t \vec{k}, 0 \leq t \leq \pi$.
(b) $\int_{C}(\vec{\nabla} f) \cdot d \vec{r}$, where $f(x, y, z)=x y z$ and C is described by $\vec{r}(t)=\left(1+t^{4}\right) \vec{i}+t^{3} \vec{j}+e^{t} \vec{k}, 0 \leq t \leq 1$.
(c) $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=(y z+x) \vec{i}+x z \vec{j}+x y \vec{k}$, and C is described by $\vec{r}(t) t=t \vec{i}+t^{2} \vec{j}+t \vec{k}, 0 \leq t \leq 1$.
8. Evaluate each of the following line integrals.
(a) $\int_{C} y d x+x y d y$, where C is the segment of $y=x^{3}$ from $(0,0)$ to $(1,1)$.
(b) $\int_{C}-y d x+\left(x+y^{2}\right) d y$, where C is the segment of $x^{2}+y^{2}=1$ from $(1,0)$ to $(0,1)$.
9. Find a function $f(x, y)$ such that $\vec{\nabla} f(x, y)=(2 x y+x) \vec{i}+\left(x^{2}+y^{3}\right) \vec{j}$.
10. Evaluate

$$
\int_{C}\left(e^{y}+x y\right) d x+x e^{y} d y
$$

where C is the segment of $y=x^{2}$ from $(0,0)$ to $(1,1)$.
11. Let C be a piecewise smooth simple closed curve in the $x-y$ plane and let D be the region enclosed by C. Given that

$$
\int_{D} \int d A=\pi, \int_{D} \int y d A=3, \int_{C} x^{2} d y=2
$$

evaluate

$$
\int_{C}(x y+2 y+1) d x+\left(y^{2}+3 x y+5 x\right) d y .
$$

12. Use Green's Theorem to evaluate $\int_{C} y^{3} d x-x^{3} d y$ where C is the circle $x^{2}+y^{2}=1$.

In Problems 11-13, C is oriented counterclockwise.

13. Let C be a piecewise smooth simple closed curve in the $x-y$ plane and let D be the region enclosed by C. Show that if $u(x, y)$ is a smooth function satisfying $u_{x x}+u_{y y}=0$ in D then

$$
\int_{D} \int\left(u_{x}^{2}+u_{y}^{2}\right) d A=\int_{C}-u u_{y} d x+u u_{x} d y
$$

14. Let S be the portion of the cone $z=4-\sqrt{x^{2}-y^{2}}$ for which $1 \leq x^{2}+y^{2} \leq 4$.
(a) Find the surface area of S.
(b) Evaluate $\int_{S} \int\left(z+2 \sqrt{x^{2}+y^{2}}\right) d S$
15. Let S be the hemisphere $z=\sqrt{9-x^{2}-y^{2}}$ and let \vec{n} be the unit normal to S that points upward. Evaluate

$$
\int_{S} \int \vec{F} \cdot \vec{n} d S
$$

where $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}$.

