Department of Mathematics
CARNEGIE MELLON UNIVERSITY

21-259 Calculus in 3-D
W. Hrusa Spring 2003

Review Problems for Test 2

1. Consider the function f defined by $f(x, y, z)=x y+y^{2} z$.
a) Find $\vec{\nabla} f$.
b) Find the directional derivative of f at the point $(2,3,-1)$ in the direction of the vector $\vec{v}=\langle 2,4,-3\rangle$.
2. Suppose that f is a smooth function with the following property: At the point $(0,0,0), f$ decreases most rapidly in the direction of $\langle 6,-1,2\rangle$ and the rate of change of f in this direction is -5 . Find $\vec{\nabla} f(0,0,0)$.
3. Find the tangent plane and normal line to the surface $z=x^{2}+4 y^{2}$ at the point $P_{0}=(-1,2,17)$.
4. Let $\vec{u}=\frac{1}{\sqrt{2}}\langle 1,1\rangle$ and $\stackrel{\rightharpoonup}{v}=\frac{1}{\sqrt{2}}\langle 1,-1\rangle$.

Assume that f_{x} and f_{y} are continuous. If $D_{\vec{u}} f(2,1)=2 \sqrt{2}$ and $D_{\vec{v}} f(2,1)=-8 \sqrt{2}$, find $\stackrel{\rightharpoonup}{\nabla} f(2,1)$.
5. Find all points on the surface $x^{2}+4 y^{2}-z^{2}=4$ at which the tangent plane is parallel to the plane $x+2 y+z=6$.
6. Suppose that $w=x^{3} y+y^{2}-4 z^{3}, x=r s, y=\left(r^{2}-s^{2}\right)^{3}$, and $z=2 r+s$. Use the chain rule to compute $\frac{\partial w}{\partial s}$. (Express your answer in terms of r and s alone. Algebraic simplication is not necessary.)
7. Suppose that $w=f\left(\frac{y}{y-x}\right)$ where f is continuously differentiable. Show that

$$
x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}=0, x \neq y .
$$

8. Assume that u and v have continuous second order partial derivatives and that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=\frac{-\partial v}{\partial x}
$$

Show that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \text { and } \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 .
$$

9. Assume that $w=f(u)$, where $u=x^{2}+y^{2}$ and f is a smooth function. Find an expression for $\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}$ in terms of $u, \frac{d w}{d u}$, and $\frac{d^{2} w}{d u^{2}}$.
10. Find all local maxima, local minima, and saddle points for the function f defined by
a) $f(x, y)=x^{2}+x y+y^{2}+x-y+2$,
b) $f(x, y)=3 x^{2}-3 x y^{2}+y^{3}+3 y^{2}$.
11. Let R be region described by

$$
0 \leq y \leq \sqrt{16-x^{2}}, 0 \leq x \leq 4
$$

Find the absolute maximum and the absolute minimum values of

$$
f(x, y)=x^{2}+y^{2}-4 x-2 y+1
$$

on R.
12. Use Lagrange multipliers to find all possible maxima and minima of f subject to the given constraint.
a) $f(x, y, z)=\frac{2}{3} x^{3}+y-3 z$;
$x^{2}+y^{2}+z^{2}=10$
b) $f(x, y)=x y ; 9 x^{2}+y^{2}=4$
13. Write an equivalent double integral with the order of integration reversed.
a) $\int_{0}^{1} \int_{y}^{\sqrt{y}} f(x, y) d x d y$
b) $\int_{0}^{2} \int_{1}^{e^{2 x}} f(x, y) d y d x$
c) $\int_{0}^{2} \int_{2 x}^{4} f(x, y) d y d x$
14. Evaluate each of the following.
a) $\int_{0}^{1} \int_{0}^{x^{3}} 4 x^{2} y d y d x$
b) $\int_{0}^{1} \int_{x}^{1} 3 x \sqrt{x^{2}+y^{2}} d y d x$

