October 17, 2001

Midterm Exam

50 minutes; open notes

Part I (Short Answer)

1. (16 points) Find all cluster points of $\{x_n\}_{n=1}^{\infty}$ and determine $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$ if $3n \qquad (n\pi)$

(a)
$$x_n = \frac{3n}{n+1} \sin\left(\frac{n\pi}{2}\right)$$
 for all $n \in \mathbb{N}$.
(b) $x_n = \frac{n^2}{n^2+1} + 2((-1)^n + 1)$ for all $n \in \mathbb{N}$.

- 2. (8 points) Give an example of an unbounded sequence $\{x_n\}_{n=1}^{\infty}$ that has exactly one cluster point $l \in \mathbb{R}$.
- 3. (8 points) Give an example of a closed set $T \subset \mathbb{R}$ such that $T \neq cl(int(T))$.
- 4. (16 points) Find the interior and the closure of each of the following sets.

(a)
$$S = (0, 1) \cup \{2, 3\}$$

(b) $T = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup (2, 3)$

5. (8 points) Consider the sequence defined recursively by,

$$x_1 = 3, \ x_{n+1} = \frac{2}{3}x_n + \frac{8}{3x_n^2}$$
 for all $n \in \mathbb{N}$.

You may take it for granted that $\{x_n\}_{n=1}^{\infty}$ is convergent and that $x_n \ge 1$ for all $n \in \mathbb{N}$. Find $\lim_{n \to \infty} x_n$.

6. (8 points) Give an example of an infinite set $S \subset \mathbb{R}$ such that every subset of S is closed.

Part II (36 points) Do any two of the following four problems.

7. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence satisfying $x_n \ge n$ for all $n \in \mathbb{N}$ and define the sequence $\{y_n\}_{n=1}^{\infty}$ by

$$y_n = \frac{5x_n}{2x_n + 1}$$
 for all $n \in \mathbb{N}$.

Use the definition of limit to show that $y_n \to \frac{5}{2}$ as $n \to \infty$.

8. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence satisfying

$$0 \le a_n \le 1$$
 for all $n \in \mathbb{N}$

and let $\alpha > 0$ be given. Show that the sequence $\{x_n\}_{n=1}^{\infty}$ defined recursively by

$$x_1 = \alpha, \quad x_{n+1} = a_n x_n \quad \text{for all } n \in \mathbb{N}$$

is convergent.

9. Let S and T be subsets of \mathbb{R} . Show that

$$\operatorname{int}(S \cap T) = \operatorname{int}(S) \cap \operatorname{int}(T)$$

10. Let A and B be subsets of \mathbb{R} and put

$$S = \{y + z : y \in A, z \in B\}.$$

Show that if B is open then S is open.