October 17, 2001

Midterm Exam

50 minutes; open notes

Part I (Short Answer)

1. (16 points) Find all cluster points of $\left\{x_{n}\right\}_{n=1}^{\infty}$ and determine $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$ if
(a) $x_{n}=\frac{3 n}{n+1} \sin \left(\frac{n \pi}{2}\right)$ for all $n \in \mathbb{N}$.
(b) $x_{n}=\frac{n^{2}}{n^{2}+1}+2\left((-1)^{n}+1\right)$ for all $n \in \mathbb{N}$.
2. (8 points) Give an example of an unbounded sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ that has exactly one cluster point $l \in \mathbb{R}$.
3. (8 points) Give an example of a closed set $T \subset \mathbb{R}$ such that $T \neq \operatorname{cl}(\operatorname{int}(T))$.
4. (16 points) Find the interior and the closure of each of the following sets.
(a) $S=(0,1) \cup\{2,3\}$
(b) $T=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup(2,3]$
5. (8 points) Consider the sequence defined recursively by,

$$
x_{1}=3, x_{n+1}=\frac{2}{3} x_{n}+\frac{8}{3 x_{n}^{2}} \quad \text { for all } n \in \mathbb{N} .
$$

You may take it for granted that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent and that $x_{n} \geq 1$ for all $n \in \mathbb{N}$. Find $\lim _{n \rightarrow \infty} x_{n}$.
6. (8 points) Give an example of an infinite set $S \subset \mathbb{R}$ such that every subset of S is closed.

Part II (36 points) Do any two of the following four problems.
7. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence satisfying $x_{n} \geq n$ for all $n \in \mathbb{N}$ and define the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ by

$$
y_{n}=\frac{5 x_{n}}{2 x_{n}+1} \quad \text { for all } n \in \mathbb{N}
$$

Use the definition of limit to show that $y_{n} \rightarrow \frac{5}{2}$ as $n \rightarrow \infty$.
8. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence satisfying

$$
0 \leq a_{n} \leq 1 \quad \text { for all } n \in \mathbb{N}
$$

and let $\alpha>0$ be given. Show that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ defined recursively by

$$
x_{1}=\alpha, \quad x_{n+1}=a_{n} x_{n} \quad \text { for all } n \in \mathbb{N}
$$

is convergent.
9. Let S and T be subsets of \mathbb{R}. Show that

$$
\operatorname{int}(S \cap T)=\operatorname{int}(S) \cap \operatorname{int}(T)
$$

10. Let A and B be subsets of \mathbb{R} and put

$$
S=\{y+z: y \in A, z \in B\} .
$$

Show that if B is open then S is open.

