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Abstract

We generalize a result of H. Brezis, J.M. Coron and E. Lieb con-
cerning the infimum of the Dirichlet energy over classes of S2-valued
maps with prescribed singularities to an energy with measurable weight
and we prove some geometric properties of such quantity. We also give
some stability and approximation results.

1 Introduction and Main Results

Let Ω be a smooth bounded and connected open set of R3 or Ω = R3

and let w : Ω → R be a measurable function such that

0 < λ ≤ w ≤ Λ a.e. in Ω (1.1)

for some constant λ and Λ. We consider N distinct points a1, . . . , aN in Ω
and we define the following class of S2-valued maps

E =
{

u ∈ C1
loc

(
Ω \ ∪i{ai}, S2

)
, u = const on ∂Ω,

∫

Ω
|∇u(x)|2dx < +∞, deg(u, ai) = di for i = 1, . . . , N

}

(without boundary condition if Ω = R3) where the di’s are given in Z \ {0}
and such that

∑
di = 0 (which is a necessary and sufficient condition for E

to be non-empty, see [9]). Our goal is to establish a formula for

Ew

(
(ai, di)N

i=1

)
= Inf

u∈E

∫

Ω
|∇u(x)|2w(x)dx. (1.2)
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In [9], H. Brezis, J.M. Coron and E. Lieb have proved that for w ≡ 1
this quantity is equal to 8πL where L is the length of a minimal connection
associated to the configuration (ai, di)N

i=1 and the Euclidean geodesic dis-
tance dΩ on Ω (see also [1, 6, 7, 17]). The first motivation for studying such
a problem comes from the theory of liquid crystals (see [14, 15]). Later F.
Bethuel, H. Brezis and J.M. Coron have shown that the notion of minimal
connection is very useful when dealing with questions of approximation of
S2-maps by smooth S2-maps in the strong H1-topology (see [2, 3]). We
also refer to the results of J. Bourgain, H. Brezis, P. Mironescu [4] and H.
Brezis, P. Mironescu, A.C. Ponce [10] for some similar problems involving
S1-valued maps. In the dipole case, namely when we have two prescribed
points P and N of degree +1 and −1 respectively, the value of L is equal
to dΩ(P, N). When w is continuous, we prove that Ew(P, N) = 8πδw(P,N)
where δw denotes the Riemannian distance on Ω defined by

δw(P, N) = Inf
∫ 1

0
w (γ(t)) |γ̇(t)|dt, (1.3)

where the infimum is taken over all curves γ ∈ LipP,N

(
[0, 1], Ω

)
. Here

LipP,N

(
[0, 1],Ω

)
denotes the set of all Lipschitz maps γ from [0, 1] with

values into Ω such that γ(0) = P and γ(1) = N . For a general measurable
function w, we prove that Ew(P,N) induces a geodesic distance on Ω (in
the sense defined in Section 2.1). We call the attention of the reader to the
fact that, in the measurable case, there is no way to define a distance by
a formula like (1.3) since w is not well defined on curves which are sets of
null Lebesgue measure. To overcome this difficulty, we construct a kind of
“length structure” in which the general idea is to thicken the curves. We
proceed as follows. For two points x and y in Ω, we consider the class P(x, y)
of all finite collections of segments F = ([αk, βk])

n(F)
k=1 such that βk = αk+1 ,

α1 = x , βn(F) = y and [αk, βk] ⊂ Ω. We define “the length” of an element
F ∈ P(x, y) by

`w (F) =
n(F)∑

k=1

lim inf
ε→0+

1
πε2

∫

Ξ([αk,βk],ε)∩Ω
w(ξ)dξ.

where Ξ ([αk, βk], ε) =
{

ξ ∈ R3, dist (ξ, [αk, βk]) ≤ ε
}

and then we consider
the function dw : Ω× Ω → R+ defined by

dw(x, y) = Inf
F∈P(x,y)

`w(F).
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In Section 2, we extend dw to Ω×Ω and we prove the metric and geodesic
character of dw. We also show that dw agrees with δw whenever w is con-
tinuous. In the third section, we give the proof of the following result.

Theorem 1.1. We have

Ew

(
(ai, di)N

i=1

)
= 8πLw

where Lw is the length of a minimal connection associated to the configura-
tion (ai, di)N

i=1 and the distance dw on Ω.

The geodesic character of the distance dw implies that dw coincides with
the distance induced by the length functional associated to the Finsler metric
ϕw obtained by differentiation of dw (cf. Section 2.2). More precisely, for
every P and N in Ω, we prove that

dw(P, N) = Min
{∫ 1

0
ϕw (γ(t), γ̇(t)) dt, γ ∈ LipP,N

(
[0, 1], Ω

)}
. (1.4)

Formula (1.4) shows that, for a non-smooth w, the quantity Ew

(
(ai, di)N

i=1

)
is still given in terms of shortest paths between the ai’s but the metric we
compute the lengths with might be non-isotropic (a metric ϕ is said to be
isotropic if ϕ(x, ν) = p(x)|ν| for some positive function p ).

We recall that the length Lw of a minimal connection is computed as
follows (see [9]). We relabel the points ai, taking into account their mul-
tiplicity |di|, as two lists of positive and negative points say (p1, . . . , pK)
and (n1, . . . , nK) (note that this two lists have the same number of elements
since

∑
di = 0). Then we have

Lw = Min
σ∈SK

K∑

j=1

dw(pj , nσ(j)) (1.5)

where SK denotes the set of all permutations of K indices. Another way to
compute Lw is to use the following formula (see [9]),

Lw = Max
K∑

j=1

ζ(pj)− ζ(nj), (1.6)

where the supremum is taken over all functions ζ : Ω → R which are 1-
Lipschitz with respect to dw i.e., |ζ(x)− ζ(y)| ≤ dw(x, y) for all x, y ∈ Ω. In
Section 2.3, we give a characterization of 1-Lipschitz functions for the dis-
tance dw. Combining this characterization with formula (1.6), we obtain the
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lower bound of the energy following the approach in [9]. The upper bound
is obtained using explicit test functions based on a dipole construction.

Section 4.1 concerns a stability property of problem (1.2). We investigate
the following question. Given an arbitrary sequence (wn)n∈N of real measur-
able functions, under which condition on (wn)n∈N, can we conclude that the
sequence

{
Ewn

(
(ai, di)N

i=1

)}
n∈N converges to Ew

(
(ai, di)N

i=1

)
? From The-

orem 1, we infer that the convergence of
{
Ewn

(
(ai, di)N

i=1

)}
n∈N is strictly

related to the convergence of the variational problems

Min
{∫ 1

0
ϕwn (γ(t), γ̇(t)) dt, γ ∈ LipP,N

(
[0, 1], Ω

)}

where P, N ∈ Ω and ϕwn denotes the Finsler metric derived from wn.
The same question involving the class LipP,N ([0, 1], Ω) instead of the class
LipP,N

(
[0, 1],Ω

)
has been studied in [5] by G. Buttazzo, L. De Pascale

and I. Fragalà in the Γ-convergence framework. Adapting their result to
our setting, we give a necessary and sufficient condition on (wn)n∈N under
which

{
Ewn

(
(ai, di)N

i=1

)}
n∈N converges to Ew

(
(ai, di)N

i=1

)
. In Section 4.2,

we concentrate on the approximation procedure by smooth weights. If one
requires that wn is continuous and converges to w uniformly in Ω then we
get easily the convergence using formula (1.3) but such an assumption im-
plies that w is continuous and this is quite restrictive in our setting. On the
other hand if one assumes that wn → w almost everywhere in Ω, we show
that the convergence of the problems does not hold in general (c.f. Re-
mark 4.1). However, we prove that Ew

(
(ai, di)N

i=1

)
is the limit of a sequence{

Ewn

(
(ai, di)N

i=1

)}
n∈N where wn obtained from w by regularization.

In the last section, we present a partial result on a similar problem
involving a matrix field M = (mkl)3k,l=1 instead of a weight:

EM

(
(ai, di)N

i=1

)
= Inf

u∈E

∫

Ω

3∑

k,l=1

mkl(x)
∂u

∂xk
· ∂u

∂xl
dx.

Throughout the paper, a sequence of smooth mollifiers means any se-
quence (ρn)n∈N satisfying

ρn ∈ C∞(R3,R), Supp ρn ⊂ B1/n(0),
∫

R3

ρn = 1, ρn ≥ 0 on R3.
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2 Preliminary Results: Metric Properties of dw

2.1 Metric and Geodesic Character of dw

First of all we recall that for any metric space (M,d), we may associate
the length functional Ld defined by

Ld(γ) = Sup

{
m−1∑

k=0

d (γ(tk), γ(tk+1)) , 0 = t0 < t1 < . . . < tm = 1, m ∈ N
}

where γ : [0, 1] → M is any continuous curve. Note that Ld is lower semi-
continuous on C0 ([0, 1],M) endowed with the topology of the uniform con-
vergence on [0, 1].

Definition 2.1. A distance d is said to be geodesic on M if for all x, y ∈ M ,

d(x, y) = Inf Ld(γ)

where the infimum is taken over all continuous curves γ : [0, 1] → M such
that γ(0) = x and γ(1) = y.

Proposition 2.1. dw defines a geodesic distance on Ω which is equivalent
to the Euclidean geodesic distance dΩ and dw agrees with δw whenever w is
continuous.

Proof. Step 1. Let x, y ∈ Ω and let F = ([α1, β1], . . . , [αn, βn]) be an element
of P(x, y). From assumption (1.1), we get that

`w(F) ≥
n∑

k=1

lim
ε→0+

λ

πε2

∫

Ξ([αk,βk],ε)∩Ω
dξ = λ

n∑

k=1

|αk − βk| ≥ λ dΩ(x, y).

(2.1)
By the definition of dw and (1.1), for any F = ([α1, β1], . . . , [αn, βn]) in
P(x, y), we have

dw(x, y) ≤ Λ
n∑

k=1

lim
ε→0+

1
πε2

∫

Ξ([αk,βk],ε)∩Ω
dξ = Λ

n∑

k=1

|αk − βk|.

Taking the infimum over all F ∈ P(x, y), we infer that

dw(x, y) ≤ Λ dΩ(x, y). (2.2)

From (2.1) and (2.2), we deduce that dw(x, y) = 0 if and only if x = y. Now
let us now prove that dw is symmetric. Let x, y ∈ Ω and δ > 0 arbitrary
small. We can find Fδ = ([α1, β2], . . . , [αn, βn]) in P(x, y) satisfying

`w (Fδ) ≤ dw(x, y) + δ.
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Then for F ′δ = ([βn, αn], . . . , [β1, α1]) ∈ P(y, x), we have

dw(y, x) ≤ `w

(F ′δ
)

= `w (Fδ) ≤ dw(x, y) + δ.

Since δ is arbitrary, we obtain dw(y, x) ≤ dw(x, y) and we conclude that
dw(y, x) = dw(x, y) inverting the roles of x and y. The triangle inequality is
immediate since the juxtaposition of F1 ∈ P(x, z) with F2 ∈ P(z, y) is an
element of P(x, y). Hence dw defines a distance on Ω verifying

λdΩ(x, y) ≤ dw(x, y) ≤ ΛdΩ(x, y) for all x, y ∈ Ω. (2.3)

Therefore distance dw extends uniquely to Ω × Ω into a distance function
that we still denote by dw. By continuity, dw satisfies (2.3) on Ω.

If w is continuous, it is easy to see that for a segment [α, β] ⊂ Ω we have

lim
ε→0+

1
πε2

∫

Ξ([α,β],ε)∩Ω
w(ξ)dξ =

∫

[α,β]
w(s)ds,

and we obtain for F = ([α1, β1], . . . , [αn, βn]) ∈ P(x, y) and x, y ∈ Ω,

`w (F) =
∫

∪n
k=1[αk,βk]

w(s)ds. (2.4)

Since w is continuous, the infimum in (1.3) can be taken over all piecewise
affine curves γ : [0, 1] → Ω such that γ(0) = x and γ(1) = y and we infer
from (2.4) that dw(x, y) = δw(x, y). Then dw ≡ δw on Ω× Ω which implies
that the equality holds on Ω× Ω by continuity.
Step 2. We prove the geodesic character of dw on Ω. Since dw is equivalent
to dΩ, Ω endowed with dw remains complete. By Theorem 1.8 in [16], it
suffices to prove that for any x, y ∈ Ω and any δ > 0, we can find a point
z ∈ Ω verifying

max(dw(x, z), dw(z, y)) ≤ 1
2

dw(x, y) + δ.

Fix x, y ∈ Ω and then x̃, ỹ ∈ Ω such that dw(x, x̃) + dw(y, ỹ)≤ δ/2 and let
F = ([α1, β1], . . . , [αn, βn]) in P(x, y) satisfying `w(F) ≤ dw(x̃, ỹ)+ δ/2. For
every 1 ≤ m ≤ n, we set Fm = ([α1, β1], . . . , [αm, βm]). We consider n? ∈ N
defined by

n? =

{
Max

{
m, 2 ≤ m ≤ n, `w (Fm−1) < 1

2 `w(F)
}

if `w (F1) < 1
2 `w(F),

1 otherwise,
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and s ∈ (0, 1) defined by

s =





`w(F)− 2 `w([α1, β1], . . . , [αn?−1, βn?−1])
2 `w([αn? , βn? ])

if n? > 1,

`w(F)
2`w([αn? , βn? ])

if n? = 1.

Let εk → 0+ as k → +∞ such that

`w([αn? , βn? ]) = lim
k→+∞

1
πε2

k

∫

Ξ([αn? ,βn? ],εk)∩Ω
w(ξ)dξ.

For each k ∈ N, we choose zk ∈ [αn? , βn? ] verifying

1
πε2

k

∫

Ξ([αn? ,zk],εk)∩Ω
w(ξ)dξ =

s

πε2
k

∫

Ξ([αn? ,βn? ],εk)∩Ω
w(ξ)dξ +O(εk),

1
πε2

k

∫

Ξ([zk,βn? ],εk)∩Ω
w(ξ)dξ =

1− s

2πε2
k

∫

Ξ([αn? ,βn? ],εk)∩Ω
w(ξ)dξ +O(εk).

Extracting a subsequence if necessary, we may assume that zk →
k→+∞

z with

z ∈ [αn? , βn? ]. Then we have

1
πε2

k

∫

Ξ([αn? ,z],εk)∩Ω
w(ξ)dξ =

s

πε2
k

∫

Ξ([αn? ,βn? ],εk)∩Ω
w(ξ)dξ

+O(εk) +O(|z − zk|),
1

πε2
k

∫

Ξ([z,βn? ],εk)∩Ω
w(ξ)dξ =

1− s

2πε2
k

∫

Ξ([αn? ,βn? ],εk)∩Ω
w(ξ)dξ

+O(εk) +O(|z − zk|).

Taking the lim inf in k, we derive

`w([αn? , z]) ≤ s`w([αn? , βn? ]) and `w([z, βn? ]) ≤ (1− s)`w([αn? , βn? ]).

Therefore we obtain that the elements Fx̃ = ([α1, β1], . . . , [αn? , z]) ∈ P(x̃, z)
and Fỹ = ([z, βn? ], . . . , [αn, βn]) ∈ P(z, ỹ) verify

dw(x̃, z) ≤ `w(Fx̃) ≤ 1
2

`w(F) ≤ 1
2

dw(x̃, ỹ) + δ/4,

dw(ỹ, z) ≤ `w(Fỹ) ≤ 1
2

`w(F) ≤ 1
2

dw(x̃, ỹ) + δ/4,
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and we conclude that

max(dw(x, z), dw(y, z)) ≤ max(dw(x̃, z), dw(ỹ, z)) +
δ

2
≤ 1

2
dw(x̃, ỹ) +

3δ

4

≤ 1
2

dw(x, y) + δ

i.e. the point z meets the requirement. ¥

Remark 2.1. The geodesic character of dw implies that two arbitrary points
of

(
Ω, dw

)
can be linked by a minimizing geodesic. We mean by a minimizing

geodesic any curve γ : I → Ω such that

dw(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ I,

where I is some interval of R. In particular we obtain the existence for all
x, y ∈ Ω of a curve γxy ∈ Lipx,y

(
[0, 1], Ω

)
satisfying

dw

(
γxy(t), γxy(t′)

)
= Ldw(γxy)|t− t′| for all t, t′ ∈ [0, 1]

(and then dw(x, y) = Ldw(γxy)). Indeed,
(
Ω, dw

)
defines a complete and

locally compact metric space and since dw is of geodesic type, the existence
of a minimizing geodesic is ensured by the Hopf-Rinow Theorem (see [16],
Chapter 1). Moreover we deduce from (2.3) that any minimizing geodesic for
the distance dw is a λ−1-Lipschitz curve for the Euclidean geodesic distance.

2.2 Integral Representation of the Length Functional

In this section, we show that dw is actually induced by a Finsler metric
in the sense defined below.

Definition 2.2. A Borel measurable function ϕ : Ω×R3 → [0,+∞) is said
to be a Finsler metric if ϕ(x, ·) is positively 1-homogeneous for every x ∈ Ω
and convex for almost every x ∈ Ω.

Proposition 2.2. There exists a Finsler metric ϕw : Ω × R3 → [0, +∞)
such that for every Lipschitz curve γ : [0, 1] → Ω,

Ldw(γ) =
∫ 1

0
ϕw (γ(t), γ̇(t)) dt. (2.5)

Moreover, for every x, y ∈ Ω, we have

dw(x, y) = Min
{∫ 1

0
ϕw (γ(t), γ̇(t)) dt, γ ∈ Lipx,y

(
[0, 1], Ω

)}
. (2.6)
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Proof. Step 1. Assume that Ω = R3. To distance dw we associate the
function ϕw : R3 × R3 → [0, +∞) defined by

ϕw(x, ν) = lim sup
t→0+

dw(x, x + tν)
t

.

In [19], it is proved that ϕw defines a Finsler metric and the proof of (2.5)
is given in [13], Theorem 2.5. Then (2.6) directly follows from Remark 2.1.
Step 2. Assume that Ω is a smooth bounded and connected open set of
R3. For δ > 0, we consider Ωδ = {x ∈ R3, dist(x,Ω) < δ} where ”dist”
denotes the usual Euclidean distance on R3. We choose δ sufficiently small
for the projection Πx of x ∈ Ωδ on Ω to be well defined and smooth. Setting
x⊥ = x−Πx for x ∈ Ωδ, we define the function dw,δ : Ωδ×Ωδ → [0,+∞) by

dw,δ(x, y) = dw(Πx,Πy) + |x⊥ − y⊥|.
We easily check that dw,δ defines a distance on Ωδ. Then we consider for
x, y ∈ Ωδ,

dw,δ(x, y) = Inf Ldw,δ
(γ),

where the infimum is taken over all γ ∈ C0 ([0, 1], Ωδ) satisfying γ(0) = x
and γ(1) = y. We also easily verify that dw,δ defines a distance on Ωδ and
it follows from Proposition 1.6 in [16] that

Ldw,δ
= Ldw,δ

on C0 ([0, 1], Ωδ). (2.7)

Therefore dw,δ(x, y) is a geodesic distance on Ωδ. Moreover we infer from
(2.3) that dw,δ is equivalent to the Euclidean geodesic distance on Ωδ. Now
we consider ϕw,δ : Ωδ × R3 → [0, +∞) defined by

ϕw,δ(x, ν) = lim sup
t→0+

dw,δ(x, x + tν)
t

.

By the results in [19], ϕw,δ is Borel measurable, positively 1-homogeneous
in ν for every x ∈ Ωδ and convex in ν for almost every x ∈ Ωδ. By Theorem
2.5 in [13], we have for every Lipschitz curve γ : [0, 1] → Ωδ,

Ldw,δ
(γ) =

∫ 1

0
ϕw,δ (γ(t), γ̇(t)) dt. (2.8)

Since dw,δ = dw on Ω, we deduce that

Ldw,δ
= Ldw on C0

(
[0, 1], Ω

)
. (2.9)

If we denote by ϕw the restriction of ϕw,δ to Ω × R3, we obtain (2.5) com-
bining (2.7-2.9). Then (2.6) follows from Remark 2.1. ¥
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Remark 2.2. If we assume that w is continuous in Ω, we have

ϕw(x, ν) = w(x)|ν| for every (x, ν) ∈ Ω× R3.

Indeed, fix (x, ν) ∈ Ω × R3 \ {0}, t > 0 such that B(x, 2tλ−1|ν|) ⊂ Ω and
consider a sequence γn ∈ Lip([0, 1], Ω) verifying

∫ 1

0
w (γn(s)) |γ̇n(s)|ds → dw(x, x + tν) as n → +∞.

Since dw ≥ λdΩ, we infer that γn([0, 1]) ⊂ B(x, 2tλ−1|ν|) and therefore

∫ 1

0
w (γn(s)) |γ̇n(s)|ds ≥ w(x)

∫ 1

0
|γ̇n(s)|ds− o(t) ≥ w(x)t|ν| − o(t).

Letting n → +∞, we obtain

dw(x, x + tν)
t

≥ w(x)|ν| − o(1).

But we trivially have

dw(x, x + tν)
t

≤ 1
t

∫ t

0
w(x + sν)|ν|ds = w(x)|ν|+ o(1).

We derive the result from these two last inequalities letting t → 0.

2.3 Characterization of 1-Lipschitz Functions

Proposition 2.3. Assume that (1.1) holds. Then for all ζ : Ω → R, the
following properties are equivalent:

i) |ζ(x)− ζ(y)| ≤ dw(x, y) for all x, y ∈ Ω.

ii) ζ is Lipschitz continuous and |∇ζ(x)| ≤ w(x) for a.e. x ∈ Ω.

Proof. i) ⇒ ii). Let ζ : Ω → R satisfying i). From Proposition 2.1, we
infer that ζ is Lipschitz continuous. Fix x0 ∈ Ω and R > 0 such that
B3R(x0) ⊂ Ω. Let (ρn)n∈N be a sequence of smooth mollifiers and consider,
for n > 1/R , the smooth function ζn = ρn ∗ ζ : BR(x0) → R. We write

ζn(x) =
∫

B1/n

ρn(−z)ζ(x + z)dz
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and therefore for all x, y ∈ BR(x0),

|ζn(x)− ζn(y)| ≤
∫

B1/n

ρn(−z) |ζ(x + z)− ζ(y + z)| dz

≤
∫

B1/n

ρn(−z) dw(x + z, y + z)dz

≤
∫

B1/n

ρn(−z) `w ([x + z, y + z]) dz.

Taking an arbitrary sequence of positive numbers εk → 0 as k → +∞ and
using Fatou’s lemma, we get that

|ζn(x)− ζn(y)| ≤
∫

B1/n

ρn(−z)

(
lim inf
k→+∞

1
πε2

k

∫

Ξ([x+z,y+z],εk)∩Ω
w(ξ)dξ

)
dz

≤ lim inf
k→+∞

1
πε2

k

∫

B1/n

∫

Ξ([x+z,y+z],εk)∩Ω
ρn(−z)w(ξ)dξdz.

For k ∈ N sufficiently large, we have Ξ ([x + z, y + z], εk) ⊂ B3R(x0) and
accordingly
∫

B1/n

∫

Ξ([x+z,y+z],εk)
ρn(−z)w(ξ)dξdz=

∫

Ξ([x,y],εk)

∫

B1/n

ρn(−z)w(ξ + z)dzdξ

=
∫

Ξ([x,y],εk)
ρn ∗ w(ξ)dξ.

Since ρn ∗ w is smooth, we obtain as in the proof of Proposition 2.1,

1
πε2

k

∫

Ξ([x,y],εk)
ρn ∗ w(ξ)dξ →

∫

[x,y]
ρn ∗ w(s)ds as k → +∞.

Thus for each x, y ∈ BR(x0) we have

|ζn(x)− ζn(y)| ≤
∫

[x,y]
ρn ∗ w(s)ds.

Then for x ∈ BR(x0), h ∈ S2 fixed and δ > 0 small, we derive

|ζn(x + δh)− ζn(x)|
δ

≤ 1
δ

∫

[x,x+δh]
ρn ∗ w(s)ds →

δ→0+
ρn ∗ w(x)

and we conclude, letting δ → 0, that |∇ζn(x) · h| ≤ ρn ∗ w(x) for each
x ∈ BR(x0) and h ∈ S2 which implies that |∇ζn| ≤ ρn ∗w on BR(x0). Since
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∇ζn → ∇ζ and ρn ∗ w → w a.e. on BR(x0) as n → +∞, we deduce that
|∇ζ| ≤ w a.e. on BR(x0). Since x0 is arbitrary in Ω, we get the result.

ii) ⇒ i) The reverse implication follows from the lemma below.

Lemma 2.1. Let ζ : Ω → R be a Lipschitz continuous function. For all
a, b ∈ Ω with [a, b] ⊂ Ω and all ε > 0 sufficiently small, we have

|ζ(a)− ζ(b)| ≤ 1
πε2

∫

Ξ([a,b],ε)∩Ω
|∇ζ(z)|dz + 2ε‖∇ζ‖∞ .

Indeed, let ζ be a Lipschitz continuous function satisfying ii). We deduce
from Lemma 2.1 and (1.1) that for all F = ([α1, β1], . . . , [αn, βn]) ∈ P(x, y)
and all parameters ε1, . . . , εn > 0 sufficiently small, we have

|ζ(x)−ζ(y)| ≤
n∑

k=1

|ζ(βk)−ζ(αk)| ≤
n∑

k=1

(
1

πε2
k

∫

Ξ([αk,βk],εk)∩Ω
w(z)dz + 2Λεk

)
.

Taking successively the lim inf in εk → 0+ for each parameter εk, we get that
|ζ(x)− ζ(y)| ≤ `w (F). We obtain the result for x, y ∈ Ω taking the infimum
over all F ∈ P(x, y). We conclude that i) holds in all Ω by continuity. ¥

Proof of Lemma 2.1. First note that we just have to prove the inequality
for smooth functions ζ, the general case follows by a density argument. Let
ζ be a smooth real valued function. Without loss of generality, we may
assume that a = (0, 0, 0) and b = (0, 0, R). Then for all ε > 0 such that the
3D-cylinder B

(2)
ε (0) × [0, R] is included in Ω, and all (x1, x2) ∈ B

(2)
ε (0), we

have

|ζ(b)− ζ(a)| ≤ |ζ(0, 0, R)− ζ(x1, x2, R)|+ |ζ(x1, x2, R)− ζ(x1, x2, 0)|
+ |ζ(x1, x2, 0)− ζ(0, 0, 0)|

≤
∫ R

0
|∇ζ(x1, x2, x3)| dx3 + 2ε‖∇ζ‖∞ .

Integrating the last inequality in (x1, x2) ∈ B
(2)
ε (0) yields

πε2 |ζ(b)− ζ(a)| ≤
∫

B
(2)
ε (0)×[0,R]

|∇ζ(x1, x2, x3)| dx1dx2dx3 + 2πε3 ‖∇ζ‖∞ .

Dividing by πε2, we get the result since B
(2)
ε (0)× [0, R] ⊂ Ξ([a, b], ε) ∩ Ω.¥
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Remark 2.3. In [11], F. Camilli and A. Siconolfi study the Hamilton-Jacobi
equation

H(x,∇u) = 0 a.e. in Ω

where the Hamiltonian H(x, ν) is measurable in x, continuous and quasi-
convexe in ν. They construct the optical length function LΩ : Ω×Ω giving a
class of “fundamental solutions”. They show that for every y0 ∈ Ω, LΩ(y0, ·)
is the maximal element of the set

C(y0) =
{
v ∈ W 1,∞(Ω,R), H(x,∇v) ≤ 0 a.e in Ω, v(y0) = 0

}
.

In the case H(x, ν) = |ν| − w(x), Proposition 2.3 shows that dw and the
optical length function LΩ coincide i.e., dw(x, y) = LΩ(x, y) for all x, y ∈ Ω.

3 Energy Estimates - Proof of Theorem 1

Theorem 1.1 follows from the combination of Lemma 3.1 and Lemma 3.4
below. In Section 3.2, we give an explicit dipole construction.

3.1 Lower Bound for the Energy

Lemma 3.1. For all u ∈ E, we have
∫

Ω
|∇u|2w(x)dx ≥ 8πLw.

Proof. The proof is essentially the same as in [9] once we have the results of
Section 2. We introduce for each u ∈ E the vector field D defined by

D =
(

u · ∂u

∂x2
∧ ∂u

∂x3
, u · ∂u

∂x3
∧ ∂u

∂x1
, u · ∂u

∂x1
∧ ∂u

∂x2

)
. (3.1)

As in [9], we have 2|D| ≤ |∇u|2 and D ∈ L1(Ω) defines a distribution which
satisfies

divD = 4π
N∑

i=1

diδai in D′(Ω). (3.2)

Relabelling the points (ai) as positive and negative points taking into ac-
count their multiplicity |di|, we get a list (pj) of positive points and a list
(nj) of negative points. Since

∑
di = 0, we have as many positive points as

negative points. Then we write (3.2) as

div D = 4π
K∑

j=1

δpj − δnj . (3.3)
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From Proposition 2.3 and the properties of D, we deduce that for all func-
tions ζ : Ω → R which is 1-Lipschitz with respect to dw,

∫

Ω
|∇u|2w(x)dx ≥ 2

∫

Ω
|D|w(x)dx ≥ −2

∫

Ω
D · ∇ζ. (3.4)

Using (3.3), we get that

∫

Ω
|∇u|2w(x)dx ≥ 8π




K∑

j=1

ζ(pj)− ζ(nj)


− 8π

∫

∂Ω
(D · η)ζ dσ

without the boundary term if Ω = R3. On ∂Ω, we have D · η = Jac2(u/∂Ω)
where η denotes the outward normal and Jac2(u/∂Ω) denotes the 2 × 2 Ja-
cobian determinant of u restricted to ∂Ω. Since each u ∈ E is constant on
∂Ω, we have D · η ≡ 0 on ∂Ω and therefore we derive

∫

Ω
|∇u|2w(x)dx ≥ 8π Max

K∑

j=1

ζ(pj)− ζ(nj)

where the maximum is taken over all functions ζ which 1-Lipschitz with
respect to dw. By (1.6) we conclude that

∫

Ω
|∇u|2w(x)dx ≥ 8πLw

for all maps u ∈ E which completes the proof of the lower bound. ¥

3.2 The Dipole Construction

Lemma 3.2. Let P, N be two distinct points in Ω. For all δ > 0, there exists
uδ ∈ C1

loc

(
Ω \ {P, N}, S2

)
such that deg(uδ, P ) = +1, deg(uδ, N) = −1 and

∫

Ω
|∇uδ|2w(x)dx ≤ 8πdw(P, N) + δ.

Moreover uδ is constant outside a small neighborhood of a polygonal curve
running between P and N .

Proof. For ε > 0, we consider the map ωε : R2 → S2 defined by

ωε(x, y) =





2ε2

ε4 + r2
(x,−y,−ε2) + (0, 0, 1) if r ≤ ε

(A(r) cos θ,−A(r) sin θ, C(r)) if ε ≤ r ≤ 2ε

(0, 0, 1) if 2ε ≤ r

(3.5)
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where (x, y) = (r cos θ, r sin θ) and

A(r) =
−2ε2

ε4 + ε2
r +

4ε3

ε4 + ε2
, C(r) =

√
1− (A(r))2 .

According to the results in [8], ωε is Lipschitz continuous and deg ωε = +1
when one identifies R2 ∪ {∞} with S2. As in [9], the map ωε will be the
main ingredient in our construction. First we define the following objects.
For two distinct points α, β ∈ Ω with [α, β] ⊂ Ω, we denote by pα,β(x) the
projection of x ∈ R3 on the straight line passing by α and β and

rα,β(x) = dist (x, [α, β]) , hα,β(x) = dist (pα,β(x), {α, β}) ,

where “dist” denotes the Euclidean distance in R3. For some small σ > 0,
we consider the following sets:

Cσ
ε (α, β) =

{
x ∈ R3, pα,β(x) ∈]α, β[, σrα,β(x) ≤ hα,β(x), 0 ≤ hα,β(x) ≤ σε

}

T σ
ε (α, β) =

{
x ∈ R3, pα,β(x) ∈ [α, β], rα,β(x) ≤ ε, hα,β(x) ≥ σε

}

Vε(α, β) =
{
x ∈ R3, pα,β(x) ∈ [α, β], rα,β(x) ≤ ε

}
.

We choose ε small enough such that Cσ
2ε(α, β) ∪ T σ

2ε(α, β) ∪ V2ε(α, β) ⊂ Ω.
We fix δ > 0 and we consider F = ([α1, β1], . . . , [αn, βn]) ∈ P(P,N) such
that the curve γ = ∪k[αk, βk] has no self-intersection points. Then for each
k ∈ {1, . . . , n}, we fix two unit vectors ik and jk in the orthogonal plane to
βk − αk such that (ik, jk,

βk−αk
|βk−αk|) defines a direct orthonormal basis of R3

and we consider u
(k)
ε : Ω → S2 defined by

u(k)
ε (x) =





ωε (Xk(x), Yk(x)) if x ∈ Cσ
2ε(αk, βk),

ωε ((x−pαk,βk
(x)) · ik , (x−pαk,βk

(x)) · jk) if x ∈ T σ
2ε(αk, βk),

(0, 0, 1) otherwise

with

Xk(x) =
2σε

hαk,βk
(x)

(x− pαk,βk
(x)) · ik , Yk(x) =

2σε

hαk,βk
(x)

(x− pαk,βk
(x)) · jk.

We easily check that u
(k)
ε ∈ W 1,∞

loc

(
Ω \ {αk, βk}, S2

)
, deg(u(k)

ε , αk) = +1,
deg(u(k)

ε , βk) = −1. Using coordinates in the basis (ik, jk,
βk−αk
|βk−αk|), some

classical computations (see [6]) lead to

|∇u(k)
ε (x)|2≤(1+Cε2)

4σ2ε2

h2
αk,βk

(x)
|∇ωε (Xk(x), Yk(x))|2 in Cσ

2ε(αk, βk). (3.6)
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By the results in [8], we have
∫

B2ε(0)\Bε(0)
|∇ωε|2 = O(ε) ,

∫

Bε(0)
|∇ωε|2 = 8π +O(ε) (3.7)

and therefore
∫

(T σ
2ε\T σ

ε )(αk,βk)
|∇ωε((x−pαk,βk

(x))·ik , (x−pαk,βk
(x))·jk)|2dx=O(ε), (3.8)

∫

Cσ
2ε(αk,βk)

4σ2ε2

h2
αk,βk

(x)
|∇ωε (Xk(x), Yk(x))|2 dx = O(ε). (3.9)

We infer from (3.6-3.9) that
∫

Ω
|∇u(k)

ε |2w(x)dx ≤

≤
∫

T σ
ε (αk,βk)

|∇ωε ((x−pαk,βk
(x)) · ik , (x−pαk,βk

(x)) · jk)|2w(x)dx+O(ε).

Since we have

|∇ωε(x, y)|2 =
8ε4

(ε4 + x2 + y2)2
for (x, y) ∈ Bε(0),

we conclude that
∫

Ω
|∇u(k)

ε |2w(x)dx ≤ 8
∫

Vε(αk,βk)

ε4w(x)(
ε4 + r2

αk,βk
(x)

)2 dx +O(ε). (3.10)

Then we set

˜̀
w (F) =

n∑

k=1

lim inf
ε→0+

1
π

∫

Vε(αk,βk)

ε4w(x)(
ε4 + r2

αk,βk
(x)

)2 dx. (3.11)

By (3.10) and (3.11), we can choose ε1, . . . , εn > 0 arbitrarily small to have

n∑

k=1

∫

Ω
|∇u(k)

εk
|2w(x)dx ≤ 8π ˜̀

w (F) +
δ

4
. (3.12)

We choose σ and then each εk for
{
Cσ

2εk
(αk, βk) ∪ T σ

2εk
(αk, βk)

}n

k=1
to define

a family of disjoint sets (which is possible since the curve γ has no self
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intersection points) and such that (3.12) holds. Then we consider the map
ũδ : Ω → S2 defined by

ũδ(x) =

{
u

(k)
εk if x ∈ Cσ

2εk
(αk, βk) ∪ T σ

2εk
(αk, βk),

(0, 0, 1) if x 6∈ ∪kC
σ
2εk

(αk, βk) ∪ T σ
2εk

(αk, βk).

By construction, ũδ ∈ W 1,∞
loc

(
Ω \ {P, α2, . . . , αn, N}, S2

)
, deg(ũδ, P ) = 1,

deg(ũδ, N) = −1 and deg(ũδ, αk) = 0 for k = 2, . . . , n. From (3.12), we
derive that ∫

Ω
|∇ũδ|2w(x)dx ≤ 8π ˜̀

w (F) +
δ

4
.

Since deg(ũδ, αk) = 0 for k = 2, . . . , n, we can smoothen ũδ around γ, using
the result in [2], in order to obtain a new map uδ ∈ C1

loc

(
Ω \ {P, N}, S2

)
verifying deg(uδ, P ) = 1, deg(uδ, N) = −1 and

∫

Ω
|∇uδ|2w(x)dx ≤ 8π ˜̀

w (F) +
δ

2
. (3.13)

Now we recall that the collection F = ([α1, β1], . . . , [αn, βn]) ∈ P(P, N) such
that the curve γ = ∪k[αk, βk] has no self-intersection points, can be chosen
for the construction of uδ. From Lemma 3.3 below, we can find F such that

˜̀
w (F) ≤ dw(P, N) +

δ

16π

and according to (3.13), the map uδ satisfies the required properties. ¥

Lemma 3.3. For any x, y ∈ Ω, let P ′(x, y) be the class of all elements
F=([α1, β1], . . . , [αn, βn]) in P(x, y) such that the curve γ = ∪k[αk, βk] has
no self intersection points. Then

d̃w(x, y) = Inf
F∈P ′(x,y)

˜̀
w(F) ≤ dw(x, y),

where ˜̀
w(F) is defined in (3.11).

Proof. Step 1. First we prove that d̃w defines a distance. As for distance dw,
we infer that d̃w(x, y) = 0 if and only if x = y and d̃w is symmetric. Then we
just have to check the triangle inequality. We remark that the juxtaposition
of F1 ∈ P ′(x, z) with F2 ∈ P ′(z, y) is not an element of P ′(x, y) in general
and we can’t proceed as for dw. Let x, y, z be three distinct points in Ω. We
consider two arbitrary elements F1 = ([α1

1, β
1
1 ], . . . , [α1

n1
, β1

n1
]) ∈ P ′(x, z),
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F2 = ([α2
1, β

2
1 ], . . . , [α2

n2
, β2

n2
]) ∈ P ′(z, y), and the curves γ1 = ∪k[α1

k, β
1
k] and

γ2 = ∪k[α2
k, β

2
k]. We have to prove that we can construct F3 ∈ P ′(x, y) such

that ˜̀
w(F3) ≤ ˜̀

w(F1) + ˜̀
w(F2).

First Case: If the curve γ1 ∪ γ2 has no self intersection points then we take
F3 = ([α1

1, β
1
1 ], . . . , [α1

n1
, β1

n1
], [α2

1, β
2
1 ], . . . , [α2

n2
, β2

n2
]) ∈ P ′(x, y) and we have

˜̀
w(F3) = ˜̀

w(F1) + ˜̀
w(F2).

Second Case: If γ1∪γ2 has self intersection points then we rewrite the curves
γ1 and γ2 as γ1 = ∪ñ1

k=1[α̃
1
k, β̃

1
k] and γ2 = ∪ñ2

k=1[α̃
2
k, β̃

2
k] such that

a) (αi
k)

ni
k=1 ⊂ (α̃i

k)
ñi
k=1 for i = 1, 2,

b) if S is a connected component of γ1∩γ2 then one of the following cases
holds:

b1) S ⊂
(
∪ñ1

k=1{α̃1
k, β̃

1
k}

)
∩

(
∪ñ1

k=1{α̃2
k, β̃

2
k}

)
,

b2) S ∈
{

[α̃1
1, β̃

1
1 ], . . . , [α̃1

ñ1
, β̃1

ñ1
]
}
∩

{
[α̃2

1, β̃
2
1 ], . . . , [α̃2

ñ2
, β̃2

ñ2
]
}

,

c) F̃1 = ([α̃1
1, β̃

1
1 ], . . . , [α̃1

ñ1
, β̃1

ñ1
]) ∈ P ′(x, z) ,

d) F̃2 = ([α̃2
1, β̃

2
1 ], . . . , [α̃2

ñ2
, β̃2

ñ2
]) ∈ P ′(z, y).

By construction, we can write [αi
k, β

i
k] = ∪mi

k
l=1[α̃

i
l, β̃

i
l ] for some mi

k ∈ N and
for any k = 1, . . . , ni and i = 1, 2. Since we have

Vε(αi
k, β

i
k) = ∪mi

k
l=1Vε(α̃i

l, β̃
i
l ),

we get that

lim inf
ε→0+

1
π

∫

Vε(αi
k,βi

k)

ε4w(x)(
ε4 + r2

αi
k,βi

k

(x)
)2 dx ≥

≥
mi

k∑

l=1

lim inf
ε→0+

1
π

∫

Vε(α̃i
l ,β̃

i
l )

ε4w(x)(
ε4 + r2

α̃i
l ,β̃

i
l

(x)
)2 dx

and we conclude that ˜̀
w(F̃i) ≤ ˜̀

w(Fi) for i = 1, 2. In the collection
([α̃1

1, β̃
1
1 ], . . . , [α̃1

ñ1
, β̃1

ñ1
], [α̃2

1, β̃
2
1 ], . . . , [α̃2

ñ2
, β̃2

ñ2
]), we just have to delete some

segments in order to obtain a new element F3 ∈ P ′(x, y) which then satisfies
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˜̀
w(F3) ≤ ˜̀

w(F̃1) + ˜̀
w(F̃2) ≤ ˜̀

w(F1) + ˜̀
w(F2).

From these constructions, we conclude that d̃w(x, y) ≤ ˜̀
w(F1) + ˜̀

w(F2).
Taking the infimum over all F1 ∈ P ′(x, z) and all F2 ∈ P ′(z, y), we derive
the triangle inequality.
Step 2. We fix two arbitrary points x0 and y0 in Ω and we consider ζ : Ω → R
defined by

ζ(x) = d̃w(x, y0).

From the triangle inequality, we get that ζ is 1-Lipschitz with respect to
the distance d̃w. Let z0 ∈ Ω and R > 0 such that B3R(z0) ⊂ Ω and let
(ρn)n∈N be a sequence of smooth mollifiers. For n > 1/R, we consider
ζn = ρn ∗ ζ : BR(z0) → R. We have for all x, y ∈ BR(z0),

|ζn(x)− ζn(y)| ≤
∫

B1/n

ρn(−z)|ζ(x + z)− ζ(y + z)|dz

≤
∫

B1/n

ρn(−z)d̃w(x + z, y + z)dz

≤
∫

B1/n

ρn(−z)˜̀w ([x + z, y + z]) dz.

We remark that Vε(x + z, y + z) = z + Vε(x, y) and that for all ξ ∈ Vε(x, y),
we have rx,y(ξ) = rx+z,y+z(ξ + z). Then we obtain for all z ∈ B1/n(0),

˜̀
w ([x + z, y + z]) = lim inf

ε→0+

1
π

∫

Vε(x,y)

ε4w(ξ + z)(
ε4 + r2

x,y(ξ)
)2 dξ.

Taking an arbitrary sequence εk → 0+ and using Fatou’s lemma, we get
that

|ζn(x)− ζn(y)| ≤ lim inf
k→+∞

1
π

∫

B1/n

∫

Vεk
(x,y)

ε4
k ρn(−z)w(ξ + z)(

ε4
k + r2

x,y(ξ)
)2 dξdz

≤ lim inf
k→+∞

1
π

∫

Vεk
(x,y)

ε4
k(

ε4
k + r2

x,y(ξ)
)2 ρn ∗ w(ξ) dξ.

Without loss of generality we may assume that [x, y] = {(0, 0)} × [−R,R].
Then we have Vε(x, y) =

{
(ξ1, ξ2, ξ3) ∈ R3, |ξ3| ≤ R,

√
ξ2
1 + ξ2

2 ≤ ε
}

and
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rx,y(ξ) =
√

ξ2
1 + ξ2

2 for ξ ∈ Vε(x, y). Therefore we can write
∫

Vεk
(x,y)

ε4
k ρn ∗ w(ξ)(

ε4
k + r2

x,y(ξ)
)2 dξ =

∫

Bεk
(0)×[−R,R]

ε4
k ρn ∗ w (ξ)(

ε4
k + ξ2

1 + ξ2
2

)2 dξ

=
∫

Bεk
(0)×[−R,R]

ε4
k (ρn ∗ w (0, 0, ξ3) +On(εk))(

ε4
k + ξ2

1 + ξ2
2

)2 dξ,

where On(εk) denotes a quantity which tends to 0 as εk → 0 for n fixed.
Since we have

∫

Bεk
(0)

ε4
k(

ε4
k + ξ2

1 + ξ2
2

)2 dξ = π +O(εk),

it follows that

|ζn(x)− ζn(y)| ≤
∫ R

−R
ρn ∗ w(0, 0, ξ3)dξ3 =

∫

[x,y]
ρn ∗ w(s)ds.

As in the proof of Proposition 2.3, we conclude that |∇ζ| ≤ w a.e. in BR(z0)
and since z0 is arbitrary in Ω, we get that |∇ζ| ≤ w a.e. in Ω. According to
Proposition 2.3, it implies that for all x, y ∈ Ω,

|ζ(x)− ζ(y)| ≤ dw(x, y)

which leads to d̃w(x0, y0) ≤ dw(x0, y0) taking x = x0 and y = y0. ¥

3.3 Upper Bound for the Energy

Lemma 3.4. For all δ > 0, there exists a map uδ ∈ E such that
∫

Ω
|∇uδ|2w(x)dx ≤ 8πLw + δ.

Proof. We relabel the list (ai)N
i=1 as a list of positive points (pj)K

j=1 and a list
of negative points (nj)K

j=1 and we may assume that
∑

j dw(pj , nj) = Lw. We
will construct dipoles between each pair (pj , nj) which do not intersect each
other. We claim that we can find F1 = ([α1

1, β
1
1 ], . . . , [α1

m1
, β1

m1
]) ∈ P ′(p1, n1)

such that

(A.1) γ1 = ∪k[α1
k, β

1
k] does not contain any pj 6= p1 and any nj 6= n1,

(A.2) ˜̀
w(F1) ≤ dw(p1, n1) + δ

8Kπ .
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Indeed if we define for x, y ∈ ΩA = Ω \ {pj , nj |pj 6= p1, nj 6= n1},
DA

w(x, y) = Inf ˜̀
w(F)

where the infimum is taken over all F = ([α1, β1], . . . , [αm, βm]) ∈ P ′(x, y)
such that ∪k[αk, βk] ⊂ ΩA then we prove, using the arguments in the proof
of Lemma 3.3 that DA

w(x, y) ≤ dw(x, y) for all x, y ∈ ΩA. Since p1, n1 ∈ ΩA,
we obtain DA

w(p1, n1) ≤ dw(p1, n1) and by the definition of DA
w , we draw the

existence of F1 ∈ P ′(p1, n1) satisfying (A.1) and (A.2).
Now we will show that we can find F2 = ([α2

1, β
2
1 ], . . . , [α2

m2
, β2

m2
]) in

P ′(p2, n2) such that

(B.1) γ2 = ∪k[α2
k, β

2
k] does not contain any pj 6= p2 and any nj 6= n2 and

does not intersect γ1 \ {p1, n1},
(B.2) ˜̀

w(F2) ≤ dw(p2, n2) + δ
8Kπ .

As previously we define

ΩB = Ω \ ({pj , nj |pj 6= p2, nj 6= n2} ∪ γ1 \ {p1, n1})
and

DB
w (x, y) = Inf ˜̀

w(F) for x, y ∈ ΩB

where the infimum is taken over all F = ([α1, β1], . . . , [αm, βm]) ∈ P ′(x, y)
such that ∪k[αk, βk] ⊂ ΩB. In the same way we infer that for all x, y ∈ Ω2,
DB

w (x, y) ≤ dw(x, y) and the existence of F2 ∈ P ′(p2, n2) satisfying (B.1)
and (B.2) follows.

Iterating this process, we finally reach the existence of K elements Fj =
([αj

1, β
j
1], . . . , [α

j
mj , β

j
mj ]) in P ′(pj , nj) such that ˜̀

w(Fj) ≤ dw(pj , nj) + δ
8Kπ ,

γj = ∪k[α
j
k, β

j
k] and γi = ∪k[αi

k, β
i
k] do not intersect except maybe at their

extremities for i 6= j. From the dipole construction in Lemma 3.2, we find
K maps uj

δ ∈ C1
loc(Ω \ {pj , nj}, S2) constant outside an arbitrary small open

neighborhood Nj of γj and such that deg(uj
δ, pj) = +1, deg(uj

δ, nj) = −1
and ∫

Ω
|∇uj

δ|2w(x)dx ≤ 8πdw(pj , nj) +
δ

K
.

By construction of the Fj ’s, we can choose the Nj sufficiently small for Nj

and Ni to not intersect whenever j 6= i. Then the map

uδ(x) =

{
uj

δ(x) if x ∈ Nj ,
(0, 0, 1) if x 6∈ ∪jNj ,

is well defined and satisfies the required properties. ¥
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Remark 3.1. In a forthcoming paper (see [18]), we study, in the case of
a smooth bounded open set Ω ⊂ R3, the relaxed energy defined for u ∈
H1

g (Ω, S2) by

Ew(u) = Inf
{

lim inf
n→+∞

∫

Ω
|∇un(x)|2w(x)dx

}

where the infimum is taken over all sequences (un)n∈N ⊂ C1
(
Ω, S2

)
satisfy-

ing un/∂Ω = g, un → u weakly in H1 and g : ∂Ω → S2 is a given smooth
map such that deg(g, ∂Ω) = 0. In the case w ≡ 1, F. Bethuel, H. Brezis and
J.M. Coron have proved (see [3]) that

E1(u) =
∫

Ω
|∇u(x)|2dx + 8πL(u)

where L(u) denotes the length of a minimal connection (relative to the Eu-
clidean geodesic distance dΩ in Ω) between the singularities of u. We believe
that a similar result holds for any function w satisfying (1.1), computing
minimal connections with dw instead of dΩ.

4 Some Stability and Approximation Results

4.1 Stability Results

The stability result below is based on Theorem 3.1 in [5]. It relies on
the Γ-convergence of the length functionals (we refer to [12] for the notion
of Γ-convergence). In the sequel, we denote by Lip

(
[0, 1],Ω

)
the class of

all Lipschitz map from [0, 1] into Ω and we endow Lip
(
[0, 1], Ω

)
with the

topology of the uniform convergence on [0, 1].

Theorem 4.1. Let (wn)n∈N be a sequence of measurable real functions such
that

0 < c0 ≤ wn ≤ C0 a.e in Ω

for some constants c0 and C0 independent of n ∈ N. Then the following
properties are equivalent:

(i) Ewn

(
(ai, di)N

i=1

) →
n→+∞Ew

(
(ai, di)N

i=1

)
for any configuration (ai, di)N

i=1,

(ii) the functionals Ldwn
Γ-converge to Ldw in Lip

(
[0, 1], Ω

)
.

In the proof of Theorem 4.1, we will make use of the following lemma.
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Lemma 4.1. Let (dn)n∈N be a sequence of geodesic distances on Ω such that

c0dΩ ≤ dn ≤ C0dΩ (4.1)

for some positive constants c0 and C0 independent of n ∈ N. Then there exits
a subsequence (nk)k∈N and a geodesic distance d′ on Ω such that dnk

→ d′

as k → +∞ uniformly on every compact subset of Ω× Ω.

Proof. For (x1, y1), (x2, y2) ∈ Ω× Ω we have

dwn(x1, y1)− dwn(x2, y2) ≤ dwn(x1, x2) + dwn(x2, y1)− dwn(x2, y2)
≤ dwn(x1, x2) + dwn(y1, y2)
≤ C0 (dΩ(x1, x2) + dΩ(y1, y2)) .

Inverting the roles of (x1, y1) and (x2, y2) we infer that

|dwn(x1, y1)− dwn(x2, y2)| ≤ C0 (dΩ(x1, x2) + dΩ(y1, y2)) .

Thus dwn is C0-Lipschitz on Ω × Ω for every n ∈ N and we conclude by
Ascoli’s theorem that we can find a subsequence (nk)k∈N and a Lipschitz
function d′ on Ω × Ω such that dnk

→ d′ as k → +∞ uniformly on every
compact subset of Ω × Ω. We easily check that d′ defines a distance on Ω
and it remains to prove that d′ is geodesic. Since d′ satisfies (4.1) as the
pointwise limit of (dnk

)k∈N, Ω endowed with d′ is a complete metric space.
By Theorem 1.8 in [16], it suffices to prove that for any x, y ∈ Ω and δ > 0
there exists z ∈ Ω such that max (d′(x, z), d′(z, y)) ≤ 1

2 d′(x, y) + δ. We fix
x, y ∈ Ω and δ > 0. Since dnk

is of geodesic type, we can find zk ∈ Ω such
that max (dnk

(x, z), dnk
(z, y)) ≤ 1

2 dnk
(x, y) + δ. Then the sequence (zk) is

bounded and we may assume that zk → z ∈ Ω. Since dnk
→ d′ uniformly

on every compact subset of Ω×Ω, we deduce that dnk
(x, zk) → d′(x, z) and

dnk
(zk, y) → d′(z, y). Letting k → +∞ in the last inequality we draw that

z satisfies the requirement. ¥

Proof of Theorem 4.1. Step 1. We prove (i) ⇒ (ii). From (i) we derive that
Ewn(P, N) → Ew(P, N) in the dipole case for any distinct points P, N ∈ Ω.
By Theorem 1.1 we conclude that dwn → dw pointwise on Ω. As in the proof
of Proposition 2.1 we have c0dΩ ≤ dwn ≤ C0dΩ in Ω. By Lemma 4.1 and the
uniqueness of the limit we get that dwn → dw uniformly on every compact
subset of Ω×Ω. Using the arguments of the proof of i) ⇒ ii) Theorem 3.1
in [5], we infer that Ldwn

Γ→Ldw in Lip
(
[0, 1], Ω

)
.

Step 2. We prove (ii) ⇒ (i). Since we have c0dΩ ≤ dwn ≤ C0dwn in Ω
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we draw from Lemma 4.1 that we can find a subsequence (nk)k∈N and a
geodesic distance d′ on Ω such that dwnk

→ d′ uniformly on every compact
subset of Ω × Ω. As in the previous step, we obtain using the method in
[5] that Ldwnk

Γ→Ld′ in Lip
(
[0, 1], Ω

)
. Then we conclude by assumption (ii)

that Ld′ ≡ Ldw on Lip
(
[0, 1], Ω

)
. Since c0dΩ ≤ d′ ≤ C0dΩ as the pointwise

limit of (dwnk
)k∈N, we can proceed as in Remark 2.1 to prove that for any

x, y ∈ Ω there exists a curve γ ∈ Lip
(
[0, 1], Ω

)
such that d′(x, y) = Ld′(γ).

Since the same property holds for dw we finally get that d′ ≡ dw. The
uniqueness of the limit implies the convergence of the full sequence. Then
(i) follows by Theorem 1.1. ¥

In the next proposition, we give some sufficient conditions on a sequence
(wn)n∈N converging pointwise to w for Property (i) in Theorem 4.1 to hold.

Proposition 4.1. Let (wn)n∈N be a sequence of measurable functions such
that

0 < c0 ≤ wn ≤ C0 a.e in Ω

for some constants c0 and C0 independent of n ∈ N. Assume that one of the
following conditions holds:

(a) wn ≥ w and wn → w a.e. in Ω,

(b) wn → w in L∞(Ω).

Then Property (i) in Theorem 4.1 holds.

Proof. Step 1. Assume that (a) holds. Since w ≤ wn a.e. in Ω we infer that
Ew

(
(ai, di)N

i=1

) ≤ Ewn

(
(ai, di)N

i=1

)
for any n ∈ N and therefore

Ew

(
(ai, di)N

i=1

) ≤ lim inf
n→+∞ Ewn

(
(ai, di)N

i=1

)
. (4.2)

Fix some u ∈ E . Since wn ≤ C0 and wn → w a.e. on Ω, we obtain by
dominated convergence that

∫

Ω
|∇u|2wn(x)dx →

n→+∞

∫

Ω
|∇u|2w(x)dx.

Then we derive

lim sup
n→+∞

Ewn

(
(ai, di)N

i=1

) ≤
∫

Ω
|∇u|2w(x)dx,
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and since u is arbitrary we conclude

lim sup
n→+∞

Ewn

(
(ai, di)N

i=1

) ≤ Ew

(
(ai, di)N

i=1

)
. (4.3)

Finally the announced result follows from (4.2) and (4.3).
Step 2. Assume that (b) holds. We consider δn =‖ wn − w ‖L∞(Ω) and

w̃n = (1 + c−1
0 δn)wn.

By construction we have w̃n ≥ w and w̃n → w a.e. in Ω. From the previous
case we deduce that

lim
n→+∞ Ew̃n

(
(ai, di)N

i=1

)
= Ew

(
(ai, di)N

i=1

)
,

which leads to the result since Ew̃n

(
(ai, di)N

i=1

)
= (1+c−1

0 δn)Ewn

(
(ai, di)N

i=1

)
and 1 + c−1

0 δn → 1. ¥

Remark 4.1. The conclusion of Proposition 4.1 case (b) may fail if the se-
quence {wn} converges to w almost everywhere in Ω. Indeed, if one considers
a sequence (wn)n∈N of smooth functions on Ω = B1(0) satisfying

wn(x) =

{
1 if |x3| ≥ 1/n ,
1/2 if |x3| = 0 ,

and 1/2 ≤ wn ≤ 1 in Ω, one can easily check that wn → 1 in Lp(Ω) for any
1 ≤ p < +∞. Now if we choose two distinct points P, N ∈ {(x1, x2, 0)∈Ω},
we obtain in the dipole case Ewn(P, N) = 1/2|P −N | for any n ∈ N and
E1(P, N) = |P − N |. Note that if we consider the sequence of variational
problems

Pn = Min
{∫

Ω
|∇u(x)|2wn(x)dx, u ∈ H1

g (Ω,R)
}

,

where g denotes some given function in H1/2(∂Ω,R), then it follows by
classical results (see [12] for instance) that

Pn −→
n→+∞ Min

{∫

Ω
|∇u(x)|2dx, u ∈ H1

g (Ω,R)
}

.
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4.2 Approximation Result

In this section, we give an approximation procedure by smooth weights.

Theorem 4.2. Let (ρn)n∈N be a sequence of smooth mollifiers. Extending
w outside Ω by a sufficiently large positive constant and taking wn = ρn ∗w,
we have

Ewn

(
(ai, di)N

i=1

) → Ew

(
(ai, di)N

i=1

)
as n → +∞.

Proof. Step 1. Assume that Ω = R3. Let (ρn)n∈N be a sequence of smooth
mollifiers. Fix any function ζ which is 1-Lipschitz with respect to dw. Using
the arguments in the proof of Proposition 2.3, we obtain that the function
ζn = ρn ∗ ζ satisfies |∇ζn| ≤ ρn ∗ w on R3. Then we conclude that ζn is
1-Lipschitz with respect to the distance δρn∗w. Relabelling the ai’s as a list
of positive and negative points (pj , nj)K

j=1, we get from formula (1.6) and
Theorem 1.1,

8π
K∑

j=1

ζn(pj)− ζn(nj) ≤ Eρn∗w
(
(ai, di)N

i=1

)
.

Taking the lim inf as n → +∞, we obtain

8π
K∑

j=1

ζ(pj)− ζ(nj) ≤ lim inf
n→+∞ Eρn∗w

(
(ai, di)N

i=1

)
.

Since ζ is arbitrary, we deduce from (1.6) and Theorem 1.1 that

Ew

(
(ai, di)N

i=1

) ≤ lim inf
n→+∞ Eρn∗w

(
(ai, di)N

i=1

)
. (4.4)

Since ρn ∗ w ≤ Λ, we obtain by dominated convergence that for any u ∈ E ,
∫

Ω
|∇u|2ρn ∗ w(x)dx →

n→+∞

∫

Ω
|∇u|2w(x)dx

and therefore

lim sup
n→+∞

Eρn∗w
(
(ai, di)N

i=1

) ≤
∫

Ω
|∇u|2w(x)dx.

Since u is arbitrary, we infer that

lim sup
n→+∞

Eρn∗w
(
(ai, di)N

i=1

) ≤ Ew

(
(ai, di)N

i=1

)
, (4.5)
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and the result follows from (4.4) and (4.5).
Step 2: Assume that Ω is a smooth bounded and connected open set. We
extend w by setting w = M in R3 \ Ω for a large positive constant M that
we will choose later. We fix some δ > 0 small enough and consider

Ωδ =
{
x ∈ R3, dist(x,Ω) < δ

}
.

We extend to Ωδ any function ζ which is 1-Lipschitz with respect to dw

by setting ζ(x) = ζ(Πx) for x ∈ Ωδ where Πx denotes the projection of
x ∈ Ωδ on Ω. By construction, such a ζ is Lipschitz continuous on Ωδ and
|∇ζ| ≤ C(Ω, δ,Λ) a.e. on Ωδ \ Ω and |∇ζ| ≤ w a.e. on Ω. Then we choose
M ≥ C(Ω, δ,Λ). Setting ζn : x ∈ Ω → ρn ∗ ζ(x) for n ≥ 1/δ, we have
|∇ζn| ≤ ρn ∗ w on Ω. Then ζn is 1-Lipschitz with respect to the distance
δρn∗w and we can proceed as in Step 1. ¥

Remark 4.2. If (wn)n∈N denotes the sequence constructed in Theorem 4.2,
the previous results show that dwn → dw uniformly on every compact subset
of Ω× Ω and the functionals Ldwn

Γ-converge to Ldw in Lip
(
[0, 1], Ω

)
.

5 Energy involving a Matrix Field

In this section, we consider M = (mkl)3k,l=1 a continuous map from Ω
onto the set of real symmetric 3× 3 matrices such that

λ|ξ|2 ≤ M(x)ξ · ξ ≤ Λ|ξ|2 for all ξ ∈ R3 and x ∈ Ω

(here “ · ” denotes the Euclidean scalar product on R3) and we investigate
on the problem

EM

(
(ai, di)N

i=1

)
= Inf

u∈E

∫

Ω

3∑

k,l=1

mkl(x)
∂u

∂xk
· ∂u

∂xl
dx.

Under the continuity assumption above, we show that EM

(
(ai, di)N

i=1

)
can

also be computed in terms of minimal connections relative to some geodesic
distance on Ω.

In order to state the result we introduce the following objects. For x ∈ Ω,
we denote by cof(M(x)) the cofactor matrix of M(x). For any Lipschitz
curve γ : [0, 1] → Ω, we define the length LM (γ) by

LM (γ) =
∫ 1

0

√
cof (M(γ(t))) γ̇(t) · γ̇(t) dt
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and we construct from LM the Riemannian distance dM on Ω defined by

dM (x, y) = Inf LM (γ)

where the infimum is taken over all curves γ ∈ Lipx,y

(
[0, 1], Ω

)
.

Theorem 5.1. We have

EM

(
(ai, di)N

i=1

)
= 8πLM

where LM is the length of a minimal connection associated to the configura-
tion (ai, di)N

i=1 and the distance dM on Ω.

Remark 5.1. One can slightly relax the continuity assumption on M . For
example, we can assume that

M(x) =

{
M1(x) if x ∈ Ω1,
M2(x) if x ∈ Ω2,

where Ω1 and Ω2 are two open sets of Ω with piecewise smooth boundaries
such that Ω1 ∪ Ω2 = Ω, and x → Mj(x) is continuous on Ωj for j = 1, 2.
Hence M is possibly discontinuous on the surface Σ = Ω1 ∩ Ω2. Then the
conclusion of Theorem 5.1 holds with the geodesic distance dM constructed
from the length LM defined by

LM (γ) =
∫ 1

0
ϕ (γ(t), γ̇(t)) dt for γ ∈ Lip

(
[0, 1], Ω

)
,

where

ϕ(x, ν) =

{√
cof (M(x)) ν · ν if x ∈ Ω \ Σ,

min
{√

cof (M1(x)) ν · ν,
√

cof (M2(x)) ν · ν
}

if x ∈ Σ.

Open Problem . Assuming that the coefficients of M are only in L∞(Ω),
is the conclusion of Theorem 5.1 still valid for a certain distance?

Sketch of the Proof of Theorem 3. The Lower Bound. We follow the strategy
in Section 3. For any u ∈ E , we have

2[cof(M)D ·D]1/2 ≤
3∑

k,l=1

mkl(x)
∂u

∂xk
· ∂u

∂xl
a.e. on Ω (5.1)
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where D is the vector field defined by (3.1). Next we infer that
∫

Ω

3∑

k,l=1

mkl(x)
∂u

∂xk
· ∂u

∂xl
dx ≥ −2

∫

Ω
D · ∇ζ = 8π

K∑

j=1

ζ(pj)− ζ(nj) (5.2)

for any Lipschitz function ζ : Ω → R such that
[
cof(M)−1∇ζ · ∇ζ

]1/2 ≤ 1 a.e. in Ω. (5.3)

Since a function ζ satisfies (5.3) if and only if ζ is 1-Lipschitz with respect
to the distance dM , we conclude from (5.2) that

EM

(
(ai, di)N

i=1

) ≥ 8π Max
K∑

j=1

ζ(pj)− ζ(nj) = 8πLM

where the maximum is taken over all functions ζ which is 1-Lipschitz with
respect to the distance dM .

The Upper Bound. The proof relies on the dipole construction.

Lemma 5.1. For any distinct points P, N ∈ Ω, any smooth simple curve
γ ⊂ Ω running between P and N and δ > 0, there exists a map uδ in
C1

loc

(
Ω \ {P, N}, S2

)
such that deg(uδ, P ) = +1 , deg(uδ, N) = −1 and

∫

Ω

3∑

k,l=1

mkl(x)
∂uδ

∂xk
· ∂uδ

∂xl
dx ≤ 8πLM (P, N) + δ. (5.4)

Moreover uδ is constant outside an arbitrary small neighborhood of γ.

We may assume that
∑

j dM (pj , nj) = LM . Then we choose K smooth
simple curves γj running between pj and nj which do not intersect except
at their endpoints and such that LM (pj , nj) ≤ dM (pj , nj) + δ. By Lemma
5.1, we construct K maps uj constant outside a small neighborhood Nj of
γj and Nj ∩ Ni = ∅ if j 6= i. Letting uδ = uj on Nj for j = 1, . . . , K and
uδ = (0, 0, 1) outside ∪jNj , we have uδ ∈ E and

EM

(
(ai, di)N

i=1

) ≤
∫

Ω

3∑

k,l=1

mkl(x)
∂uδ

∂xk
· ∂uδ

∂xl
dx ≤ 8πLM + Cδ.

Since δ is arbitrary, we obtain that EM

(
(ai, di)N

i=1

) ≤ 8πLM . ¥

Sketch of the Proof of Lemma 5.1. Since we can approximate the coefficients
of M locally uniformly by smooth coefficients, we just have to prove Lemma
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5.1 for M with smooth entries. We construct as in [1] a smooth diffeomor-
phism Φ from a small neighborhood V of γ into a small neighborhood of
{(0, 0)}× [−|γ|/2, |γ|/2] such that Φ(γ) = {(0, 0)}× [−|γ|/2, |γ|/2] (here |γ|
denotes the Euclidean length of γ) and Φ−1(0, 0, ·) : [−|γ|/2, |γ|/2] → R3

defines a normal parametrization of γ orientating γ from N to P . Then we
set for y3 ∈ [−|γ|/2, |γ|/2],

B(y3) = (bk,l(y3))
3
k,l=1 = [∇Φ−1(0, 0, y3)]−1M(Φ−1(0, 0, y3))∇Φ−1(0, 0, y3),

and
B̂(y3) = (bk,l(y3))

2
k,l=1 .

For small ε > 0 and n ∈ N large, we consider the map ũn : Φ(V) → S2

defined by

ũn(y1, y2, y3) = ωε

(
n

|γ|2
4 − y2

3

B̂−1/2(y3) · (y1, y2)

)

where ωε is given by (3.5). Then we take

un(x) =

{
ũn(Φ(x)) if x ∈ V,
(0, 0, 1) if x 6∈ V.

Following the computations in [6] and using the properties of Φ, we check
that un ∈ W 1,∞

loc

(
Ω \ {P, N}, S2

)
, deg(un, P ) = +1, deg(un, N) = −1.

Choosing n sufficiently large and smoothening un around γ by the procedure
in [2], we get a new map uδ ∈ E which satisfies (5.4). ¥
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