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Abstract
Our goal is to write an extended version of the notes of a course given by Olivier

Guédon at the Polish Academy of Sciences from April 11-15, 2011. The course is
devoted to the study of concentration inequalities in the geometry of convex bod-
ies, going from the proof of Dvoretzky’s theorem due to Milman [75] until the
presentation of a theorem due to Paouris [78] telling that most of the mass of an
isotropic convex body is ”contained” in a multiple of the Euclidean ball of radius
the square root of the ambient dimension. The purpose is to cover most of the
mathematical stuff needed to understand the proofs of these results. On the way,
we meet different topics of functional analysis, convex geometry and probability in
Banach spaces. We start with harmonic analysis, the Brascamp-Lieb inequalities
and its geometric consequences. We go through some functional inequalities like
the functional Prékopa-Leindler inequality and the well-known Brunn-Minkowski
inequality. Other type of functional inequalities have nice geometric consequences,
like the Busemann Theorem, and we will present some of them. We continue with
the Gaussian concentration inequalities and the classical proof of Dvoretzky’s the-
orem. The study of the reverse Hölder inequalities (also called reverse Lyapunov’s
inequalities) is very developed in the context of log-concave or γ-concave functions.
Finally, we present a complete proof of the result of Paouris [78]. We will need
most of the tools introduced during the previous lectures. The Dvoretzky theorem,
the notion of Zp bodies and the reverse Hölder inequalities are the fundamentals of
this proof. There are classical books or surveys about these subjects and we refer
to [8, 9, 13, 48, 49, 55, 30, 80, 27] for further readings. The notes are accessible
to people with classical knowledge about integration, functional and/or harmonic
analysis and probability.
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1 Introduction

In harmonic analysis, Young’s inequalities tell that for a locally compact group G
equipped with its Haar measure, if 1/p+ 1/q = 1 + 1/s then

∀f ∈ Lp(G), g ∈ Lq(G), ‖f ? g‖s ≤ ‖f‖p‖g‖q.

The constant 1 is optimal for compact groups such that constant functions belong to
each Lp(G). However, it is not optimal for example in the real case. During the seven-
ties, Beckner [14] and Brascamp-Lieb [26] proved that the extremal functions in Young’s
inequality are among Gaussian densities. We discuss the geometric version of these in-
equalities introduced by Ball [7]. The problem of computing the value of the integrals
for the maximizers disappears when we write these inequalities in a geometric context.
The proof can be done via the transport argument that we will present. The geomet-
ric applications of this result are that the cube, among symmetric convex bodies, has
several extremal properties. Indeed, Ball [7] proved a reverse isoperimetric inequality,
namely that for every centrally symmetric convex body K in Rn, there exists a linear
transformation K̃ of K such that

Vol K̃ = Vol Bn
∞ and Vol ∂K̃ ≤ Vol ∂Bn

∞.

Moreover, in the case of random Gaussian averages, Schechtman and Schmuckenschläger
[86] proved that for every centrally symmetric convex body K in Rn which is in the
so-called John position, E‖(g1, . . . , gn)‖K ≥ E|(g1, . . . , gn)|∞ where g1, . . . , gn are inde-
pendent Gaussian standard random variables.

Another powerful inequality in convex geometry is the Prékopa-Leindler inequality
[82]. This is a functional version of the Brunn-Minkowski inequality which tells that for
any non-empty compact sets A,B ⊂ Rn

vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n.

We prove the Prékopa-Leindler inequality and we discuss a modified version of this
inequality introduced by Ball [6], see also [24]. Ball [6] used it to create a bridge between
probability and convex geometry, namely that one can associate a convex body with any
log-concave measure.

1.1 Theorem. Suppose f : Rn → R+ ∈ L1(Rn) is an even log-concave function and
p > −1. Then

‖x‖ =


(∫ ∞

0

rpf(rx)dr

)−1/p+1

, x 6= 0

0 , x = 0

defines a norm on Rn.
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The result is seen as a generalisation of Busemann theorem [29]. Some properties of
these bodies will be studied in Section 6.

Dvoretzky’s Theorem tells that `2 is finitely representable in any infinite dimensional
Banach space. Its quantified version due to Milman [80] is one of the fundamental result
of the local theory of Banach spaces.

1.2 Theorem. Let K be a symmetric convex body such that K ⊂ Bn
2 . Define

M?(K) =

∫
Sn−1

hK(θ)dσ(θ).

Then for all ε > 0 there exists a vector subspace E of dimension

k = k∗(K) = bcn(M?(K))2ε2/ log(1/ε)c

such that
(1− ε)M?(K)PE B

n
2 ⊂ PEK ⊂ (1 + ε)M?(K)PE B

n
2 .

Instead of using the concentration of measure on the unit Euclidean sphere, this can be
proved via the use of Gaussian operators. We will present some classical concentration
inequalities of a norm of a Gaussian vector following the ideas of Maurey and Pisier
[80]. The argument of the proof of Dvoretzky’s theorem is now standard and is done
in three steps: a concentration inequality for an individual vector of the unit sphere, a
net argument and discretisation of the sphere, a union bound and optimisation of the
parameters.

The subject of the inverse Hölder inequalities is very wide. In the context of log-
concave or s-concave measures, major tools were developed by Borell [21, 20]. In partic-
ular, he proved that for every log-concave function f : [0,∞)→ R+, the function

p 7→ 1

Γ(p+ 1)

∫ ∞
0

tpf(t)dt

is log-concave on (−1,+∞). For p ≥ 1, the Zp-body associated with a log-concave
density f is defined by it support function

hZp(f)(θ) =

(∫
〈x, θ〉p+f(x)dx

)1/p

,

where 〈x, θ〉+ is the positive part of 〈x, θ〉. We present some basic properties of these bod-
ies. It will be of particular interest to understand the behaviour of the bodies Zp(πE(f))
where πE(f) is the marginal density of f on a k-dimensional subspace E. The inverse
Hölder inequalities give some information and we will try to explain how it reflects geo-
metric properties of the density f .

The goal of the last Section is to present a probabilistic version of Paouris theorem
[78] that appeared in [2].
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1.3 Theorem. There exists a constant C such that for any random vector X distributed
according to a log-concave probability measure on Rn, we have

(E|X|p2)1/p ≤ C (E|X|2 + σp(X))

for all p ≥ 1, where σp(X) = supθ∈Sn−1 E 〈X, θ〉p+ is the weak p-th moment associated
with X.

Moreover, if X is such that for any θ ∈ Sn−1, E 〈X, θ〉2 = 1, then for any t ≥ 1,

P(|X|2 ≥ c t
√
n) ≤ exp(−t

√
n),

where c is a universal constant.

Most of the tools presented in the first lectures are needed to make this proof : Dvoret-
zky’s theorem, Zp-bodies, the inverse Hölder inequalities. The sketch of the proof is the
following. Let G ∼ N (0, Id) be a standard Gaussian random vector in Rn. Observe that
for any random vector X distributed with a log-concave density f ,

(E|X|p2)1/p = (γ+
p )−1 (EXEG〈X,G〉p+)1/p

= (γ+
p )−1

(
EGhZp(f)(G)p

)1/p
,

where for a standard Gaussian random variable g ∼ N (0, 1), γ+
p = (Egp+)1/p. By a

Gaussian concentration inequality, we see that for any 1 ≤ p ≤ ck∗(Zp(f)),(
EhZp(f)(G)p

)1/p ≈ EhZp(f)(G) = M∗(Zp(f))E|G|2,

where k∗(Zp(f)) is the Dvoretzky dimension of the convex Zp(f). Looking at the con-
clusion of Dvoretzky’s theorem, we also observe that M∗(Zp(f)) is the 1

k
-th power of

the volume of most of the k-dimensional projection of Zp(f) where k ≤ k∗(Zp(f)). It
remains to study the volume of these projections. For any k dimensional subspace E,
let πEf denote the marginal of the density f on E, that is

∀x ∈ E, πEf(x) =

∫
E⊥

f(x+ y)dy.

By the Prékopa-Leindler inequality, πEf is still log-concave on E. We can prove that for
any p ≥ 1 and any k-dimensional subspace E

PE(Zp(f)) = Zp(πEf) = Zp(Kk+p(πEf)),

where Kk+p(πEf) is the convex body whose norm is

‖x‖Kk+p(πEf) =

(
(k + p)

∫ ∞
0

tk+p−1πEf(tx)dt

)− 1
k+p

.
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In a log-concave setting, we will see that for p ≥ k, Zp(Kk+p(πEf)) is ”approximately”
Kk+p(πEf) so that the 1

k
-th power of the volume of PE(Zp(f)) is approximately the 1

k
-th

power of the volume of Kk+p(πEf). The reverse Hölder inequalities will give several
properties that will lead to the conclusion.

Besides the standard notation, we adopt throughout the notes the common convention
that universal constants sometimes change from line to line.

Acknowledgements. We are grateful to the Institute of Mathematics Polish Academy
of Sciences (IMPAN) for its hospitality when the lectures were given and to Rafa l Lata la
for his editorial work. We would like also to thank an anonymous referee who read care-
fully the preliminary version of these notes and proposed several improvements of the
presentation.
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2 Brascamp-Lieb inequalities in a geometric context

2.1 Motivation and formulation of the inequality

Let G be a locally compact group with Haar measure µ. Let p, q, s ≥ 1 be such that
1/p + 1/q = 1 + 1/s, let f ∈ Lp(G, µ) and g ∈ Lq(G, µ). Then we have the following
Young’s inequality

‖f ? g‖s ≤ ‖f‖p ‖g‖q , (2.1)

where

(f ? g)(x) =

∫
G

f(xy−1)g(y) dµ(y).

The constant 1 in (2.1) is optimal when constant functions belong to Lp(G), p ≥ 1, but
it is not optimal when G = R and µ is the Lebesgue measure. In the seventies, Beckner
and independently Brascamp and Lieb proved that in R the ”equality case” is achieved
for sequences of functions fn and gn with Gaussian densities, i.e. functions of the form

ha(x) =
√
a/πe−ax

2

.

Note that if 1/r + 1/s = 1 then

‖f ? g‖s = sup
h∈Lr(R)

‖h‖r≤1

∫
R

∫
R
f(x− y)g(y)h(x) dy dx

and we have f ∈ Lp(R), g ∈ Lq(R), h ∈ Lr(R) with 1
r

+ 1
p

+ 1
q

= 1
r

+ 1 + 1
s

= 2. Let

v1 = (1,−1), v2 = (0, 1) and v3 = (1, 0). Then∫
R

∫
R
f(x− y)g(y)h(x) dy dx =

∫
R2

f(〈X, v1〉)g(〈X, v2〉)h(〈X, v3〉) dX.

This is a type of expression studied by Brascamp and Lieb. Namely, they prove

2.1 Theorem. Let n,m ≥ 1 and let p1, . . . , pm > 0 be such that
∑m

i=1
1
pi

= n. If
v1, . . . , vm ∈ Rn and f1, . . . , fm : R→ R+ then∫

Rm
∏m

i=1 fi(〈vi, x〉) dx∏m
i=1 ‖fi‖pi

is ”maximized” when f1, . . . , fm are Gaussian densities. However, the supremum may
not be attained in the sense that one has to consider Gaussian densities fa with a→ 0.

In this context, it remains to compute the constants for the extremal Gaussian densi-
ties which is not so easy. In a geometric setting we have a version of the Brascamp-Lieb
inequality due to Ball [7].
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2.2 Theorem. Let n,m ≥ 1 and let u1, . . . , um ∈ Sn−1, c1, . . . , cm > 0 be such that
Id =

∑m
j=1 cjuj ⊗ uj. If f1, . . . , fm : R→ R+ are integrable functions then∫

Rn

m∏
j=1

(fj(〈x, uj〉))cj dx ≤
m∏
j=1

(∫
R
fj

)cj
. (2.2)

2.3 Remark. The condition

Id =
m∑
j=1

cjuj ⊗ uj (2.3)

means that

∀x ∈ Rn, x =
m∑
j=1

cj 〈x, uj〉uj

and is equivalent to

∀x ∈ Rn, |x|22 =
m∑
j=1

cj 〈x, uj〉2 .

We can easily construct examples of vectors satisfying condition (2.3). Let H be an n-
dimensional subspace of Rm. Let e1, . . . , em be the standard orthonormal basis in Rm and
let P : Rm → H be the orthogonal projection onto H. Clearly, IdRm =

∑m
j=1 ej ⊗ ej and

x =
∑m

j=1 〈x, ej〉 ej, hence Px =
∑m

j=1 〈x, ej〉Pej. If x ∈ H then Px = x and 〈x, ej〉 =
〈Px, ej〉 = 〈x, Pej〉, therefore x =

∑m
j=1 〈x, Pej〉Pej. Thus IdH≈Rn =

∑m
j=1 cjuj ⊗ uj,

where cj = |Pej|2 and uj = Pej/|Pej|.

2.4 Remark. Let fj(t) = e−αt
2

for 1 ≤ j ≤ m. If (2.3) is satisfied then

m∏
j=1

(fj(〈x, uj〉))cj = exp

(
−

m∑
j=1

αcj 〈x, uj〉2
)

= exp(−α|x|22).

Thus, ∫
Rn

m∏
j=1

(fj(〈x, uj〉))cj dx =

∫
Rn

exp(−α|x|22) dx =

(∫
R

exp(−αt2) dt

)n
=

m∏
j=1

(∫
R

exp(−αt2) dt

)cj
=

m∏
j=1

(∫
R
fj

)cj
,

since we have

n = tr(Id) =
m∑
j=1

cjtr(uj ⊗ uj) =
m∑
j=1

cj|uj|22 =
m∑
j=1

cj.

Therefore we have equality in (2.2) when fj’s are identical Gaussian densities.
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2.2 The proof

We start the proof of Theorem 2.2 with a simple lemma.

2.5 Lemma. Suppose u1, . . . , um ∈ Sn−1 and c1, . . . , cm are positive numbers. Assume
that Id =

∑m
j=1 cjuj ⊗ uj. Then

(1) If x =
∑m

j=1 cjθjuj for some numbers θ1, . . . , θm, then |x|22 ≤
∑m

j=1 cjθ
2
j .

(2) For all T ∈ L(Rn) we have

| detT | ≤
m∏
j=1

|Tuj|
cj
2

(a generalisation of Hadamard’s inequality).

(3) For all α1, . . . , αm > 0 we have

det

(
m∑
j=1

cjαjuj ⊗ uj

)
≥

m∏
j=1

α
cj
j .

Moreover, if α1 = . . . = αm, then equality holds.

Proof. (1) Using the Cauchy-Schwarz inequality we obtain

|x|22 = 〈x, x〉 =

〈
m∑
j=1

cjθjuj, x

〉
=

m∑
j=1

cjθj 〈uj, x〉

≤

(
m∑
j=1

cjθ
2
j

) 1
2
(

m∑
j=1

cj 〈uj, x〉2
) 1

2

=

(
m∑
j=1

cjθ
2
j

) 1
2

|x|2.

(2) We can assume that T is symmetric and positive definite. Indeed, since T ?T is
symmetric, for any T ∈ GLn(R) we have the decomposition T ?T = U?DU , where U is

orthogonal and D is diagonal. Let S = U?D
1
2U . Clearly, S2 = T ?T and S is symmetric

and positive definite. Suppose we can show (2) for S. Then we have

| detS| =
√

detD =
√

detT ?T = | detT |

and
|Tuj|22 = 〈Tuj, Tuj〉 = 〈uj, T ?Tuj〉 =

〈
uj, S

2uj
〉

= 〈Suj, Suj〉 = |Suj|22.

Thus (2) is also true for T .
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Assume that T is symmetric and positive definite. Then there exist λ1, . . . , λn > 0
and an orthonormal basis v1, . . . , vn of Rn such that

T =
n∑
i=1

λivi ⊗ vi.

Clearly, Tuj =
∑n

i=1 λi 〈uj, vi〉 vi and therefore

|Tuj|22 =
n∑
i=1

λ2
i 〈uj, vi〉

2 .

Since |uj|2 = 1, we have
∑n

i=1 〈uj, vi〉
2 = 1. Let λ2

i = ai ≥ 0 and pi = 〈uj, vi〉2. Then∑n
i=1 pi = 1 and therefore by the AM–GM inequality, we get

n∑
i=1

aipi ≥
n∏
i=1

apii ,

which means that

|Tuj|22 ≥
n∏
i=1

λ
2|〈uj ,vi〉|2
i .

We obtain
m∏
j=1

|Tuj|
cj
2 ≥

n∏
i=1

λ
∑m
j=1 cj |〈uj ,vi〉|2

i =
n∏
i=1

λi = detT,

as
∑m

j=1 cj| 〈uj, vi〉 |2 = |vi|22 = 1.

(3) We prove that for all symmetric positive definite matrices we have

(detS)1/n = min
T : detT=1

(tr TST ?)

n
. (2.4)

If λ1, . . . , λn ≥ 0 are the eigenvalues of the symmetric and positive definite matrix TST ?

then

(tr TST ?)

n
=

1

n

n∑
i=1

λi ≥

(
n∏
i=1

λi

)1/n

= (det(TST ?))1/n = (detS)1/n .

To find the equality case in (2.4) take the orthogonal matrix U such that S = U?DU ,
where D is diagonal. Let

T =

(
D

(detS)1/n

)− 1
2

U = D1U.
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Clearly, detT = 1. We also have

(tr TST ?)

n
=

(tr D1USU
?D1)

n
=

(tr D2
1D)

n
= (detS)1/n .

Let S =
∑m

j=1 cjαjuj ⊗ uj. Following our last observation we can find a matrix T with

detT = 1 such that (detS)1/n = tr (TST ?)
n

. Note that

T (uj ⊗ uj)T ? = Tuju
?
jT

? = Tuj(Tuj)
? = (Tuj)⊗ (Tuj).

Therefore(
det

(
m∑
j=1

cjαjuj ⊗ uj

))1/n

=
1

n
tr

(
m∑
j=1

cjαjTuj ⊗ Tuj

)

=
1

n

m∑
j=1

cjαj|Tuj|22 ≥
m∏
j=1

(
αj|Tuj|22

) cj
n ≥

m∏
j=1

α
cj
n
j .

The second inequality follows from point (2) of our lemma.

Besides the lemma, we need the notion of mass transportation. Let us now briefly
introduce it.

2.6 Definition. Let µ be a finite Borel measure on Rd and let T : Rd → Rd be measurable.
The pushforward of µ by T is a measure Tµ on Rd defined by

Tµ(A) = µ(T−1(A)), A ∈ B(Rd).

If ν = Tµ then we say that T transports µ onto ν.

Note that if ν = Tµ then for all bounded Borel functions h : Rd → R we have∫
Rd
h(y) dν(y) =

∫
Rd
h(T (x)) dµ(x).

If µ and ν are absolutely continuous with respect to the Lebesgue measure, i.e. dµ(x) =
f(x)dx and dν(y) = g(y)dy then∫

Rd
h(y)g(y) dy =

∫
Rd
h(T (x))f(x) dx.

Assuming T is C1 on Rd, we obtain by changing the variable in the first integral∫
Rd
h(y)g(y) dy =

∫
Rd
h(T (x))g(T (x))| det dT (x)| dx,

11



where dT is the differential of T . Therefore µ almost everywhere we have

g(T (x))| det dT (x)| = f(x).

This is the so called transport equation (or a Monge-Ampère equation). Assume that
µ and ν are probabilistic measures absolutely continuous with respect to the Lebesgue
measure on R, say measures with densities f, g ≥ 0. There exists a map T : R → R
which is non-decreasing and which transports µ onto ν. Indeed, define T by∫ x

−∞
f(t) dt =

∫ T (x)

−∞
g(u) du.

If

R(x) =

∫ x

−∞
g(t) dt

then

T (x) = R−1

(∫ x

−∞
f(t) dt

)
.

The simplest case is when f and g are continuous and strictly positive. Then T is of
class C1 and

T ′(x)g(T (x)) = f(x), x ∈ R.

In higher dimensions for T we can set the so called Knöthe map [61] or Brenier map [28].
For instance, the Brenier map is of the form T = ∇φ, where φ is a convex function.

Proof of Theorem 2.2. We have Id =
∑m

j=1 cjuj ⊗ uj and |uj|22 = 1. We would like to
prove ∫

Rn

m∏
j=1

(fj(〈x, uj, 〉))cj dx ≤
m∏
j=1

(∫
fj

)cj
.

By homogeneity we can assume that
∫
fj = 1. Moreover, let us suppose that each fj is

continuous and strictly positive. Let g(s) = e−πs
2
. Then

∫
g = 1. Let Tj : R→ R be the

map which transports fj(x)dx onto g(s)ds, i.e.∫ t

−∞
fj(s) ds =

∫ Tj(t)

−∞
g(s) ds.

We have the transport equation fj(t) = T ′j(t)g(Tj(t)). Hence, using (3) of Lemma 2.5 we
obtain ∫

Rn

m∏
j=1

(fj(〈x, uj〉))cj dx =

∫
Rn

m∏
j=1

(
T ′j(〈x, uj〉)

)cj m∏
j=1

(g(Tj(〈x, uj〉)))cj dx

12



≤
∫
Rn

det

(
m∑
j=1

cjT
′
j (〈x, uj〉)uj ⊗ uj

)
exp

(
−π

m∑
j=1

cj (Tj(〈x, uj〉))2

)
dx.

Note that T ′j > 0 since f and g are strictly positive and continuous. Let

y =
m∑
j=1

cjTj (〈x, uj〉)uj.

Note that
∂y

∂xi
=

m∑
j=1

cjT
′
j (〈x, uj〉) 〈uj, ei〉uj

and therefore

Dy(x) =
m∑
j=1

cjT
′
j (〈x, uj〉)uj ⊗ uj.

By (1) of Lemma 2.5 we have

m∑
j=1

cj (Tj (〈x, uj〉))2 ≥ |y|22,

thus, changing variables we arrive at∫
Rn

m∏
j=1

(fj(〈x, uj, 〉))cj dx ≤
∫
Rn

exp
(
−π|y|22

)
dy = 1.

For general integrable functions fj : R→ R+, let ε > 0 and define f
(ε)
j = fj ? gε where gε

is a centered Gaussian variable of variance ε2. The new function f
(ε)
j is C1 and strictly

positive so the inequality holds true for the functions (f
(ε)
1 , . . . , f

(ε)
m ). Letting ε→ 0, the

classical Fatou lemma gives the inequality for (f1, . . . , fm).

2.3 Consequences of the Brascamp-Lieb inequality

Let us state the reverse isoperimetric inequality.

2.7 Theorem. Let K be a symmetric convex body in Rn. Then there exists an affine
transformation K̃ of K such that

|K̃| = |Bn
∞|, and |∂K̃| ≤ |∂Bn

∞| (2.5)

or equivalently
|∂K|
|K|n−1

n

≤ |∂Bn
∞|

|Bn
∞|

n−1
n

= 2n. (2.6)

13



Before we give a proof of Theorem 2.7 we introduce the notion of the volume ratio.

2.8 Definition. Let K ⊂ Rn be a convex body. The volume ratio of K is defined as

vr(K) = inf

{(
|K|
|E|

)1/n

, E ⊂ K is an ellipsoid

}
.

The ellipsoid of maximal volume contained in K is called the John ellipsoid. If the John
ellipsoid of K is equal to Bn

2 then we say that K is in the John position.

We have the following two theorems.

2.9 Theorem. For every symmetric convex body K ⊂ Rn we have

vr(K) ≤ vr(Bn
∞) =

2

(|Bn
2 |)

1/n
. (2.7)

2.10 Theorem. If Bn
2 ⊂ K is the ellipsoid of maximal volume contained in a symmetric

convex body K ⊂ Rn then there exist c1, . . . , cm > 0 and contact points u1, . . . , um ∈ Rn

such that |uj|2 = ‖uj‖K = ‖uj‖K◦ = 1 for 1 ≤ j ≤ m and

IdRn =
m∑
j=1

cjuj ⊗ uj. (2.8)

Here we do not give a proof of Theorem 2.10. Originally, John [58] proved it with a
simple extension of the Karush, Kuhn and Tucker theorem in optimisation to a compact
set of constraints (instead of finite number of constraints). We refer to [52] for a modern
presentation, very close to the original approach of John. We only show how John’s
theorem implies Theorem 2.9.

Proof of Theorem 2.9. The quantity vr(K) is invariant under invertible linear transfor-
mations.We let as an exercise to check that the ellipsoid of maximal volume contained
in K is unique. Therefore we may assume that the John ellipsoid of K is Bn

2 . Using
Theorem 2.10 we find numbers c1, . . . , cm > 0 and unit vectors u1, . . . , um ∈ Rn on the
boundary of K such that

IdRn =
m∑
j=1

cjuj ⊗ uj.

Since uj ∈ ∂Bn
2 ∩ ∂K and K is symmetric we get

K ⊂ K ′ := {x ∈ Rn, |〈x, uj〉| ≤ 1, for all 1 ≤ j ≤ m} .

Let fj(t) = 1[−1,1](t) for 1 ≤ j ≤ m. Note that fj = f
cj
j , 1 ≤ j ≤ m. From Theorem 2.2

we have

|K| ≤ |K ′| =
∫
Rn

m∏
j=1

f
cj
j (〈x, uj〉) dx ≤

m∏
j=1

(∫
fj

)cj
= 2

∑m
j=1 cj = 2n = |Bn

∞|.

14



Clearly, this also yields that Bn
2 is the John ellipsoid for the cube Bn

∞. Therefore

vr(Bn
∞) =

2

(|Bn
2 |)

1/n
.

We finish our considerations on the reverse isoperimetric problem showing that The-
orem 2.9 implies Theorem 2.7.

Proof of Theorem 2.7. Let K̃ be the linear image of K such that Bn
2 ⊂ K̃ is the John

ellipsoid of K̃. By Theorem 2.9 we have |K̃| ≤ 2n. Hence,

|∂K̃| = lim inf
ε→0+

|K̃ + εBn
2 | − |K̃|
ε

≤ lim inf
ε→0+

|K̃ + εK̃| − |K̃|
ε

= n|K̃| = n|K̃|
n−1
n · |K̃|

1
n ≤ 2n|K̃|

n−1
n .

This finishes the proof as the ratio |∂K|
|K|

n−1
n

is affine invariant.

We state yet another application of the Brascamp-Lieb inequality.

2.11 Theorem. If K is a symmetric convex body in the John position then E ‖G‖K ≥
E|G|∞, where G is the standard Gaussian vector in Rn, i.e. the vector (g1, . . . , gn) where
(gi)i≤n are independent standard Gaussian random variables.

Proof. As in the proof of Theorem 2.7 we consider numbers c1, . . . , cm > 0 and vectors
u1, . . . , um satisfying the assertion of the Theorem 2.10. Note that

K ⊂ K ′ = {x ∈ Rn, | 〈x, uj〉 | ≤ 1 1 ≤ j ≤ m} .

Clearly,
‖G‖K ≥ ‖G‖K′ = max

1≤j≤m
| 〈G, uj〉 |.

Moreover,

E ‖G‖K′ =

∫ +∞

0

P
(

max
j
|〈G, uj〉| ≥ t

)
dt.

We have |G|∞ = max1≤j≤m | 〈G, ej〉 | so that

E|G|∞ =

∫ +∞

0

P
(

max
j
|〈G, ej〉| ≥ t

)
dt =

∫ +∞

0

(1− P (|g| ≤ t)n) dt,

where g is the standard Gaussian random variable. To get the conclusion, it suffices to
prove

P
(

max
j
|〈G, uj〉| ≤ t

)
≤ (P (|g| ≤ t))n .
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Take

hj(s) = 1[−t,t](s)
e−s

2/2

√
2π

, fj(s) = 1[−t,t](s).

Since

|x|22 =
m∑
j=1

cj 〈x, uj〉2 ,

Theorem 2.2 implies that

P
(

max
j
|〈G, uj〉| ≤ t

)
=

∫
Rn

1{(maxj |〈x,uj〉|)≤t}
1

(2π)n/2
e−|x|

2
2/2 dx

=

∫
Rn

m∏
j=1

f
cj
j (〈x, uj〉)

1

(2π)n/2
exp

(
−| 〈x, uj〉 |

2

2

)cj
dx

=

∫
Rn

m∏
j=1

hj (〈x, uj〉)cj dx

≤
m∏
j=1

(∫
hj

)cj
=

(∫ t

−t

1√
2π
e−u

2/2 du

)n
= (P (|g| ≤ t))n ,

where we have used the fact that
∑m

j=1 cj = n.

2.4 Notes and comments

This section is devoted to the study of the Brascamp-Lieb inequalities [26] in a convex
geometric setting. As we emphasized, this approach is due to Ball [7] where he proved
Theorem 2.9 and Theorem 2.7. We refer to [9] for a large survey on this subject. The
proof using mass transportation approach is taken from [12]. It is important to notice
a significant development of this study, the reverse Brascamp-Lieb inequality due to
Barthe [11]. Theorem 2.11 is due to Schechtman and Schmuckenschläger [86] and has a
very nice application in the study of Dvoretzky’s theorem, because it gives a Euclidean
structure associated with a convex body where the minimum among convex bodies K of
M(K) =

∫
Sn−1 ‖x‖dσn(x) is known and attained for the cube. We refer to Section 4 to

learn about it. A non-symmetric version of these results is known, see [7, 88, 10].
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3 Borell and Prékopa-Leindler type inequalities, the

notion of Ball’s bodies

3.1 Brunn-Minkowski inequality

Brunn discovered the following important theorem about sections of a convex body.

3.1 Theorem. Let n ≥ 2 and let K be a convex body in Rn. Take θ ∈ Sn−1 and define

Hr = {x ∈ Rn, 〈x, θ〉 = r} = rθ + θ⊥.

Then the function

r 7→ (vol(Hr ∩K))
1

n−1

is concave on its support.

Minkowski restated this result providing a powerful tool.

3.2 Theorem. If A and B are non-empty compact sets then for all λ ∈ [0, 1] we have

vol ((1− λ)A+ λB)1/n ≥ (1− λ)(volA)1/n + λ(volB)1/n. (3.1)

Note that if either A = ∅ or B = ∅, this inequality does not hold in general since
(1 − λ)A + λB = ∅. We can use homogeneity of volume to rewrite Brunn-Minkowski
inequality in the form

vol (A+B)1/n ≥ (volA)1/n + (volB)1/n. (3.2)

At this stage, there is always a discussion between people who prefer to state the Brunn-
Minkowski inequality for Borel sets (but it remains to prove that if A and B are Borel
sets then A+B is a measurable set) and people who prefer to work with approximation
and say that for any measurable set C, volC is the supremum of the volume of the
compact sets contained in C. We choose the second way in this presentation.

The proof of the theorem of Brunn follows easily. For any t ∈ R, define At = {x ∈
θ⊥, x+ tθ ∈ K}. Observe that when s = (1− λ)r + λt, only the inclusion

As ⊃ λAt + (1− λ)Ar

is important. And inequality (3.1) applied in θ⊥ which is of dimension n− 1 leads to the
conclusion.

We can also deduce from inequality (3.2) the isoperimetric inequality.

3.3 Theorem. Among sets with prescribed volume, the Euclidean balls are the one with
minimum surface area.
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Proof. By a compact approximation of C, we can assume that C is compact and volC =
volBn

2 . We have

vol ∂C = lim inf
ε→0+

vol(C + εBn
2 )− vol(C)

ε
.

By the Brunn-Minkowski inequality (3.1), we get

vol(C + εBn
2 )1/n ≥ (volC)1/n + ε(volBn

2 )1/n,

hence
vol(C + εBn

2 ) ≥ (1 + ε)n volC,

so

vol(∂C) ≥ lim inf
ε→0+

((1 + ε)n − 1) vol(C)

ε
= n vol(C) = n vol(Bn

2 ) = vol(∂Bn
2 ).

There is an a priori weaker statement of the Brunn-Minkowski inequality. Applying
the AM–GM inequality to the right hand side of (3.1) we get

|(1− λ)A+ λB| ≥ |A|1−λ|B|λ, λ ∈ [0, 1]. (3.3)

Note that this inequality is valid for any compact sets A and B (the assumption that A
and B are non-empty is no longer needed). We can see that there is no appearance of
dimension in this expression.

The strong version of the Brunn-Minkowski inequality (3.1) tells us that the Lebesgue
measure is a 1

n
-concave measure. The weaker statement (3.3) justifies that it is a log-

concave measure.

3.4 Definition. A measure µ on Rn is log-concave if for all compact sets A and B we
have

µ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ, λ ∈ [0, 1].

3.5 Definition. The function f : Rn → R is log-concave if for all x, y ∈ Rn we have

f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ, λ ∈ [0, 1].

Note that these definitions are dimension free.
The weak form of the inequality (3.3) for the Lebesgue measure is in fact equivalent

to the strong inequality (3.1). It is a consequence of the homogeneity of the Lebesgue
measure. Indeed, if

µ =
λ(volB)1/n

(1− λ)(volA)1/n + λ(volB)1/n

18



then

vol

(
(1− λ)A+ λB

(1− λ)(volA)1/n + λ(volB)1/n

)
= vol

(
(1− µ)

A

(volA)1/n
+ µ

B

(volB)1/n

)
≥ vol

(
A

(volA)1/n

)1−µ(
B

(volB)1/n

)µ
= 1.

3.2 Functional version of the Brunn-Minkowski inequality

If we take f = 1A, g = 1B and m = 1(1−λ)A+λB then (3.3) says that∫
m ≥

(∫
f

)1−λ(∫
g

)λ
and obviously m, f, g satisfies

m((1− λ)x+ λy) ≥ f(x)1−λg(y)λ.

We will prove the following functional version of the Brunn-Minkowski inequality
called the Prékopa-Leindler inequality. This will conclude the proof of inequality (3.1)
and of Theorem 3.1.

3.6 Theorem. Let f, g,m be nonnegative measurable functions on Rn and let λ ∈ [0, 1].
If for all x, y ∈ Rn we have

m((1− λ)x+ λy) ≥ f(x)1−λg(y)λ,

then ∫
Rn
m ≥

(∫
Rn
f

)1−λ(∫
Rn
g

)λ
. (3.4)

We start with proving inequalities (3.1) and (3.3) in dimension 1.

3.7 Lemma. Let A,B be non-empty compact sets in R. Then

|(1− λ)A+ λB| ≥ |(1− λ)A|+ |λB|, λ ∈ [0, 1].

Moreover, for any compact sets A,B in R,

|(1− λ)A+ λB| ≥ |A|1−λ|Bλ|, λ ∈ [0, 1].

Proof. Observe that the operations A → A + v1, B → B + v2 where v1, v2 ∈ R do not
change the volumes of A,B and (1−λ)A+λB (adding a number to one of the sets only

19



shifts all of this sets). Therefore we can assume that supA = inf B = 0. But then, since
0 ∈ A and 0 ∈ B, we have

(1− λ)A+ λB ⊃ (1− λ)A ∪ (λB).

But (1− λ)A and (λB) are disjoint, up to the one point 0. Therefore

|(1− λ)A+ λB| ≥ |(1− λ)A|+ |λB|,

hence we have proved (3.1) in dimension 1.
The log-concavity of the Lebesgue measure on R follows from the AM–GM inequality.

Proof of Theorem 3.6. Step 1. Let us now justify the Prékopa-Leindler inequality in
dimension 1. We can assume, considering f1f≤M and g1g≤M instead of f and g, that
f, g are bounded. Note also that this inequality possesses some homogeneity. Indeed, if
we multiply f, g,m by numbers cf , cg, cm satisfying

cm = c1−λ
f cλg ,

then the hypothesis and the assertion do not change. Therefore, taking cf = ‖f‖−1
∞ ,

cg = ‖g‖−1
∞ and cm = ‖f‖−(1−λ)

∞ ‖g‖−λ∞ we can assume (since we are in the situation when
f and g are bounded) that ‖f‖∞ = ‖g‖∞ = 1. But then∫

R
m =

∫ +∞

0

|{m ≥ s}| ds,

∫
R
f =

∫ 1

0

|{f ≥ r}| dr,∫
R
g =

∫ 1

0

|{g ≥ r}| dr.

Note also that if x ∈ {f ≥ r} and y ∈ {g ≥ r} then by the assumption of the theorem
we have (1− λ)x+ λy ∈ {m ≥ r}. Hence,

(1− λ){f ≥ r}+ λ{g ≥ r} ⊂ {m ≥ r}.

Moreover, the sets {f ≥ r} and {g ≥ r} are non-empty for r ∈ [0, 1). This is very
important since we want to use the 1-dimensional Brunn-Minkowski inequality proved
in Lemma 3.7! For any non empty compact subsets A ⊂ {f ≥ r} and B ⊂ {g ≥ r}, we
have by Lemma 3.7, |{m ≥ r}| ≥ (1 − λ)|A| + λ|B|. Since Lebesgue measure is inner
regular, we get that

|{m ≥ r}| ≥ (1− λ)|{f ≥ r}|+ λ|{g ≥ r}|.
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Therefore, we have∫
m =

∫ +∞

0

|{m ≥ r}| dr ≥
∫ 1

0

|{m ≥ r}| dr ≥
∫ 1

0

|(1− λ){f ≥ r}+ λ{g ≥ r}| dr

≥ (1− λ)

∫ 1

0

|{f ≥ r}| dr + λ

∫ 1

0

|{g ≥ r}| dr = (1− λ)

∫
f + λ

∫
g

≥
(∫

f

)1−λ(∫
g

)λ
.

Observe that we have actually proved a stronger inequality∫
m ≥ (1− λ)

∫
f + λ

∫
g,

but under the assumption ‖f‖∞ = ‖g‖∞ = 1, without which the inequality does not
hold as it lacks homogeneity, in contrast to (3.6).

Step 2 (the inductive step). Suppose our inequality is true in dimension n − 1. We
will prove it in dimension n.

Suppose we have numbers y0, y1, y2 ∈ R satisfying y0 = (1 − λ)y1 + λy2. Define
my0 , fy1 , gy2 : Rn−1 → R+ by

my0(x) = m(y0, x), fy1(x) = f(y1, x), gy2(x) = (y2, x),

where x ∈ Rn−1. Note that since y0 = (1− λ)y1 + λy2 we have

my0((1− λ)x1 + λx2) = m((1− λ)y1 + λy2, (1− λ)x1 + λx2)

≥ f(y1, x1)1−λg(y2, x2)λ = fy1(x1)1−λgy2(x2)λ,

hence my0 , fy1 and gy2 satisfy the assumption of the (n−1)-dimensional Prékopa-Leindler
inequality. Therefore we have∫

Rn−1

my0 ≥
(∫

Rn−1

fy1

)1−λ(∫
Rn−1

gy2

)λ
.

Define new functions M,F,G : R→ R+

M(y0) =

∫
Rn−1

my0 , F (y1) =

∫
Rn−1

fy1 , G(y2) =

∫
Rn−1

gy2 .

We have seen (the above inequality) that when y0 = (1− λ)y1 + λy2 then there holds

M((1− λ)y1 + λy2) ≥ F (y1)1−λG(y2)λ.
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Hence, by 1-dimensional Prékopa-Leindler inequality proved in Step 1, we get∫
R
M ≥

(∫
R
F

)1−λ(∫
R
G

)λ
.

But ∫
R
M =

∫
Rn
m,

∫
R
F =

∫
Rn
f,

∫
R
G =

∫
Rn
g,

so we conclude that ∫
Rn
m ≥

(∫
Rn
f

)1−λ(∫
Rn
g

)λ
.

The next theorem will be useful in the sequel to prove the functional version of the
so-called Blaschke-Santaló inequality, Theorem 3.11.

3.8 Theorem. Suppose f, g,m : [0,∞)→ [0,∞) are measurable and suppose there exists
λ ∈ [0, 1] such that

m(t) ≥ f(r)1−λg(s)λ, whenever t = r1−λsλ

Then ∫
m ≥

(∫
f

)1−λ(∫
g

)λ
. (3.5)

Proof. This inequality has a lot of homogeneity. Again, if we multiply f, g,m by numbers
cf , cg, cm satisfying

cm = c1−λ
f cλg ,

then the hypothesis and the assertion do not change. Moreover, we can rescale arguments
of f, g,m by df , dg, dm in such a way that

dm = d1−λ
f dλg .

We can assume, by taking f1f≤M1[−M,M ], g1g≤M1[−M,M ] that f and g are bounded and
have compact support. Moreover, by scaling we can assume that

sup rf(r) = sup rg(r) = 1. (3.6)

Let
M(x) = exm(ex), F (x) = exf(ex), G(x) = exg(ex).

Clearly, changing variables we have∫ +∞

0

m(t) dt =

∫ +∞

−∞
M(ω) dω,

∫ +∞

0

f(t) dt =

∫ +∞

−∞
F (ω) dω,
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∫ +∞

0

g(t) dt =

∫ +∞

−∞
G(ω) dω.

By (3.6), we get∫ +∞

−∞
F (ω) dω =

∫ 1

0

|{F ≥ r}| dr and

∫ +∞

−∞
G(ω) dω =

∫ 1

0

|{G ≥ r}| dr.

By the hypothesis of f, g and m we have

M((1− λ)u+ λv) = m((eu)1−λ(ev)λ)(eu)1−λ(ev)λ

≥ (f(eu))1−λ(g(ev))λ(eu)1−λ(ev)λ = (F (u))1−λ(G(v))λ. (3.7)

Hence, for any r ∈ [0, 1), if x ∈ {F ≥ r} and y ∈ {G ≥ r}, then (1−λ)x+λy ∈ {M ≥ r}.
The sets {F ≥ r} and {G ≥ r} are not empty therefore by Lemma 3.7 (which is the 1-
dimensional Brunn-Minkowski inequality), for any non empty compact sets A ⊂ {F ≥ r}
and B ⊂ {G ≥ r}, |{M ≥ r}| ≥ (1 − λ)|A| + λ|B|. Since Lebesgue measure is inner
regular, we conclude that |{M ≥ r}| ≥ (1− λ)|{F ≥ r}|+ λ|{G ≥ r}| and∫ +∞

−∞
M(ω) dω ≥

∫ 1

0

|{M ≥ r}| dr ≥ (1− λ)

∫ +∞

−∞
F (ω) dω + λ

∫ +∞

−∞
G(ω) dω

≥
(∫ +∞

−∞
F (ω) dω

)1−λ(∫ +∞

−∞
G(ω) dω

)λ
.

Note that after establishing (3.7) we could have directly used the 1-dimensional
Prékopa-Leindler inequality, Theorem 3.6. But we can also recover Theorem 3.6. Indeed,
let

M(t) = |{m ≥ t}|, F (r) = |{f ≥ r}|, G(s) = |{g ≥ s}|.

We have to prove that∫ +∞

0

M(t) dt ≥
(∫ +∞

0

F (r) dr

)1−λ(∫ +∞

0

G(s) ds

)λ
.

Note that if t = r1−λsλ, then from the hypothesis of Theorem 3.6 we have

{m ≥ t} ⊃ (1− λ){f ≥ r}+ λ{g ≥ s}.

From Lemma 3.7, we get
M(t) ≥ F (r)1−λG(s)λ

(even if the sets are empty, because we just use the log-concavity of the Lebesgue measure
on R). We conclude by using Theorem 3.8.
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3.3 Functional version of the Blaschke-Santaló inequality

We only recall the Blaschke-Santaló inequality (without the proof). We discuss the
symmetric case.

3.9 Definition. Let C be a compact and symmetric set in Rn. We define the polar body
C◦ by

C◦ = {y ∈ Rn, ∀x ∈ C | 〈x, y〉 | ≤ 1}.

3.10 Theorem. Let C be a compact and symmetric set in Rn. Then

|C| · |C◦| ≤ |Bn
2 |2 . (B-S)

Nevertheless, we will prove its functional version using (B-S) inequality.

3.11 Theorem. Suppose f, g : Rn → [0,∞) and Ω : [0,∞)→ [0,∞) are integrable and
f, g are even. Suppose that Ω(t) ≥

√
f(x)g(y) whenever | 〈x, y〉 | ≥ t2. Then∫

Rn
Ω(|x|2) dx = n|Bn

2 |
∫ +∞

0

tn−1Ω(t) dt ≥
(∫

f

)1/2(∫
g

)1/2

. (3.8)

3.12 Remark. We can recover the classical version of the (B-S) inequality from the
functional one. Take f = 1C , g = 1C◦ and Ω = 1[0,1]. If x ∈ C and y ∈ C◦ then

| 〈x, y〉 | ≤ 1. Hence, if t > 1 then Ω(t) =
√
f(x)g(y) = 0. If t ≤ 1 then obviously

1 = Ω(t) ≥
√
f(x)g(y). By Theorem 3.11 we get (B-S).

Proof of Theorem 3.11. The first equality is just an integration in polar coordinates. It
is enough to prove the statement for the function

t 7→ sup{
√
f(x)g(y) : | 〈x, y〉 | ≥ t2},

so that we can assume Ω non-increasing. For r, s, t ∈ R+ we take

φ(r) = |{f ≥ r}|, ψ(s) = |{g ≥ s}|, m(t) = |Bn
2 | · |{Ω ≥ t}|n.

We claim that m(
√
rs) ≥

√
φ(r)ψ(s). Thanks to this we can apply Theorem 3.8 with

λ = 1/2 and obtain ∫
m ≥

(∫
φ

)1/2(∫
ψ

)1/2

.

Thus, the proof of (3.8) will be finished since∫ +∞

0

m(t) dt = |Bn
2 |
∫ +∞

0

|{Ω ≥ t}|n dt = |Bn
2 |
∫ +∞

0

∫ |{Ω≥t}|
0

nun−1 du dt

= |Bn
2 |
∫ +∞

0

nun−1

∫ +∞

0

1[0,|{Ω≥t}|](u) dt du = |Bn
2 |
∫ +∞

0

nun−1Ω(u) du.
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Now we prove our claim. Let C = {f ≥ r} and C◦ = {y, ∀x ∈ C | 〈x, y〉 | ≤ 1}. Let

α2 = sup{| 〈x, y〉 |, f(x) ≥ r, g(y) ≥ s}.

Using the definition of C,C◦ and α we get {y, g(y) ≥ s} ⊂ α2C◦. By the assumption
on Ω, f, g we obtain Ω(u) ≥

√
rs for u < α, hence |{Ω ≥

√
rs}| ≥ α. Therefore,

m(
√
rs) ≥ αn|Bn

2 |. By the (B-S) inequality we have |C||C◦| ≤ |Bn
2 |2. Thus,

|Bn
2 |2 ≥ |{f ≥ r}| · |C◦| ≥ |{f ≥ r}| · |{g ≥ s}|α−2n,

so √
φ(r)ψ(s) =

√
|{f ≥ r}| · |{g ≥ s}| ≤ |Bn

2 |αn ≤ m(
√
rs).

3.4 Borell and Ball functional inequalities

The following is another type of functional inequality, in the spirit of Theorem 3.6. We
will see in the next section its role in convex geometry.

3.13 Theorem. Suppose f, g,m : (0,∞)→ [0,∞) are measurable and such that

m(t) ≥ sup

{
f(r)

s
r+s g(s)

r
r+s ,

1

r
+

1

s
=

2

t

}
for all t > 0. Then

2

(∫ ∞
0

m(t)tp−1 dt

)− 1
p

≤
(∫ ∞

0

f(t)tp−1 dt

)− 1
p

+

(∫ ∞
0

g(t)tp−1 dt

)− 1
p

(3.9)

for every p > 0.

Proof. Considering min{fi,M}1·≤M for f1 = f, f2 = g, f3 = m we can assume that
f, g,m are bounded, compactly supported in (0,∞) and not 0 a.e. We do not have good
homogeneity. Let θ > 0 be such that

sup rp+1f(r) = θp+1 sup rp+1g(r). (3.10)

Let

A =

(∫ ∞
0

f(t)tp−1 dt

) 1
p

, B =

(∫ ∞
0

g(t)tp−1 dt

) 1
p

, C =

(∫ ∞
0

m(t)tp−1 dt

) 1
p

.

Define

F (u) = f

(
1

u

)(
1

u

)p+1

, G(u) = g

(
1

θu

)(
1

u

)p+1

,
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M(u) =

(
1 + θ

2

)p+1

m

(
1

u

)(
1

u

)p+1

.

Hence, changing the variables we have∫ +∞

0

F (u) du = Ap,

∫ +∞

0

G(u) du = (θB)p,

∫ +∞

0

M(u) du =

(
1 + θ

2

)p+1

Cp.

We want to prove that
2

C
≤ 1

A
+

1

B
.

Note that by virtue of equality (3.10) we have supG = supF .
We claim that

M(w) ≥ sup{F (u)
u

u+θvG(v)
θv

u+θv , u+ θv = 2w}, w ∈ (0,∞).

If u+ θv = 2w, then setting r = 1/u, s = 1/(θv), t = 1/w we have 1/r + 1/s = 2/t and

s

r + s
=

1
θv

1
u

+ 1
θv

=
u

u+ θv
,

hence

F (u)
u

u+θvG(v)
θv

u+θv = f(r)
s
r+s g(s)

r
r+s

(
r

s
r+s (θs)

r
r+s

)p+1

.

We obtain

r
s
r+s s

r
r+s ≤ s

r + s
r +

r

r + s
θs = (1 + θ)

rs

r + s
=

1 + θ

2

1

w
.

Thus,

F (u)
u

u+θvG(v)
θv

u+θv ≤
(

1 + θ

2

)p+1

m

(
1

w

)(
1

w

)p+1

= M(w).

Summarizing, we have supF = supG and

1

2
{F ≥ ξ}+

θ

2
{G ≥ ξ} ⊂ {M ≥ ξ}.

Therefore, Lemma 3.7 (which is nothing else but Brunn-Minkowski inequality in dimen-
sion 1) yields that∫

M ≥
∫ supF

0

|{M ≥ ξ}| dξ ≥ 1

2

∫ supF

0

|{F ≥ ξ}| dξ +
θ

2

∫ supG

0

|{G ≥ ξ}| dξ

=
1

2

∫
F +

θ

2

∫
G.
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In terms of A,B,C we have(
1 + θ

2

)p+1

Cp ≥ 1

2
Ap +

θ

2
(θB)p,

hence

Cp ≥ 2p
Ap + θp+1Bp

(1 + θ)p+1
.

Define φ : [0,∞)→ [0,∞) by

φ(θ) =
Ap + θp+1Bp

(1 + θ)p+1
.

Since infR+ φ(θ) = φ(A/B) (calculate the derivative to see that φ is unimodal and
φ′(A/B) = 0), we get

Cp ≥ 2p
Ap + Ap+1/B(

1 + A
B

)p+1 = 2p
Ap(

1 + A
B

)p =

(
2AB

A+B

)p
.

Now the proof is complete.

3.5 Consequences in convex geometry

Having the Prékopa-Leindler inequality at hand we can constitute a handful of basic
properties of log-concave measures. We begin with a simple observation that a measure
with a log-concave density is log-concave.

3.14 Proposition. If h : Rn → R+ is log-concave and h ∈ L1
loc then

µ(A) =

∫
A

h

defines a log-concave measure on Rn.

Proof. For compact sets A,B take m(z) = 1λA+(1−λ)B(z)h(z), f(x) = 1A(x)h(x), g(y) =
1B(y)h(y). Then from log-concavity of h and by the definition of the Minkowski sum we
have m(λx + (1 − λ)y) ≥ f(x)λg(y)1−λ. Therefore, by the Prékopa-Leindler inequality,
i.e. Theorem 3.6, we have

∫
m ≥ (

∫
f)λ(

∫
g)1−λ, which is exactly the desired inequality

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

27



For example, the standard Gaussian measure and the standard symmetric exponential
distribution on Rn are log-concave measures. Another key example is the following. Let
µ be the uniform measure on a convex body K ⊂ Rn, that is for any measurable set
A ⊂ Rn,

µ(A) =
|K ∩ A|
|K|

.

Since the function x 7→ 1K(x) is log-concave, µ is log-concave. It follows also from the
weak form of the Brunn-Minkowski inequality, see Lemma 3.7.

Now we show that marginal distributions of a log-concave density are again log-
concave.

3.15 Theorem. If h : Rn+p → R+ is a log-concave integrable function (Rn × Rp) 3
(x, y) 7→ h(x, y), then the function

Rn 3 x 7→
∫
Rp
h(x, y) dy

is log-concave on Rn.

Proof. We want to prove that for x0, x1 ∈ Rn, y ∈ Rp and λ ∈ [0, 1] we have∫
Rp
h((1− λ)x0 + λx1, y) dy ≥

(∫
Rp
h(x0, y) dy

)λ(∫
Rp
h(x1, y) dy

)1−λ

.

Let
m(y) = h((1− λ)x0 + λx1, y), f(y) = h(x0, y), g(y) = h(x1, y).

Then log-concavity of h yields

m((1− λ)y0 + λy1) = h((1− λ)(x0, y0) + λ(x1, y1)) ≥ h(x0, y0)1−λh(x1, y1)λ

= f(y0)1−λg(y1)λ.

Therefore, by the Prékopa-Leindler inequality, i.e. Theorem 3.6, we get∫
Rp
m(y) dy ≥

(∫
Rp
h(x0, y0) dy0

)1−λ(∫
Rp
h(x1, y1) dy1

)λ
.

A simple consequence is that the class of log-concave distributions is also closed with
respect to convolving.

3.16 Proposition. Let f, g : Rn → R+ be log-concave. Then the convolution f ?g : x 7→∫
Rn f(x− y)g(y)dx is also log-concave.
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Proof. Apply Theorem 3.15 to h(x, y) = f(x− y)g(y).

Due to the Brunn-Minkowski inequality, the function of the measures of sections of
a convex body is not completely arbitrary.

3.17 Theorem. Let K be a convex body in Rn and let E be k-dimensional subspace of
Rn. Let F = E⊥. Then the function f : F → R+

f(y) = volk((y + E) ∩K)

is 1/k-concave on its support PF (K), namely

f 1/k(λx+ (1− λ)y) ≥ λf 1/k(x) + (1− λ)f 1/k(y),

when f(x)f(y) > 0.

Proof. As in the proof of Theorem 3.1, we deduce from convexity of K and Brunn-
Minkowski inequality in Rk, i.e. Theorem 3.2,

f 1/k(λx+ (1− λ)y) ≥ vol
1/k
k (λ(K ∩ (x+ E)) + (1− λ)(K ∩ (y + E)))

≥ λ vol
1/k
k (K ∩ (x+ E)) + (1− λ) vol

1/k
k (K ∩ (y + E))

= λf 1/k(x) + (1− λ)f 1/k(y).

3.18 Remark. If K is symmetric with respect to 0 then f is even and therefore f is
maximal at 0. Moreover, it is known from a result of Fradelizi [40] that if K has center
of mass at the origin then

max
y
f(y) ≤ ekf(0).

3.19 Remark. If K,L are convex bodies in Rn, then the function

f(y) = vol((y + L) ∩K)

is 1
n
-concave on its support, that is K − L. Moreover, Fradelizi [40] proved also that if

K − L has barycentre at the origin, then

max
y

vol((y + L) ∩K) ≤ en vol(L ∩K) (3.11)

Proof. It is enough to check that

(λx+ (1− λ)y + L) ∩K ⊃ λ(x+ L) ∩K + (1− λ)(y + L) ∩K

and then the same argument as in Theorem 3.17 finishes the proof. Suppose we have
a point λa + (1 − λ)b, where a ∈ (x + L) ∩ K and b ∈ (y + L) ∩ K. Then a, b ∈ K
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and a = x + a0, b = y + b0, where a0, b0 ∈ L. Therefore, from convexity of K we have
λa+ (1− λ)b ∈ K. Moreover,

λa+ (1− λ)b = λx+ (1− λ)y + λa0 + (1− λ)b0 ∈ λx+ (1− λ)y + L

from convexity of L.

Our next observation concerns the measure of both sections and projections of convex
bodies.

3.20 Proposition. Let C be a convex body in Rn with non-empty interior. Let E be
k-dimensional subspace of Rn and let F = E⊥. Then

|PF (C)| ·max
y∈F
|C ∩ (y + E)| ≥ |C| ≥ 1(

n
k

) |PF (C)| ·max
y∈F
|C ∩ (y + E)|. (3.12)

Before giving a proof, we show the following corollary about two bodies, known as
Rogers-Shephard inequalities.

3.21 Corollary. Let A,B be two convex bodies in Rn. Then

2n
∣∣∣∣A−B2

∣∣∣∣ max
x,y∈Rn

|(A− x) ∩ (B − y)| ≥ |A| · |B| ≥

≥ 2n(
2n
n

) ∣∣∣∣A−B2

∣∣∣∣ max
x,y∈Rn

|(A− x) ∩ (B − y)|.

In particular, if A−B has barycentre at the origin then up to a universal constant

(|A| · |B|)1/n ≈
(∣∣∣∣A−B2

∣∣∣∣ · |A ∩B|)1/n

.

Moreover, if A,B are symmetric, then

2n
∣∣∣∣A+B

2

∣∣∣∣ · |A ∩B| ≥ |A| · |B| ≥ 2n(
2n
n

) ∣∣∣∣A+B

2

∣∣∣∣ · |A ∩B|.
and

(|A| · |B|)1/n ≈
(∣∣∣∣A+B

2

∣∣∣∣ · |A ∩B|)1/n

.

Proof. Take C = A×B ⊂ R2n and

E = {(x, y) ∈ R2n, x = y}.

Then
F = E⊥ = {(x, y) ∈ R2n, x+ y = 0}.
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Note that

(x, y) =
x+ y

2
(1, 1) +

x− y
2

(1,−1).

Therefore, PF (x, y) = x−y
2

(1,−1), hence

PF (C) =

{
x− y

2
(1,−1) ∈ R2n | x ∈ A, y ∈ B

}
.

Consider the linear function L : Rn → R2n, L(x) = (x,−x). Clearly, L ((A−B)/2) =
PF (C). Therefore,

|PF (C)| =
∣∣∣A−B

2

∣∣∣ (√2
)n
.

Moreover,

(A×B) ∩ ((x, y) + E) =
[
((A− x)× (B − y)) ∩ E

]
+ (x, y).

If we consider R(x) = (x, x), R : Rn → R2n then

R((A− x) ∩ (B − y)) = ((A− x)× (B − y)) ∩ E.

Thus,

|C ∩ ((x, y) + E)| =
(√

2
)n
|(A− x) ∩ (B − y)| ,

and the conclusion follows from Proposition 3.20.
To prove the second inequality it suffices to observe that if A−B has barycentre at

the origin, we get from inequality (3.11) that

|A ∩B| ≤ max
x,y∈Rn

|(A− x) ∩ (B − y)| ≤ en|A ∩B|.

Moreover, if A and B are symmetric, then A = −A, B = −B and |(A− x) ∩ (B − y)| is
maximal when x = y = 0.

Proof of Proposition 3.20. Consider the function f : F → R+ given by f(y) = |(y+E)∩
C|. Obviously,

|C| =
∫
PF (C)

f(y) dy ≤ |PF (C)| ·max
y∈F

f(y).

The second estimate is more delicate. By translation we can assume that maxy∈F f(y)
= f(0). Let ‖·‖PF (C) be the gauge induced by PF (C) on F . If y ∈ PF (C) then ‖y‖PF (C) ≤
1. Note that

y = (1− ‖y‖PF (C)) · 0 + ‖y‖PF (C)

y

‖y‖PF (C)

.
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Since, by Theorem 3.17, f is 1/k-concave on its support PF (C), 0 ∈ PF (C), and
y/ ‖y‖PF (C) ∈ PF (C), we have

f 1/k(y) ≥ f 1/k(0)(1− ‖y‖PF (C)) + f 1/k(y/ ‖y‖PF (C)) ‖y‖PF (C) ≥ f 1/k(0)(1− ‖y‖PF (C)).

Hence,

|C| =
∫
PF (C)

f(y) dy ≥ f(0)

∫
PF (C)

(
1− ‖y‖PF (C)

)k
dy.

It is clear that for a convex body K in Rm, by integrating with respect to the cone
measure, we have∫

K

g(‖y‖K) dy =

∫ 1

0

∫
‖y‖K=t

g(t) dy dt = |K|
∫ 1

0

g(t)mtm−1 dt,

since ∫
‖y‖K≤t

1 dy = tm|K|,
∫
‖y‖K=t

1 dy = mtm−1|K|.

Applying this to the convex body PF (C) which lives in dimension n− k, we get

|C| ≥ f(0)|PF (C)|
∫ 1

0

(n− k)(1− t)ktn−k−1 dt =
f(0)|PF (C)|(

n
k

) ,

which was our goal since f(0) = maxy∈F f(y).

Just to illustrate the usefulness of the functional inequalities from the previous sec-
tion, we show a one dimensional result which does not seem to be obvious at first glance.

3.22 Proposition. For A,B ⊂ (0,∞) we set

H(A,B) =

{
2

1/a+ 1/b
, a ∈ A, b ∈ B

}
.

Then we have

|H(A,B)| ≥ 2|A| · |B|
|A|+ |B|

. (3.13)

Proof. Set f = 1A, g = 1B and m = 1H(A,B) and use Theorem 3.13 with p = 1.

At the end of this section we consider how to construct a convex body out of a
log-concave function. It is a crucial observation following from Theorem 3.13. Let us
emphasize its importance in the sequel (Section 6) where we establish basic properties
of the so-called Zp-bodies.
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3.23 Theorem. Suppose that a function f : Rn → [0,∞) is log-concave, integrable and
not 0 a.e.. Then for p > 0

‖x‖ =


(∫ +∞

0

f(rx)rp−1 dr

)−1/p

, x 6= 0

0, x = 0

is a gauge on Rn.

Proof. Obviously, ‖λx‖ = λ ‖x‖ if λ > 0 and ‖x‖ = 0 if and only if x = 0. Therefore,
the main difficulty is to prove that

‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Fix x, y ∈ Rn. Let us take g(r) = f(rx), h(s) = f(sy) and m(t) = f(1
2
t(x + y)) for

r, s, t ≥ 0. Suppose 1/r + 1/s = 2/t. Let λ = r/(r + s) so that t/2 = λs = (1− λ)r. By
log-concavity of f

m(t) = f

(
1

2
t(x+ y)

)
≥ f(rx)1−λf(sy)λ = g(r)

s
r+sh(s)

r
r+s .

Now it suffices to use Theorem 3.13 for m, g and h.

The previous theorem can be seen as a generalisation of a theorem due to Busemann
from [29]. Choosing f and p suitably we obtain the following result.

3.24 Theorem. Let K be a symmetric convex body with 0 in its interior. Then

‖x‖ =
|x|2

|x⊥ ∩K|2

is a norm on Rn.

3.6 Notes and comments

Most of the material of this section is taken from the PhD Thesis of Keith Ball [5].
Historically, the names of Prékopa and Leindler stay attached to Theorem 3.6. Indeed,
Prékopa [81, 82, 83] studied a lot the notion of log-concave functions. Theorem 3.6 is
the culmination in this theory, and yet it is a simple statement. Prékopa’s proof uses an
argument of transport of mass which can be traced back to Knöthe [61]. On the other
hand, Borell [24] submitted his paper only six months after the paper of Prékopa and he
presented a more general version of the inequality. But it seems that the general version
of a Theorem of Borell [24] has been forgotten. This is why we would like to restate it
here.
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3.25 Theorem. Let Ω1, . . . ,ΩN be open subsets of Rn and let φ : Ω1 × · · · × ΩN → Rn

be a C1 function such that

φ = (φ1, . . . , φn) and
∂φj
∂xki

> 0

for all j ∈ {1, . . . , n} and all i ∈ {1, . . . , N}, k ∈ {1, . . . , n}. Define

Ω0 = φ(Ω1, . . . ,ΩN), and dµi = fi(x)dx where fi ∈ Lloc1 (Ωi), i = 0, 1, . . . , n.

Suppose Φ : [0,+∞)N → [0,+∞) is a continuous function homogeneous of degree one
and increasing in each variable separately. Then the inequality

µ0(φ(A1, . . . , AN)) ≥ Φ(µ1(A1), . . . , µN(AN)),

holds for all nonempty sets A1 ⊂ Ω1, . . . , AN ⊂ ΩN

if and only if
for almost all x1, . . . , xN , for all i = 1, . . . , N, k = 1, . . . n and ρki > 0, we have

f0 ◦ φ(x1, . . . , xN)
n∏
k=1

N∑
i=1

ρki
∂φj
∂xki
≥ Φ

(
f1(x1)

n∏
k=1

ρk1, . . . , fN(xN)
n∏
k=1

ρkN

)
.

Of course, the sets are not necessarily measurable. This is why the measures have
to be understood as inner measures. By the inner measure associated with µ we mean
µ∗(A) = sup{µ(K), K ⊂ A,K compact} defined for any set A. Borell’s proof followed
the argument of Hadwiger and Ohman [57] and Dinghas [34]. The papers of Das Gupta
[32] and of Prékopa [83] illuminate very much the situation. It is now well understood
that we can prove the Prékopa-Leindler inequality (Theorem 3.6) using a parametrisation
argument like we have used in the proof of Theorem 2.2. We refer to [13] for an exhaustive
presentation. Fradelizi (see [44]) kindly indicated to us that this argument can also be
followed for proving Theorem 3.25. Theorem 3.25 is extremely important, not only in
the log-concave case but also in the s-concave setting, s ∈ R. The case s < 0 is also
known in the literature as the case of convex measures or unimodal functions.

The geometric consequences of these functional inequalities are now classical. The-
orem 3.15 is due to Prékopa [82]. Proposition 3.16 appeared first in [33]. Proposition
3.20 and Corollary 3.21 are due to Rogers and Shephard [84] and Theorem 3.23 is due
to Ball [6].

There was a big amount of work to develop the functional forms of some classical
convex geometric inequalities and we refer the interested reader to [4, 45, 46, 66, 67, 47].
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4 Concentration of measure. Dvoretzky’s Theorem.

4.1 Isoperimetric problem

The Brunn-Minkowski inequality yields the isoperimetric inequality for the Lebesgue
measure on Rn. Indeed, suppose we have a compact set A ⊂ Rn and let B be a Euclidean
ball of the radius rA such that |B| = |A|. Then from the Brunn-Minkowski inequality
we have

|Aε|1/n = |A+ εBn
2 |1/n ≥ |A|1/n + |εBn

2 |1/n

= |Bn
2 |1/nrA + |Bn

2 |1/nε = |B + εBn
2 |1/n = |Bε|1/n.

In general, an isoperimetric problem reads as follows.

Isoperimetric problem. Let (Ω, d) be a metric space and let µ be a Borel measure on
Ω. Let α > 0 and ε > 0. We set

Aε = {x ∈ Ω, d(x,A) ≤ ε}.

What are the sets A ⊂ Ω of the measure α such that

µ(Aε) = inf
µ(B)=α

µ(Bε).

This problem is very difficult in general. It has been solved in a few cases. For example,
as we have seen, the case of Rn equipped with the Lebesgue measure and the Euclidean
distance follows from the Brunn-Minkowski inequality. For the spherical and the Gaus-
sian settings the isoperimetry is also known. These two examples will lead us to the
notion of the concentration of measure.

We start with the spherical case (Sn−1, d, σn) where d is the geodesic metric and σn
is the Haar measure on Sn−1.

4.1 Theorem. For all 0 < α < 1 and all ε > 0,

min{σn(Aε), σn(A) = α}

is attained for a spherical cap C = {x ∈ Sn−1, d(x, x0) ≤ r} with x0 ∈ Sn−1, r > 0, such
that σ(C) = α.

A crucial consequence of Theorem 4.1 is the concentration of measure phenomenon
on Sn−1. Indeed, if α = 1

2
then the spherical cap of measure 1/2 is a half sphere. A

simple exercise consists in showing that

σn((C(x0, r))
c
ε) ≤

√
π

8
exp(−(n− 2)ε2/2).

It is now easy to deduce the following Corollary.
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4.2 Corollary. If A is a Borel set on Sn−1 such that σn(A) ≥ 1/2 then

σn(Aε) ≥ 1−
√
π

8
exp

(
−(n− 2)ε2/2

)
.

We can therefore deduce the concentration of Lipschitz functions on the Euclidean
sphere. The statement of this result may be considered as the starting point of the
concentration of measure phenomenon. It tells that any 1-Lipschitz function on the
sphere of high dimension may be viewed as “constant” when looking at its behaviour on
sets of overwhelming measure. Of course the statement is interesting in large dimension.

4.3 Corollary. Let f : Sn−1 → R be 1-Lipschitz with respect to the geodesic distance. If
M is a median of f , namely σn({f ≥M}) ≥ 1

2
and σn({f ≤M}) ≥ 1

2
, then for ε > 0

σn({f ≥M + ε}) ≤
√
π

8
exp(−nε2/4), and σn({f ≤M − ε}) ≤

√
π

8
exp(−nε2/4),

Moreover,

σn({|f −M | ≥ ε}) ≤
√
π

2
exp(−nε2/4).

We also know the solution of the isoperimetric problem in the Gaussian setting. Let
Rn be equipped with the Euclidean distance | · |2 and γn be the standard Gaussian
distribution

dγn(x) = e−|x|
2
2/2

dx

(2π)n/2
.

Let Φ be the distribution function of γ1, i.e., we define for any u ∈ R

Φ(u) =
1√
2π

∫ u

−∞
e−t

2/2 dt.

4.4 Theorem. Let a ∈ R and let A be a Borel set in Rn such that γn(A) = Φ(a), then

γn(Aε) ≥ Φ(a+ ε).

The theorem tells that half spaces are solutions of the isoperimetric problem that is
γn(Aε) ≥ γn(Hε), whenever γn(H) = γn(A) = Φ(a), and for some θ ∈ Sn−1, H = {x ∈
Rn, 〈x, θ〉 ≤ a} is a half space.

As before, having this isoperimetric result at hand, we deduce results concerning the
concentration of measure phenomenon in the Gaussian setting. Since for any r > 0 we
have

1− Φ(r) ≤ 1

2
e−r

2/2

it is easy to deduce the following corollary.
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4.5 Corollary. If A ⊂ Rn satisfies γn(A) ≥ 1/2 then

γn(Ar) ≥ 1− 1

2
e−r

2/2.

Moreover, if F : Rn → R is a 1-Lipschitz function with respect to | · |2 and M is a median
of F then

γn({F ≥M + r}) ≤ 1

2
e−r

2/2, γn({F ≤M − r}) ≤ 1

2
e−r

2/2

and
γn({|F −M | ≥ r}) ≤ e−r

2/2.

4.2 Concentration inequalities

In many applications we just want concentration inequalities and we do not care much
about the constants. This is why we are interested in presenting simpler proofs of these
concentration inequalities, which may lead to more general results. We start off by
proving the following simple and deep inequality.

4.6 Theorem. Let A ⊂ Rn and let γn be the Gaussian measure. Then∫
exp

(
d(x,A)2

4

)
dγn(x) ≤ 1

γn(A)
. (4.1)

Moreover, if γn(A) ≥ 1/2 then

γn(Aε) ≥ 1− 2 exp(−ε2/4). (4.2)

Proof. Let

f(x) =
1

(2π)n/2
exp(d(x,A)2/4) exp(−|x|22/2),

g(y) =
1

(2π)n/2
1A(y) exp(−|y|22/2)

and

h(z) =
1

(2π)n/2
exp(−|z|22/2).

We show that

h

(
x+ y

2

)
≥
√
f(x)

√
g(y).
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Indeed, it suffices to consider the case when y ∈ A. In this case we have d(x,A) ≤ |x−y|2
and therefore

(2π)nf(x)g(y) ≤ exp

(
|x− y|22

4
− |x|

2
2

2
− |y|

2
2

2

)
= exp

(
−|x+ y|22

4

)
= (2π)n

(
h

(
x+ y

2

))2

.

By the Prékopa-Leindler inequality we obtain

1 =

(∫
h

)2

≥
(∫

f

)(∫
g

)
= γn(A)

∫
exp

(
d(x,A)2

4

)
dγn(x).

The second part of the statement follows from Markov’s inequality. Indeed, if γn(A) ≥
1/2 then ∫

exp(d(x,A)2/4)dγn(x) ≤ 2,

hence

γn(d(x,A) ≥ ε) ≤ exp(−ε2/4)

∫
exp

(
d(x,A)2

4

)
dγn(x) ≤ 2 exp(−ε2/4).

As usual, it is now easy to deduce the concentration of measure phenomenon for
1-Lipschitz functions.

4.7 Corollary. If M is a γn median of a 1-Lipschitz function f , then

γn({f ≥M + ε}) ≤ 2 exp(−ε2/4), γn({f ≤M − ε}) ≤ 2 exp(−ε2/4),

and
γn({|f −M | ≥ ε}) ≤ 4 exp(−ε2/4).

Proof. Let A = {f ≤ M}. Then γn(A) ≥ 1/2. Since f is 1-Lipschitz we have {f ≥
M + ε} ⊂ Acε. Therefore,

γn({f ≥M + ε}) ≤ γn(Acε) ≤ 2 exp(−ε2/4).

The second inequality is proven identically, taking A = {f ≤M}.

Sometimes, it is not so easy to use a concentration inequality with respect to the
median of the function. Historically, there is another way to prove Gaussian concentra-
tion inequalities in the setting of random vectors in a Banach space. For a1, . . . , ak in
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a Banach space E and g1, . . . , gk i.i.d. standard Gaussian random variables N (0, 1), we
define a Gaussian vector

X =
k∑
i=1

giai ∈ E.

We define the operator u : `k2 → E by u(ei) = ai, where (ei)
k
i=1 is the standard orthonor-

mal basis in `k2. The weak variance of X is σ(X) =
∥∥u : `k2 → E

∥∥. Observe that

σ(X) = sup
|x|2≤1

‖u(x)‖ = sup
|x|2≤1

sup
ξ∈E?

‖ξ‖?≤1

|ξ(u(x))| = sup
ξ∈E?

‖ξ‖?≤1

sup
|x|2≤1

|ξ(u(x))|.

Writing x =
∑k

i=1 xiei so that |x|22 =
∑
x2
i , we deduce that

sup
|x|2≤1

|ξ(u(x))| = sup
|x|2≤1

∣∣∣∣∣ξ
(

k∑
i=1

xiai

)∣∣∣∣∣ = sup
|x|2≤1

∣∣∣∣∣
k∑
i=1

xiξ(ai)

∣∣∣∣∣ =

(
k∑
i=1

|ξ(ai)|2
)1/2

and consequently,

σ(X) = sup
‖ξ‖?≤1

(
k∑
i=1

|ξ(ai)|2
)1/2

.

We present now a Gaussian concentration inequality of a Lipschitz function around its
mean. The argument is based on the study of a Gaussian process. The important fact
is that if X1, X2 are two independent copies of a Gaussian vector, then for all θ ∈ R we
have the equality in law

(X1 cos θ +X2 sin θ,−X1 sin θ +X2 cos θ) ∼ (X1, X2).

4.8 Theorem. For a Gaussian vector X =
∑k

i=1 giai with values in a Banach space E
we have

P
(∣∣∣ ‖X‖ − E ‖X‖

∣∣∣ > t
)
≤ 2 exp

(
− 2t2

π2σ(X)2

)
. (4.3)

Proof. Let F : Rk → R be given by the formula

F (x) = ‖u(x)‖ =

∥∥∥∥∥
k∑
i=1

xiai

∥∥∥∥∥
and let G1, G2 be two independent copies of the standard Gaussian vector (g1, . . . , gk).
We take

G(θ) = G1 cos θ +G2 sin θ.
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Observe that G(0) = G1, G(π/2) = G2 and

G′(θ) = −G1 sin θ +G2 cos θ.

Therefore,
(G(θ), G′(θ)) ∼ (G1, G2).

The function F is Lipschitz and therefore it is absolutely continuous, so we can apply the
fundamental theorem of calculus. Alternatively, one can approximate F by C1 functions.
We have

F (G2)− F (G1) =

∫ π/2

0

d

dθ
F (G(θ)) dθ =

∫ π/2

0

〈∇F (G(θ)), G′(θ)〉 dθ.

Jensen’s inequality for the convex function exp and the normalized Lebesgue measure
on [0, π/2] yields for every λ > 0,

exp(λ(F (G2)− F (G1))) = exp

(
2

π

∫ π/2

0

λ
π

2
〈∇F (G(θ)), G′(θ)〉 dθ

)

≤ 2

π

∫ π/2

0

exp
(
λ
π

2
〈∇F (G(θ)), G′(θ)〉

)
dθ.

Taking expectation we deduce

EG1EG2 exp(λ(F (G2)− F (G1))) ≤ 2

π

∫ π/2

0

EG1EG2 exp
(
λ
π

2
〈∇F (G(θ)), G′(θ)〉

)
dθ

But the function
θ 7→ EG1EG2 exp

(
λ
π

2
〈∇F (G(θ)), G′(θ)〉

)
is a constant function, since (G(θ), G′(θ)) ∼ (G1, G2). Therefore,

EG1EG2 exp(λ(F (G2)− F (G1))) ≤ EG1EG2 exp
(
λ
π

2
〈∇F (G1), G2〉

)
= EG1 exp

(
λ2π2|∇F (G1)|22/8

)
,

where we have computed the expectation over G2.
Recall that ‖u‖`k2→E = σ(X). We obtain

|F (x)− F (y)| = | ‖u(x)‖ − ‖u(y)‖ | ≤ ‖u(x− y)‖ ≤ σ(X)|x− y|2,

therefore |∇F (·)|2 ≤ σ(X). We then arrive at

EG1EG2 exp(λ(F (G2)− F (G1))) ≤ exp

(
λ2π2σ(X)2

8

)
.
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Using Jensen’s inequality to the convex function exp(−(·)) and the expectation over G1

we have

EG1EG2 exp(λ(F (G2)− F (G1))) ≥ EG2 exp (λ(F (G2)− EG1F (G1)))

= E exp (λ(‖X‖ − E ‖X‖)) .

Therefore,

E exp (λ(‖X‖ − E ‖X‖)) ≤ exp

(
λ2π2σ(X)2

8

)
.

Using Markov’s inequality we get

P (‖X‖ − E ‖X‖ > t) ≤ inf
λ>0

exp

(
−λt+

λ2π2σ(X)2

8

)
= exp

(
− 2t2

π2σ(X)2

)
.

We have seen that the Lipschitz constant of F : Rk → R defined by F (x) =∥∥∥∑k
i=1 xiai

∥∥∥ is σ(X) hence Corollary 4.7 gives a concentration inequality of F around its

median (which is not very different than a concentration inequality around its mean).

4.9 Remark. Of course the same argument yields that if F : Rk → R is L-Lipschitz
with respect to the Euclidean norm on Rk then for every t > 0,

P ((|F (G)− EF (G)| > t)) ≤ 2 exp

(
− 2t2

π2L2

)
,

where G ∼ N (0, Id) is a standard Gaussian vector in Rk.

We now give an improvement of this result, based on the same method of proof.

4.10 Theorem. Let Gω : `k2 → Rn be a random Gaussian operator given by an n × k
matrix with the independent standard Gaussian entries. Let a, b ∈ Sk−1 and let ‖·‖ be a
norm on Rn such that ‖·‖ ≤ | · |2. Then

P (‖Gω(a)‖ − ‖Gω(b)‖ ≥ t) ≤ exp

(
− 2t2

π2|a− b|22

)
. (4.4)

4.11 Corollary. Let ‖ · ‖ be a norm on Rn such that for any x ∈ Rn, ‖x‖ ≤ |x|2. For
any set T ⊂ Sk−1, we have

E sup
a∈T

∣∣∣∣‖Gω(a)‖ − E‖G(n)‖
∣∣∣∣ ≤ C E sup

a∈T
|
〈
G(k), a

〉
|,

where G(n) and G(k) are standard Gaussian vectors in Rn and Rk, and where C is a
universal constant. In particular,

E‖G(n)‖ − C E|G(k)|2 ≤ E inf
a∈Sk−1

‖Gω(a)‖ ≤ E sup
a∈Sk−1

‖Gω(a)‖ ≤ E‖G(n)‖+ C E|G(k)|2.
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Proof. If Gω = (G1, . . . , Gk) = (gij) where 1 ≤ i ≤ n, 1 ≤ j ≤ k then

Gω(a) =
k∑
j=1

ajGj =
n∑
i=1

(
k∑
j=1

ajgij

)
ei,

for a ∈ Sn−1. Therefore Gω(a) has the same distribution as the standard Gaussian vector
G(n) = (g1, . . . , gn) on Rn. Indeed, we only have to check the covariance matrix,

E

(
k∑
j=1

ajgkj

)(
k∑
j=1

ajglj

)
=

k∑
j=1

k∑
j′=1

ajaj′Egkjglj′ =
k∑
j=1

k∑
j′=1

ajaj′δk,lδj,j′

= δk,l

k∑
j=1

a2
j = δk,l,

where we use Kronecker’s delta δk,l = 1 if and only if k = l. Hence E ‖Gω(a)‖ = E
∥∥G(n)

∥∥.
Theorem 4.10 tells that the random process

Y : a 7→ ‖Gω(a)‖ − E ‖Gω(a)‖ = ‖Gω(a)‖ − E
∥∥G(n)

∥∥
is a subgaussian process, namely

P (Y (a)− Y (b) > t) ≤ exp

(
− 2t2

π2|a− b|22

)
.

One can therefore apply the majorizing measure theorem [90] to deduce that for any set
T ⊂ Sk−1, we have

E sup
a∈T
|Y (a)| ≤ C E sup

a∈T
|
〈
G(k), a

〉
|,

where C is a universal constant. The particular case is obtained by taking T = Sk−1. It
can be checked that

E|G(k)|2 = E

(
k∑
i=1

g2
i

)1/2

∼
√
k as k →∞.

Proof of Theorem 4.10. We follow the same idea as in the proof of Theorem 4.8. For
a, b ∈ Sk−1 we set Xa = Gω(a) and Xb = Gω(b). We can find a vector a′ such that a⊥a′
and b = a cos θ0 + a′ sin θ0 with θ0 ∈ [0, π]. Let Xa′ = Gω(a′). We take

X(θ) = Xa cos θ +Xa′ sin θ.
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Since Gω is a linear operator, we have

X(θ0) = Gω(b) = Xb.

We take F (x) = ‖x‖. Then using Jensen’s inequality

E exp (λ(‖Gω(b)‖ − ‖Gω(a)‖)) = E exp (λ (F (Xa cos θ0 +Xa′ sin θ0)− F (Xa)))

≤ 1

θ0

∫ θ0

0

E exp (λθ0 〈∇F (X(θ)), X ′(θ)〉) dθ

= E exp (λθ0 〈∇F (Xa), Xa′〉)
≤ exp(λ2θ2

0/2),

for
|F (x)− F (y)| = |‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ |x− y|2.

Now it suffices to observe that

|a− b|22 = 2(1− cos θ0) = 4 sin2(θ0/2) ≥ 4(2/π)2(θ2
0/4),

and to conclude with Markov’s inequality as it is done in the proof of Theorem 4.8.

4.3 Dvoretzky’s Theorem

We denote by Gn,k the set of k-dimensional subspaces of Rn equipped with its Haar
measure, that is the unique probability measure invariant under the action of the or-
thogonal group on Rn. Dvoretzky’s theorem tells about the random Euclidean sections
of a symmetric convex body in Rn.

4.12 Theorem. Let K be a symmetric convex body in Rn such that Bn
2 ⊂ bK. Let M be

a median of ‖·‖ with respect to σn on Sn−1, where ‖·‖ = ‖·‖K. Then for every ε ∈ (0, 1),
if

k =

⌊
cnM2ε2

b2 ln(4/ε)

⌋
then the set of subspaces E ∈ Gn,k such that

(1− ε)M (K ∩ E) ⊂ Bn
2 ∩ E ⊂ (1 + ε)M (K ∩ E)

has a measure greater than

1− 2 exp
(
−k log

(c
ε

))
.

Here c > 0 is an absolute constant.

We will prove the Gaussian version of this theorem.
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4.13 Theorem. Let K be a symmetric convex body in Rn such that Bn
2 ⊂ bK. Let ‖ · ‖

be the norm associated with K and let G be a standard Gaussian vector in Rn. Then for
every ε > 0, if

k =

⌊
(E ‖G‖)2ε2

b2π2 ln(21/ε)

⌋
then the set of subspaces E ∈ Gn,k such that

(1− ε)E ‖G‖
E|G|2

(K ∩ E) ⊂ Bn
2 ∩ E ⊂ (1 + ε)

E ‖G‖
E|G|2

(K ∩ E) (4.5)

has a measure greater than

1− 4 exp

(
−k log

(
21

ε

))
.

4.14 Remark. Let θ be a random vector uniformly distributed on the unit sphere Sn−1.
Then G ∼ |G|2θ, hence

E ‖G‖
E|G|2

= E ‖θ‖ .

Thus, E ‖G‖ ≈
√
nE ‖θ‖, so up to the fact thatM is replaced with E ‖θ‖ =

∫
Sn−1 ‖θ‖ dσn(θ),

both theorems are identical.

The idea of the proof is standard now. We consider the random Gaussian operator
Gω : `k2 → (Rn, ‖·‖) and we

a) do an individual estimate on deviations of ‖Gω(α)‖ from its mean,

b) apply a discretization argument (construct a net),

c) deduce a general estimate from a net estimate.

4.15 Remark. A procedure to generate the Haar measure νn,k on Gn,k is the following.
Let γn be the standard N (0, Id) Gaussian measure on Rn. Take the push-forward of the
product of γn× . . .× γn on Rn⊕ . . .⊕Rn under the map span{x1, . . . , xk}. The result is
invariant under the action of the orthogonal group and it has to be the Haar measure on
Gn,k because of the uniqueness. If we denote by A the subspaces of Gn,k such that (4.5)
holds true then νn,k(E ∈ A) = P(ImGω ∈ A)

4.16 Lemma. For every δ ∈ (0, 1) there exists a δ-net of Sk−1 with respect to | · |2 of
cardinality less than (3/δ)k.

Proof. Let θ1, . . . , θM be a maximal number of points of Sk−1 such that for all i 6= j,
|θi − θj| > δ. Then, for any θ ∈ Sk−1, there exists i ∈ {1, . . . ,M} such that |θ − θi| ≤ δ,
otherwise, the set would not have been maximal. Hence {θ1, . . . , θM} is a δ-net of Sk−1.

44



It remains to estimate M. The Euclidean balls centred at θi of radius δ/2 are disjoint.
They are all contained in the Euclidean ball centred at the origin and of radius 1 + δ

2
.

We get

vol

(
M⋃
i=1

B

(
θi,

δ

2

))
=

M∑
i=1

vol

(
B

(
θi,

δ

2

))
= M

(
δ

2

)k
vol(Bn

2 )

≤
(

1 +
δ

2

)k
vol(Bn

2 )

which proves that M ≤ (1 + 2/δ)k ≤ (3/δ)k.

4.17 Lemma. Let N be a δ-net of Sk−1 with respect to | · |2 and let T : `k2 → (Rn, ‖·‖)
be an operator such that λ2 ≤ ‖Tα‖ ≤ λ1 for all α ∈ N . Then for all x ∈ Sk−1 we have

λ2 −
δλ1

1− δ
≤ ‖Tx‖ ≤ λ1

1− δ
.

Proof. Let x0 ∈ Sk−1 be such that ‖Tx0‖ = maxx∈Sk−1 ‖Tx‖. There exists an element
α0 of the δ-net N such that |α0 − x0|2 ≤ δ. We have

‖Tx0‖ ≤ ‖Tα0‖ + ‖T (x0 − α0)‖ ≤ λ1 + |α0 − x0|2
∥∥∥∥T ( α0 − x0

|α0 − x0|2

)∥∥∥∥ ≤ λ1 + δ ‖Tx0‖ ,

hence ‖Tx0‖ ≤ λ1/(1 − δ). Now let x ∈ Sk−1 and take α ∈ N such that |α − x|2 ≤ δ.
Then

λ1

1− δ
≥ ‖Tx0‖ ≥ ‖Tx‖ ≥ ‖Tα‖ − ‖T (x− α)‖ ≥ λ2 −

δλ1

1− δ
.

Proof of Theorem 4.13. If G =
∑n

i=1 giei then with E = (Rn, ‖·‖) we deduce from Bn
2 ⊂

bK that
σ(G) = ‖id : `n2 → (Rn, ‖·‖)‖ ≤ b.

Set a ∈ Sk−1. Since Gω(a) ∼ G then by Theorem 4.8 we have

P
(∣∣∣ ‖Gω(a)‖ − E ‖Gω(a)‖

∣∣∣ > t
)
≤ 2 exp

(
−ct

2

b2

)
,

where we can set c = 2/π2. Therefore,

P
(∣∣∣ ‖Gω(a)‖ − E ‖G‖

∣∣∣ > εE ‖G‖
)
≤ 2 exp

(
−cε

2(E ‖G‖)2

b2

)
.
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Let N be an ε-net in the unit sphere of cardinality (3/ε)k. Then the union bound gives

P
(
∃α ∈ N ;

∣∣∣ ‖Gω(a)‖ − E ‖G‖
∣∣∣ > εE ‖G‖

)
≤ 2|N | exp

(
−cε

2(E ‖G‖)2

b2

)
≤ 2 exp

(
k ln

(
3

ε

)
− cε2(E ‖G‖)2

b2

)
Then if

k ln

(
3

ε

)
≤ 1

2
· cε

2(E ‖G‖)2

b2
, (4.6)

we have
∀α ∈ N , (1− ε)E ‖G‖ ≤ ‖Gω(α)‖ ≤ (1 + ε)E ‖G‖

with probability greater than

1− 2 exp

(
−k ln

(
3

ε

))
.

Since
(

1− ε− ε(1+ε)
1−ε

)
= 1−3ε

1−ε , we deduce from Lemma 4.17 that

∀x ∈ Sk−1,
1− 3ε

1− ε
E ‖G‖ ≤ ‖Gω(x)‖ ≤ 1 + ε

1− ε
E ‖G‖

If k satisfies (4.6) then, thanks to ‖·‖ ≤ b | · |, we observe that

k ln

(
3

ε

)
≤ 1

2
cε2(E|G|2)2

and therefore we can get the same conclusion with ‖·‖ replaced by | · |2,

∀x ∈ Sk−1,
1− 3ε

1− ε
E|G|2 ≤ |Gω(x)|2 ≤

1 + ε

1− ε
E|G|2.

Taking the intersection of the two events we infer that with probability greater than

1− 4 exp

(
−k ln

(
3

ε

))
both conclusions hold true for the operator Gω. Using these inequalities and homogeneity
of the norm we have

∀x ∈ Rk 1− 3ε

1 + ε
· E ‖G‖
E|G|2

≤ ‖Gω(x)‖
|Gω(x)|2

≤ 1 + ε

1− 3ε
· E ‖G‖
E|G|2

with high probability. We set E = ImGω. Therefore, if k satisfies (4.6), that is,

k ≤ c(E ‖G‖)2ε2

2b2 ln(3/ε)
,
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then we have

∀y ∈ E 1− 3ε

1 + ε
· E ‖G‖
E|G|2

≤ ‖y‖
|y|2
≤ 1 + ε

1− 3ε
· E ‖G‖
E|G|2

.

Moreover, it is clear that dimE = k and changing ε to ε/7, we achieve our goal. The
result follows from Remark 4.15.

We will need later a dual version of this theorem. We write it for a simple choice of ε.

4.18 Theorem. Let K be a symmetric convex body in Rn such that its support function
hK satisfies hK(·) ≤ b | · |2. If

k ≤ c(EhK(G))2

b2

then the set of subspaces E ∈ Gn,k such that

1

2

EhK(G)

E|G|2
PEB

n
2 ⊂ PEK ⊂ 3

2

EhK(G)

E|G|2
PEB

n
2

has probability greater than
1− 4 exp(−ck),

where c is a universal constant.

Proof. Note that ‖·‖K◦ = hK , where hK is the support function of a convex body K.
The hypothesis ‖·‖K◦ ≤ b | · |2 is equivalent to Bn

2 ⊂ bK◦. Applying Theorem 4.13 to
K◦, we get that for ε = 1/2, if

k ≤ c(EhK(G))2

b2
,

then there exists a set of subspaces E ∈ Gn,k of measure greater than 1− 4e−ck such that

EhK(G)

2E|G|2
(K◦ ∩ E) ⊂ Bn

2 ∩ E ⊂
3EhK(G)

2E|G|2
(K◦ ∩ E).

We can now dualize these inclusions using (Bn
2 ∩ E)◦ = PEB

n
2 , (K◦ ∩ E)◦ = PEK to

obtain
EhK(G)

2E|G|2
PEB

n
2 ⊂ PEK ⊂ 3EhK(G)

2E|G|2
PEB

n
2 .

To conclude this part, we state and prove the classical Dvoretzky’s Theorem.

4.19 Theorem. Let (Rn, ‖ · ‖) be a normed space. For every ε ∈ (0, 1), there exists a
subspace E ⊂ (Rn, ‖ · ‖) of dimension k ≥ c(ε) log n such that d(E, `k2) ≤ 1 + ε.

Consequently, `2 is finitely representable in any infinite dimensional Banach space
X.
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Proof. Although in the notes the concept of Banach Mazur distance between two Banach
spaces has not been explained, we refer for a basic presentation to classical books on
Banach spaces, e.g. [80, 92]. The statement of the theorem means that given Rn equipped
with a norm ‖ · ‖ and its unit ball K then one can find a linear transformation T ∈ GLn
such that T (K) admits a section with a subspace E of dimension k satisfying

r Bn
2 ∩ E ⊂ T (K) ∩ E ⊂ RBn

2 ∩ E with
R

r
≤ 1 + ε.

Of course, Bn
2 ∩ E is nothing else but a Euclidean ball in dimension k that you may

identify as Bk
2 . We can now start the proof.

Let T ∈ GLn be such that Bn
2 is the ellipsoid of maximal volume contained in T (K).

This map exists and is uniquely characterized by Theorem 2.10. Of course, Bn
2 ⊂ T (K)

and by Theorem 2.11 we get

E‖G‖T (K) ≥ E|G|∞ = E max
1≤i≤n

|gi| ≥ c
√

log n,

where the last inequality follows from a simple estimate of the distribution of the maxi-
mum of n independent Gaussian standard N (0, 1) random variables. By Theorem 4.13
with b = 1 we conclude that for every ε ∈ (0, 1) there exists a subspace E of dimension
greater than c (ε2/ log(1/ε)) log n such that

(1− ε)
E‖G‖T (K)

E|G|2
(T (K) ∩ E) ⊂ Bn

2 ∩ E ⊂ (1 + ε)
E‖G‖T (K)

E|G|2
(T (K) ∩ E)

which is the desired conclusion up to a change of ε to ε/3.
By definition, `2 is finitely representable in an infinite dimensional Banach space X

if and only if for any k ∈ N and any ε ∈ (0, 1), there exists a k dimensional subspace
E ⊂ X such that d(E, `k2) ≤ 1 + ε. This follows immediately since log n goes to infinity
as n goes to infinity.

4.4 Comparison of moments of a norm of a Gaussian vector

From the Gaussian concentration inequalities we can deduce the following theorem.

4.20 Theorem. There is a constant c such that for any norm ‖ · ‖ on Rn whose unit
ball is denoted by K, the following holds true. Assume that ‖·‖ ≤ b | · |2. Then(

E
∣∣∣ ‖G‖ − E ‖G‖

∣∣∣p)1/p

≤ c b
√
p, for p ≥ 1, (4.7)

where G is a standard N (0, Id) Gaussian vector in Rn. Set

k?(K) =

(
E ‖G‖
b

)2

.
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If 1 ≤ p ≤ k?(K) then

1 ≤ (E ‖G‖p)1/p

E ‖G‖
≤ c. (4.8)

If p > k?(K) then

(E ‖G‖p)1/p ≤ c b
√
p. (4.9)

In addition, if b is the smallest constant such that ‖·‖K ≤ b | · |2, then, for all 1 ≤ p <∞
we have

c b
√
p ≤ (E ‖G‖p)1/p

. (4.10)

Proof. From Theorem 4.8 we deduce

E
∣∣∣ ‖G‖ − E ‖G‖

∣∣∣p = p

∫ ∞
0

tp−1P (| ‖G‖ − E ‖G‖ | > t) dt ≤ 2p

∫ ∞
0

tp−1 exp(−ct2/b2) dt

=
p bp

cp/2

∫ ∞
0

u
p
2
−1 exp(−u) du =

p bp

cp/2
Γ(p/2).

Therefore to obtain the first inequality it suffices to use Stirling’s formula. It follows
from the triangle inequality that∣∣∣(E ‖G‖p)1/p − E ‖G‖

∣∣∣ ≤ (E∣∣∣ ‖G‖ − E ‖G‖
∣∣∣p)1/p

≤ c b
√
p,

therefore if p ≤ k?(K) we have

(E ‖G‖p)1/p ≤ E ‖G‖ + cb
√
p ≤ (1 + c)E ‖G‖ .

If p > k?(K) then

(E ‖G‖p)1/p ≤ E ‖G‖ + cb
√
p ≤ (1 + c)b

√
p.

Moreover, for all 1 ≤ p <∞ we have

(E ‖G‖p)1/p = (E sup
‖φ‖K◦=1

| 〈φ,G〉 |p)1/p ≥ sup
‖φ‖K◦=1

(E| 〈φ,G〉 |p)1/p.

For any φ ∈ Rn, 〈φ,G〉 ∼ N (0, |φ|2), therefore

(E| 〈φ,G〉 |p)1/p ≥ c |φ|2
√
p.

If b is the smallest constant such that ‖·‖K ≤ b | · |2 then | · |2 ≤ b ‖·‖K◦ and there exists
φ ∈ Rn such that |φ|2 = b ‖φ‖K◦ . Therefore, (E ‖G‖p)1/p ≥ c b

√
p.
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4.5 Notes and comments

The results presented in this chapter are at the heart of the study of high dimensional
concentration phenomena. They can be considered as the basics of the theory. Theorem
4.1 is due to Lévy [68]. Theorem 4.12 is taken from [75]. Moreover the isoperimetric
problem on the sphere is delicate and a proof based on the Steiner symmetrisation can be
found in [37]. The paper [37] is a masterpiece on this subject. Vitali Milman had a great
influence in the discovery of the power of the concentration measure phenomenon on the
Euclidean sphere. His proof of the quantified version of Dvoretzky’s Theorem 4.19 is the
starting point of a main branch of the local theory of Banach spaces. We emphasize that
the original paper of Dvoretzky [35] contains also a quantified finite dimensional version.

In the Gaussian setting, the isoperimetric problem was solved by Sudakov and Tsirelson
[89] as well as independently by Borell [23], see Theorem 4.4. It may be deduced from
the spherical case by using the Poincaré lemma. There is also a proof by Ehrhard, [36]
which uses the so-called Ehrhard symmetrisations.

As we said, all these proofs are delicate and this is why it was attractive to study the
concentration of measure phenomenon by itself. We have presented simple proofs in the
Gaussian setting. The proof of Theorem 4.8 is due to Maurey and Pisier. We followed the
presentation from [80]. Theorem 4.10 is due to Schechtman [85] but we followed a proof
indicated to us by Pisier. Up to the constant C, its Corollary 4.11 is know as consequences
of Gordon’s min-max inequalities [50]. We have showed a proof that uses the Majorizing
Measure Theorem of Talagrand [90]. Never mind the original papers of Gordon [50, 51],
a detailed proof of the Gordon’s min-max inequalities can be found in [69]. Theorem 4.6
is due to Talagrand [91] and we have followed the argument of Maurey [73] using the
so-called Property (τ). It can be extended to the setting of uniformly smooth Banach
spaces [87, 3] recovering a concentration of measure phenomenon on uniformly convex
spaces due to Gromov and Milman [53]. Theorem 4.20 is due to Litvak, Milman and
Schechtman [71].

Several books about the concentration of measure phenomenon and its applications
have been written. We refer to [65, 64, 25, 30] for further readings about various other
results.
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5 Reverse Hölder inequalities and volumes of sec-

tions of convex bodies

5.1 Berwald’s inequality and its extensions

We start by formulating a reverse Hölder inequality due to Berwald [15].

5.1 Theorem. Let φ be a nonnegative concave function supported on a convex body K
in Rn. Then for any 0 < p ≤ q we have((

n+ p

n

)
1

|K|

∫
K

φ(x)p dx

) 1
p

≥
((

n+ q

n

)
1

|K|

∫
K

φ(x)q dx

) 1
q

.

Note that (
n+ p

n

)
=

(n+ p)(n+ p− 1) . . . (p+ 1)

n!
=

1

p
∫ 1

0
(1− u)nup−1 du

. (5.1)

Observe also that for any r such that the integrals are finite,

1

|K|

∫
K

φ(x)r+1 dx = (r + 1)

∫ +∞

0

trµ({φ ≥ t}) dt, (5.2)

where µ is the measure uniformly distributed on K, µ(A) = |K ∩ A|/|K|. Since φ is
concave we have

{φ ≥ (1− λ)u+ λv} ⊃ (1− λ){φ ≥ u}+ λ{φ ≥ v}.

Let us define f(t) = µ({φ ≥ t}). Since K is a convex body, the measure µ satisfies the
Brunn-Minkowski inequality, and by Theorem 3.2, we have

f 1/n((1− λ)u+ λv) ≥ (1− λ)f 1/n(u) + λf 1/n(v) (5.3)

whenever f(u)f(v) > 0. We state a generalisation of Berwald’s inequality.

5.2 Lemma. Let h : R+ → R+ be a decreasing function. Let Φ : R+ → R+ be such that
Φ(0) = 0 and the function x 7→ Φ(x)/x is increasing. Then the function

G(p) =

(∫ +∞
0

h(Φ(x))xp dx∫ +∞
0

h(x)xp dx

) 1
p+1

is decreasing on (−1,∞).

It is a generalisation of Berwald’s inequality. First we show how it implies Theorem
5.1 and then we prove the lemma.

51



Proof of Theorem 5.1. Let h(u) = (1− u)n1[0,1](u). Take

Φ(x) = 1− µ({φ ≥ x})1/n,

where µ is uniformly distributed on K. By inequality (5.3), we know that Φ is convex.

Obviously, Φ(0) = 0. Thus, Φ(x)
x

= Φ(x)−Φ(0)
x−0

is increasing. Hence, from Lemma 5.2, the
function

G(p) =

(∫ +∞
0

µ({φ ≥ x})xp dx

B(n+ 1, p+ 1)

) 1
p+1

is decreasing on (−1,+∞). Here and throughout we shall use the Beta function B(x, y) =∫ 1

0
tx−1(1− t)y−1dt. It follows from (5.1) and (5.2) that(
n+ p+ 1

n

)
1

|K|

∫
K

φ(x)p+1 dx = (p+ 1)

(
n+ p+ 1

n

)∫ +∞

0

tpµ({φ ≥ t}) dt = G(p)p+1,

and Berwald’s inequality is proved.

Proof of Lemma 5.2. Let α = 1/G(p). Then it follows that∫ +∞

0

h(αx)xp dx =

∫ +∞

0

h(Φ(x))xp dx.

Set

g(t) =

∫ +∞

t

(h(αx)− h(Φ(x)))xp dx.

Then by the definition of α we have g(0) = 0. Obviously g(∞) = 0. We are able to
analyse the sign of h(αx)−h(Φ(x)). Since Φ(x)/x is increasing, there exists x0 ∈ [0,+∞]
such that Φ(x) ≤ αx for x < x0 and Φ(x) ≥ αx for x > x0. Since h is decreasing we
have h(αx)−h(Φ(x)) ≤ 0 for x < x0 and h(αx)−h(Φ(x)) ≥ 0 for x > x0. Therefore, we
know the sign of g′(t) and we can conclude that g is increasing on [0, x0] and decreasing
on [x0,∞). Since g(0) = g(+∞) = 0, we deduce that g ≥ 0 on R+.

The statement of the lemma follows by integration by parts. Indeed, taking −1 <
p ≤ q, ∫ +∞

0

xqh(Φ(x)) dx =

∫ +∞

0

xph(Φ(x))xq−p dx

= (q − p)
∫ +∞

0

xph(Φ(x))

∫ x

0

uq−p−1 du dx

= (q − p)
∫ +∞

0

uq−p−1

∫ +∞

u

xph(Φ(x)) dx du

≤ (q − p)
∫ +∞

0

uq−p−1

∫ +∞

u

xph(αx) dx du

=

∫ +∞

0

h(αx)xq dx =
1

αq+1

∫ +∞

0

h(x)xq dx,
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which is equivalent to G(q) ≤ G(p).

5.3 Proposition. Suppose f : R+ → R+ is log-concave with f(0) = 1. Then the function

p 7→

(∫ +∞
0

tpf(t) dt

Γ(p+ 1)

) 1
p+1

is decreasing on (−1,+∞).

Proof. Let h(t) = e−t. By log-concavity we have f = e−Φ, where Φ is convex on R+, and
since f(0) = 1, we have Φ(0) = 0. Clearly f = h ◦Φ, therefore we can apply Lemma 5.2
and use the fact that ∫ +∞

0

e−xxp dx = Γ(p+ 1).

We shall present now a crucial property of log-concave distributions which says that
they have log-concave tails. It will be important in view of the next proposition, where
we discuss the comparison of moments of random variables with log-concave tails.

5.4 Proposition. If f : R→ R is log-concave then it has log-concave tail, namely

t 7→
∫ +∞

t

f(x) dx

is log-concave.

Proof. We define functions g(x) = f(x)1(t1,∞)(x), h(y) = f(y)1(t2,∞)(y) and m(z) =
f(z)1(λt1+(1−λ)t2,∞)(z). Then log-concavity of f yields

m(λx+ (1− λ)y) ≥ g(x)λh(y)1−λ

and by the Prékopa-Leindler inequality, Theorem 3.6, we have∫ +∞

λt1+(1−λ)t2

f(x) dx ≥
(∫ +∞

t1

f(x) dx

)λ(∫ +∞

t2

f(x) dx

)1−λ

.

We state the reverse Hölder inequalities for positive random variables with log-
concave tails. In particular, due to Proposition 5.4, it is valid for log-concave distributions
as well.
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5.5 Proposition. Suppose Z is a positive random variable with log-concave tail, i.e. the
function f(t) = P (Z > t) is log-concave. Let E be the exponential random variable with
parameter 1. Then for p > q > 0 we have

(EZp)1/p ≤ (EEp)1/p

(EEq)1/q
(EZq)1/q.

5.6 Remark. Note that EEp = Γ(p+ 1), so

(EEp)1/p

(EEq)1/q
≤ C

p

q
,

where C is a universal constant.

Proof. Define

G(p) =
1

Γ(p)

∫ +∞

0

f(x)xp−1 dx =
EZp

EEp
.

By Proposition 5.3 we have
G(p)1/p ≤ G(q)1/q.

The last proposition is a typical example of a reverse Hölder inequality. We deduce
the so-called Khinchine type inequality for linear functionals.

5.7 Corollary. Let θ ∈ Sn−1, take H = θ⊥ and H+ = {x ∈ Rn, 〈x, θ〉 ≥ 0}. Let

〈x, θ〉+ =

{
〈x, θ〉 , if 〈x, θ〉 ≥ 0
0 otherwise

.

Then for every log-concave probability measure µ on Rn

(∫
Rn
〈x, θ〉p+ dµ(x)

)1/p

≤ Γ(p+ 1)1/p

Γ(q + 1)1/q

(∫
Rn
〈x, θ〉q+ dµ(x)

)1/q

(5.4)

for any p ≥ q > 0.
In particular, it holds for a uniform measure µ on a convex body K ⊂ Rn.

5.8 Remark. Since | 〈x, θ〉 |p = 〈x, θ〉p+ + 〈x,−θ〉p+, it is easy to see that inequality (5.4)
holds true for the function | 〈x, θ〉 | instead of 〈x, θ〉+.

Proof of Corollary 5.7. The function φ(x) = 〈x, θ〉 is affine, hence for every u, v ≥ 0, and
any λ ∈ [0, 1]

(1− λ){〈x, θ〉+ ≥ u}+ λ{〈x, θ〉+ ≥ v} ⊂ {〈x, θ〉+ ≥ (1− λ)u+ λv}.
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By log-concavity of µ, we deduce that the function t 7→ f(t) = µ({〈x, θ〉+ ≥ t}) is
log-concave on R+. Let Z be a random variable with tail f . Then we have∫

Rn
〈x, θ〉p+ dµ(x) = p

∫ +∞

0

tp−1µ({〈x, θ〉+ ≥ t}) dt = EZp

and the result follows from Proposition 5.5.

We quickly explain why Lemma 5.2 is related to the study of the comparison of the
volume of a convex body with the volume of its hyperplane sections.

5.9 Corollary. Let K be a symmetric convex body and let p > 0. Take θ ∈ Sn−1 and
H = θ⊥. Then(

1

|K|

∫
K

| 〈x, θ〉 |p dx

)1/p

≤ volnK

voln−1(K ∩H)

n

2

(
n!

(p+ 1) . . . (p+ n)

)1/p

.

5.10 Remark. There is equality if K is a double cone

conv
{
{x = (x1, . . . , xn) ∈ Rn | x2

1 + . . .+ x2
n−1 ≤ 1, xn = 0 }, en,−en

}
and H = e⊥n .

5.11 Remark. If K is such that its inertia matrix is the identity, that is for all θ ∈ Rn

1

|K|

∫
K

| 〈x, θ〉 |2 dx = |θ|22,

then taking p = 2 in Corollary 5.9 yields

voln−1(K ∩H)

volnK
≤

√
n2

2(n+ 1)(n+ 2)
.

This type of inequality is related with the slicing problem.

Proof of Corollary 5.9. Since K is symmetric we have

1

|K|

∫
K

| 〈x, θ〉 |p dx =

∫
R
|t|pvoln−1{x ∈ K, 〈x, θ〉 = t}

volK
dt

= 2

∫ +∞

0

tp
voln−1K ∩ (tθ +H)

volK
dt.

As a consequence of the Brunn-Minkowski inequality, we have seen in Theorem 3.17 that
the function

f(t) =
voln−1 (K ∩ (tθ +H))

volK
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is 1
n−1

concave. Let h(t) = (1− t)n−11[0,1](t). Take

Φ(x) = 1−
(
f(x)

f(0)

) 1
n−1

.

Obviously Φ is convex on R and Φ(0) = 0. Therefore, x 7→ Φ(x)/x is increasing. Since
max f = f(0), we have Φ(x) ∈ [0, 1]. By Lemma 5.2, we know that

G(p) =

( ∫ +∞
0

xp f(x)
f(0)

dx∫ 1

0
xp(1− x)n−1 dx

) 1
p+1

=

(
1
2

1
|K|

∫
K
| 〈x, θ〉 |p dx

|K∩H|
|K|

∫ 1

0
xp(1− x)n−1 dx

) 1
p+1

is decreasing for p > −1. Hence for all p ≥ 0, G(p) ≤ G(0). Rewriting the inequality,
we see that we are done. Indeed, the inequality G(p) ≤ G(0) is equivalent to(

1
2|K|

∫
K
| 〈x, θ〉 |p dx

|K∩H|
|K| B(p+ 1, n)

) 1
p+1

≤ n

2
· |K|
|K ∩H|

.

Therefore,(
1

|K|

∫
K

| 〈x, θ〉 |p dx

) 1
p

≤
(

2|K ∩H|
|K|

B(p+ 1, n)

) 1
p
(
n

2
· |K|
|K ∩H|

) p+1
p

=
n

2

|K|
|K ∩H|

(nB(p+ 1, n))1/p.

It suffices to notice that

nB(p+ 1, n) = n
Γ(n)Γ(p+ 1)

Γ(n+ p+ 1)
=

n!Γ(p+ 1)

Γ(n+ p+ 1)
=

n!

(p+ 1) . . . (p+ n)
.

Now we conclude this section with the strongest form of generalisation of Berwald’s
inequality.

5.12 Theorem. Let f : [0,∞) → [0,∞) be 1/n-concave on its support. We define
H : [−1,∞)→ R+ by

H(p) =


∫ +∞

0
tpf(t) dt

B(p+ 1, n+ 1)
p > −1

f(0) p = −1

.

Then H is log-concave on [−1,+∞).
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Another proof of Theorem 5.1. We have

1

|K|

∫
K

φ(x)p+1 dx = (p+ 1)

∫ +∞

0

tpµ({φ ≥ t}) dt,

where µ(A) = |K ∩ A|/|K|. We have seen in (5.3) that the function f(t) = µ({φ ≥ t})
is 1/n-concave, therefore by Theorem 5.12,

p ∈ [−1,+∞) 7→ H(p) =

(
n+ p+ 1

n

)
1

|K|

∫
K

φ(x)p+1 dx

is log-concave. Take −1 ≤ p ≤ q. We can find λ ∈ [0, 1] such that p = (1− λ)(−1) + λq,
i.e. λ = p+1

q+1
. By log-concavity of H we have

H(p) ≥ H(−1)1−λH(q)λ,

and since H(−1) = f(0) = 1 we obtain H(p)1/(p+1) ≥ H(q)1/(q+1).

5.13 Corollary. Let f be a log-concave function on R+. Then the function H : [−1,∞)
→ R+ given by

H(p) =


∫ +∞

0
tpf(t) dt

Γ(p+ 1)
p > −1

f(0) p = −1

is also log-concave. Moreover, if f(0) = 1 then the function

p 7→

(∫ +∞
0

tpf(t) dt

Γ(p+ 1)

) 1
p+1

is decreasing.

Proof. Let f = e−φ, where φ is convex. The function

g(t) =

(
1− φ(tn)

n

)n
+

is (1/n)-concave, therefore by Theorem 5.12 the function

p 7→

∫ +∞
0

tp
(

1− φ(tn)
n

)n
+

dt

B(p+ 1, n+ 1)
=

Γ(p+ n+ 2)

Γ(p+ 1)Γ(n+ 1)

1

np+1

∫ +∞

0

sp
(

1− φ(s)

n

)n
+

ds

is log-concave for p ∈ [−1,+∞). Letting n→∞ gives the result.
To prove the other part it suffices to observe that for every log-concave function F

such that F (0) = 1 the function x 7→ − ln(F (x))
x

is increasing. Consequently, we have
recovered Proposition 5.3.
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Proof of Theorem 5.12. Since f is nonnegative, 1/n-concave on its support and satisfies
some integrability condition at infinity (so that H is defined at least at one point), we
know that f is supported on a finite interval.

Step 1. Take −1 < p < q < r. We can find nonnegative parameters a, b such that for
the function ga,b : R+ → R+ given by

ga,b(t) = a

(
1− t

b

)n
1[0,b](t)

we have ∫ +∞

0

tpga,b(t) dt =

∫ +∞

0

tpf(t) dt := mp,

and ∫ +∞

0

tqga,b(t) dt =

∫ +∞

0

tqf(t) dt := mq.

Indeed, for any s > −1 ∫ +∞

0

tsga,b(t) dt = abs+1B(s+ 1, n+ 1),

so the solution reads

b =

(
mp

mq

· B(q + 1, n+ 1)

B(p+ 1, n+ 1)

) 1
p−q

, a =

(
mq+1
p

mp+1
q

· B(q + 1, n+ 1)p+1

B(p+ 1, n+ 1)q+1

) 1
q−p

.

Step 2. Denote by Hg the function H associated with ga,b. Then Hg(s) = abs+1, so
we have

Hg(q) = Hg(p)
1−λHg(r)

λ,

whenever (1−λ)p+λr = q. This means that we have equality in the special case of Hg.
Step 3. Set h = g − f . We will prove that∫ +∞

0

trh(t) dt ≥ 0. (5.5)

This will conclude the statement since for (1− λ)p+ λr = q

H(q) = Hg(q) = Hg(p)
1−λHg(r)

λ ≥ H(p)1−λH(r)λ.

Let

H1(t) =

∫ +∞

t

sph(s) ds, H2(t) =

∫ +∞

t

sq−p−1H1(s) ds.
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We have
∫ +∞

0
tph(t) dt = 0, thus H1(∞) = H1(0) = 0. We observe that

0 =

∫ +∞

0

tqh(t) dt =

∫ +∞

0

tq−ptph(t) dt

= −
∫ +∞

0

tq−pH ′1(t) dt = (q − p)
∫ +∞

0

tq−p−1H1(t) dt

= (q − p)H2(0),

whence H2(∞) = H2(0) = 0. Since H ′2(t) = −tq−p−1H1(t), the function H1 changes sign
at least once (if not, then H ′2 ≥ 0 or H ′2 ≤ 0, and since H2(0) = H2(∞) = 0, we have
H2 ≡ 0, but then H1 ≡ 0, h ≡ 0 and there is nothing to do). Since H1 changes sign
at least once and H1(0) = H1(∞) = 0, therefore H ′1 changes sign at least twice. Since
H ′1(t) = −tph(t), we have that h changes sign at least twice. Moreover, g1/n is affine and
f 1/n is concave. Therefore, h changes sign exactly twice at points t1 and t2 and we have
a > f(0) and b > max suppf .

Now we can analyse the behaviour of our functions,

t

h(t)

H ′1(t)

H1(t)

H ′2(t)

H2(t)

0 t1 t2 +∞

+ 0 − 0 +

− 0 + 0 −

00

00

0

+ 0 −

00 00
.

Hence H2 ≥ 0. Therefore,∫ +∞

0

trh(t) dt =

∫ +∞

0

tr−ptph(t) dt = −
∫ +∞

0

tr−pH ′1(t) dt

= (r − p)
∫ +∞

0

tr−p−1H1(t) dt = (r − p)
∫ +∞

0

tr−qtq−p−1H1(t) dt

= −(r − p)
∫ +∞

0

tr−qH ′2(t) dt = (r − p)(r − q)
∫ +∞

0

tr−q−1H2(t) dt ≥ 0.

This proves (5.5).

59



5.2 Some concentration inequalities

With a view to extending Corollary 5.7 to a vector setting, we require new tools. Indeed,
a function like a norm ‖ · ‖ is not concave but convex and Theorem 5.1 cannot be
applied. In this setting, the reverse Hölder inequalities are based on some concentration
inequalities of log-concave measures.

5.14 Lemma. Let K be a symmetric convex set in Rn and let µ be a log-concave prob-
ability measure such that µ(K) = θ > 1

2
. Then

µ((tK)c) ≤ θ

(
1− θ
θ

) t+1
2

≤
(

1− θ
θ

) t
2

, t ≥ 1.

Proof. We prove that for any t ≥ 1

Kc ⊃ 2

t+ 1
(tK)c +

t− 1

t+ 1
K. (5.6)

To this end, suppose that y ∈ K and that z /∈ tK. If there was x := 2
t+1
z+ t−1

t+1
y ∈ K, then

we would have 1
t
z = t+1

2t
x− t−1

2t
y ∈ K by convexity and symmetry of K, a contradiction.

Hence (5.6) is proved. By log-concavity of µ, we get

1− θ = µ(Kc) ≥
[
µ((tK)c)

] 2
t+1
[
µ(K)

] t−1
t+1 =

[
µ((tK)c)

] 2
t+1 θ

t−1
t+1 .

Rewriting the expression, we arrive at

µ((tK)c) ≤ (1− θ)
t+1
2 θ

1−t
2 = θ

(
1− θ
θ

) t+1
2

=

(
1− θ
θ

) t
2 √

θ(1− θ) ≤
(

1− θ
θ

) t
2

.

Observe that this inequality is meaningful only if θ > 1/2 so that (1− θ)/θ < 1.

5.3 Kahane Khinchine type inequalities

5.15 Proposition. Let µ be a log-concave probability measure on Rn and let ‖ · ‖ be a
norm. Then

µ

({
‖x‖ ≥ 4t

∫
‖x‖dµ(x)

})
≤ e−t/2, t ≥ 1.

Proof. Let I =
∫
‖x‖dµ(x). Then by Markov’s inequality µ(‖x‖ ≥ 4I) ≤ 1/4. Let K

be the symmetric convex body defined by {x : ‖x‖ ≤ 4 I}. Then µ(K) = θ ≥ 3
4

and
(tK)c = {‖x‖ ≥ 4 t I}. We conclude from Lemma 5.14 that

µ({‖x‖ ≥ 4 t I}) = µ((tK)c) ≤
(

1− θ
θ

) t
2

≤ 3−t/2 ≤ e−t/2.
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Such exponential decay of the tails is related to the following reverse Hölder inequality.

5.16 Proposition. Let µ be a log-concave probability measure and ‖ ·‖ be a norm. Then
for any 1 ≤ p ≤ q we have(∫

‖x‖q dµ(x)

)1/q

≤ 12
p

q

(∫
‖x‖p dµ(x)

) 1
p

.

Proof. Observe that by replacing ‖ · ‖ by its multiple, we can assume that∫
‖x‖p dµ(x) = 1.

Therefore, by Markov’s inequality, we have

µ({‖x‖ ≥ 4}) ≤ 4−p.

Take K = {x : ‖x‖ ≤ 4}. Then µ(K) = θ ≥ 1 − 4−p > 1
2

and (tK)c = {x : ‖x‖ > 4t}.
By Lemma 5.14, we have

µ({‖x‖ > 4t}) ≤
(

1− θ
θ

) t
2

≤
(

4−p

1− 4−p

) t
2

≤ e−tp/2 for t ≥ 1

since 4p ≥ ep + 1 for all p ≥ 1. Using this inequality, we can write∫
‖x‖q dµ(x) = q

∫ 4

0

tq−1µ({‖x‖ ≥ t}) dt+ q

∫ +∞

4

tq−1µ({‖x‖ ≥ t}) dt

≤ 4q + 4qq

∫ +∞

1

sq−1µ({‖x‖ ≥ 4s}) ds

≤ 4q + 4qq

∫ +∞

0

sq−1e−s p /2 ds

≤ 4q +

(
8

p

)q
Γ(q + 1).

Since for every q ≥ 1, Γ(q + 1)1/q ≤ q, we deduce that for any 1 ≤ p ≤ q,(∫
‖x‖|q dµ(x)

)1/q

≤ 4 + 8
q

p
≤ 12

q

p
.

5.17 Remark. For θ ∈ Sn−1, one can take ‖x‖ = | 〈x, θ〉 | whose unit ball is the symmet-
ric strip {x : | 〈x, θ〉 | ≤ 1}. In that case, Proposition 5.16 is, up to a universal constant,
the same as the symmetric version of Corollary 5.7
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5.4 Notes and comments

The starting point of this section is an old result of Berwald [15]. His paper is readable
and it is not difficult to go over all the statements to see that Theorem 5.1 is nothing
else but Satz 7 from [15]. We followed a modern presentation of the results. Lemma 5.2
is taken from [76] and the reader may find there several other types of reverse Hölder
inequalities. Moreover, paper [76] contains a beautiful presentation of the slicing problem
for convex bodies, where relations between the volume of sections of a convex set with
the moments of linear functionals are established, like Corollary 5.9. The strongest form
of reverse Hölder inequalities, Theorem 5.12 and Corollary 5.13 appeared in [20], see also
[31]. Corollary 5.7 is stated in [74].

The non-symmetric version of inequalities like those obtained in Corollary 5.9 and
the functional versions are of interest in the study of geometry of convex bodies. It has
been done by Makai-Martini [72] and Fradelizi [40, 41, 42].

The extension of Corollary 5.7 to a vector setting is known since the work of Borell
[22]. Lemma 5.14 is taken from [22] and is known as Borell’s lemma. Proposition 5.16,
is also stated in [22]. It is usually referred to as the Kahane Khinchine type inequality
because it implies the classical Kahane inequality, see [77]. However, Corollary 5.7 and
Proposition 5.16 do not cover the case when p goes to zero. It had been an open problem
for some time and took quite an effort. The problem for p ≥ 0 was addressed by Lata la
[62]. Then the first named author proved the equivalence for negative exponents (see
[54]), using a completely different approach — the so-called localization lemma. Lata la’s
theorem as well as Guédon’s result led to a strong result of Bobkov [16]. It is also worth
to mention here that Lata la’s method could be used for the negative exponents, as it
was shown in [70]. It has to be noticed that a more general statement than Lemma 5.14
has been established in [54]. Namely, we have the following theorem.

5.18 Theorem. Let K be a symmetric convex body in Rn and let µ be log-concave
probability measure. Then for any t ≥ 1,

µ((tK)c) ≤ (1− µ(K))
t+1
2 .

It is the key tool to prove Kahane Khinchine type inequalities for negative exponents
[54]. More general concentration inequalities for level sets of functions instead of norms
have been established by Bobkov [17], Bobkov-Nazarov [19] and Fradelizi [43].
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6 Concentration of mass of a log-concave measure

6.1 The result

Let X be a random vector in Rn, and define σp(X) by

σp(X) = sup
θ∈Sn−1

(E| 〈X, θ〉 |p)1/p .

Our goal is to prove the following theorem.

6.1 Theorem. There exists a constant C such that for any random vector X distributed
according to a log-concave probability measure on Rn, we have for all p ≥ 1,

(E|X|p2)1/p ≤ C (E|X|2 + σp(X)) . (6.1)

Moreover, if X is such that for all θ ∈ Sn−1, E 〈X, θ〉2 = 1, then for any t ≥ 1 we have

P(|X|2 ≥ c1 t
√
n) ≤ e−t

√
n, (6.2)

where c1 is a universal constant.

Proof of the “moreover” part. Since X is distributed according to a log-concave proba-
bility, we get from Corollary 5.7 (or Proposition 5.16) that for all p ≥ 1,

σp(X) = sup
θ∈Sn−1

(E| 〈X, θ〉 |p)1/p ≤ C ′ p sup
θ∈Sn−1

(
E| 〈X, θ〉 |2

)1/2
,

where C ′ is a universal constant. Moreover, since for all θ ∈ Sn−1, E| 〈X, θ〉 |2 = 1, we
deduce that

E|X|2 ≤ (E|X|22)1/2 =

(
n∑
i=1

E| 〈X, ei〉 |2
)1/2

=
√
n

and conclude from (6.1) that for all p ≥ 1,

(E|X|p2)1/p ≤ C
√
n+ C ′p.

For any t ≥ 1 take p = t
√
n and c1 = e(C + C ′) so that c1t

√
n ≥ e(C ′p + C

√
n) ≥

e(E|X|p2)1/p and by Markov’s inequality

P(|X|2 ≥ c1 t
√
n) ≤ P(|X|p2 ≥ eE|X|p2) ≤ e−p = e−t

√
n.
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The proof of the main inequality (6.1) requires more work. The first step is a simple
reduction to the symmetric case. Indeed, let X ′ be an independent copy of X. Then by
the Minkowski and Jensen’s inequalities,

(E|X|p2)1/p ≤
(
E
∣∣|X|2 − E|X ′|2

∣∣p)1/p
+ E|X ′|2

≤
(
E
∣∣|X|2 − |X ′|2∣∣p)1/p

+ E|X|2 ≤ (E|X −X ′|p2)1/p + E|X|2.

Assuming that inequality (6.1) is proved in the symmetric case, we apply it to X −X ′
(which is symmetric and log-concave, see Proposition 3.16) and get

(E|X −X ′|p2)1/p ≤ C(E|X −X ′|2 + σp(X −X ′)).

But E|X −X ′|2 ≤ 2E|X|2 and σp(X −X ′) ≤ 2σp(X). Therefore,

(E|X|p2)1/p ≤ 3C (E|X|2 + σp(X)) .

This means that to conclude the proof of Theorem 6.1, we just need to prove inequality
(6.1) for a log-concave symmetric random vector X in Rn.

This is the purpose of the rest of this chapter. We start off by introducing Zp-bodies.

6.2 The Zp-bodies associated with a measure

6.2 Definition. Let µ be a measure on Rn. We define the convex set Zp(µ) by its support
function

hZp(µ)(θ) =

(∫
〈x, θ〉p+ dµ(x)

) 1
p

, θ ∈ Rn.

where 〈x, θ〉+ = 〈x, θ〉 if 〈x, θ〉 > 0 and 0 otherwise.

6.3 Remark. To justify Definition 6.2, recall that the support function of a convex
body K is given by hK(u) = supx∈K 〈x, u〉. And it is well known that any function h
satisfying h(λx) = λh(x) and h(x+ y) ≤ h(x) + h(y) for any λ ≥ 0 and any x, y ∈ Rn is
the support function of a unique convex set.

6.4 Remark. Let g be a standard Gaussian N (0, 1) random variable and let G be a
standard Gaussian N (0, Id) random vector in Rn. For any x ∈ Rn, 〈G, x〉 ∼ g|x|2, hence
we have

|x|p2 = E 〈G, x〉p+
1

Egp+
.

Therefore, ∫
|x|p2 dµ(x) = E

∫
〈G, x〉p+ dµ(x)

1

Egp+
= E(hpZp(µ)(G))

1

Egp+
. (6.3)
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The next Lemma is crucial to understand the properties of the Zp-bodies associated
with a measure with a density with respect to the Lebesgue measure on Rn.

6.5 Lemma. Let µ be a measure on Rn with density w : Rn → R+. Given a subspace
F ⊂ Rn, let ΠF (µ) be the marginal of µ, i.e.

ΠFµ(y) =

∫
y+F⊥

w(x) dx.

Then PF (Zp(µ)) = Zp(ΠFµ).
Moreover, if w is log-concave and w(0) > 0, let for any r > 0

Kr(w) =

{
x ∈ Rn, r

∫ +∞

0

tr−1w(tx) dt ≥ w(0)

}
.

Then for any p > 0

Zp(µ) = w(0)1/pZp(Kn+p(w)) = w(0)1/p |Kn+p(w)|
1
n

+ 1
p Zp(K̃n+p(w)), (6.4)

where Zp(Kn+p(w)) is the Zp-body associated with the measure of density 1Kn+p(w) and

K̃n+p(w) is the homothetic image of Kn+p(w) of volume 1.

Proof. For θ ∈ F we have

hPF (Zp(µ))(θ) = sup
x∈PF (Zp(µ))

〈x, θ〉 = sup
y∈Zp(µ)

〈PF (y), θ〉 = sup
y∈Zp(µ)

〈y, PF θ〉 = hZp(µ)(θ)

=

(∫
〈x, θ〉p+ dµ(x)

)1/p

=

(∫
F

∫
F⊥
〈y + z, θ〉p+w(y + z) dz dy

)1/p

=

(∫
F

〈y, θ〉p+
(∫

F⊥
w(y + z) dz

)
dy

)1/p

=

(∫
F

〈y, θ〉p+ ΠFµ(y) dy

)1/p

= hZp(ΠFµ)(θ).

By Theorem 3.23 we know that when w : Rn → R+ is a log-concave function not 0
almost everywhere with w(0) > 0, then the function

‖x‖Kr(w) =

(
r

∫ +∞

0

tr−1w(tx)

w(0)
dt

)− 1
r
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is a gauge on Rn (recall that it is meant that it satisfies the triangle inequality). Therefore,
the set Kr(w) = {‖x‖Kr(w) ≤ 1} is a convex set containing the origin. The second part
of the lemma follows by integration in polar coordinates. We have

hpZp(µ)(θ) =

∫
〈x, θ〉p+w(x) dx = n|Bn

2 |
∫ +∞

0

∫
Sn−1

tn+p−1 〈z, θ〉p+w(tz) dσ(z) dt

= w(0)
n

n+ p
|Bn

2 |
∫
Sn−1

〈z, θ〉p+
‖z‖n+p

Kn+p

dσ(z)

= n|Bn
2 |w(0)

∫ +∞

0

∫
Sn−1

tn+p−1 〈z, θ〉p+ 1Kn+p(tz) dσ(z) dt

= w(0)

∫
〈x, θ〉p+ 1Kn+p(x)dx

= w(0)hpZp(Kn+p)(θ).

Moreover, by a change of variable

hZp(Kn+p)(θ) =

(∫
Kn+p

〈x, θ〉p+ dx

)1/p

= |Kn+p|
1
p

+ 1
n

(∫
K̃n+p

〈x, θ〉p+ dx

)1/p

= |Kn+p|
1
p

+ 1
nh

Zp(K̃n+p)
(θ)

which means that Zp(Kn+p) = |Kn+p|
1
n

+ 1
pZp(K̃n+p). The meaning of equality (6.4) is

that in the log-concave case, the Zp-bodies associated with the measure µ are the same
as the Zp-bodies associated with a properly defined convex body.

In view of Lemma 6.5, we notice that it is of importance to work with family of
measures which are stable after taking the marginals. By Theorem 3.15, we know that
indeed, the marginals of a log-concave measure remains log-concave. At this stage, it is
of interest to know some geometric properties of Ball’s bodies, Kr(w).

6.6 Proposition. Let w : Rn → R+ be an even log-concave function such that w(0) > 0.
For any r > 0 let

Kr(w) =

{
x : r

∫ +∞

0

tr−1w(tx) dt ≥ w(0)

}
.

Then for any 0 < s ≤ t

Ks(w) ⊂ Kt(w) ⊂ Γ(t+ 1)1/t

Γ(s+ 1)1/s
Ks(w).

66



Proof. For any x ∈ Rn, let fx be the log-concave function defined on R+ by fx(t) =
w(tx)/w(0). Then Proposition 5.3 gives the right hand side inclusion. Indeed, suppose
x ∈ Kt(w). Then(

s
∫ +∞

0
ys−1fx(y) dy

Γ(s+ 1)

) 1
s

≥

(
t
∫ +∞

0
yt−1fx(y) dy

Γ(t+ 1)

) 1
t

≥ 1

Γ(t+ 1)1/t
.

Let x = Γ(t+1)1/t

Γ(s+1)1/s
x̃. It follows that

s

∫ +∞

0

ys−1fx̃(y) dy = s

∫ +∞

0

ys−1fx

(
Γ(t+ 1)1/t

Γ(s+ 1)1/s
y

)
dy

=
Γ(t+ 1)s/t

Γ(s+ 1)
s

∫ +∞

0

ys−1fx(y) dy ≥ 1.

Therefore, x̃ ∈ Ks(w) and x ∈ Γ(t+1)1/t

Γ(s+1)1/s
Ks(w).

The left hand side is a consequence of Hölder inequality. Indeed, since w is even and
log-concave, fx is decreasing and right-continuous on R+. As a result, we can define a
positive random variable Y such that for every t > 0, P(Y > t) = f(t) so that for every
r > 0, ‖x‖Kr(w) = (EY r)−1/r.

Since we have understood that in the case of a log-concave measure, the Zp-bodies
are the same as the Zp-bodies of a properly defined convex set containing the origin, we
investigate the properties of the Zp-bodies in this particular case.

6.7 Proposition. Let K be a symmetric convex body in Rn such that |K| = 1. Then
for any 1 ≤ p ≤ q,

Zp(K) ⊂ Zq(K) ⊂ C
q

p
Zp(K).

Moreover for any p ≥ n,

Zp(K) ⊃ cK and c ≤ |Zn(K)|1/n ≤ 1, (6.5)

where c and C are positive universal constant.

Proof. The first inclusion follows from Corollary 5.7 (or Proposition 5.16). Now we prove
the second part. Observe that for any p, and for every θ ∈ Rn

hpZp(K)(θ) =

∫
K

〈x, θ〉p+ dx = p

∫ +∞

0

tp−1f(t) dt,

where f(t) = |{x ∈ K : 〈x, θ〉 ≥ t}| is a 1/n-concave function on (0,+∞). This follows
from the Brunn-Minkowski inequality, see the proof of (5.3). We know from Theorem
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5.12 that the function H : [0,∞)→ R+ defined by

H(p) =


∫ +∞

0
tp−1f(t) dt

B(p, n+ 1)
p > 0

f(0) p = 0

is log-concave on [0,+∞). Since H(0) = f(0) = |K∩{〈x, θ〉 ≥ 0}|, we have by symmetry
of K, H(0) = 1/2 and deduce that for any p ≤ q,

2H(p) =
H(p)

H(0)
≥
(
H(q)

H(0)

)p/q
= (2H(q))p/q. (6.6)

We get

hZp(K)(θ) =

(
Γ(p+ 1)Γ(n+ 1)

Γ(n+ p+ 1)

)1/p

H(p)1/p.

We conclude from (6.6) that for any p ≤ q,

hZq(K)(θ) ≤
(

Γ(q + 1)Γ(n+ 1)

2Γ(q + n+ 1)

)1/q (
2Γ(p+ n+ 1)

Γ(p+ 1)Γ(n+ 1)

)1/p

hZp(K)(θ).

Since |K| = 1, we have

lim
q→+∞

hZq(K)(θ) = max
x∈K
| 〈x, θ〉 | = hK(θ)

and by properties of the Gamma function the first term tends to one, so we get for any
p ≥ n

hZp(K)(θ) ≥
(

Γ(p+ 1)Γ(n+ 1)

2Γ(p+ n+ 1)

)1/p

hK(θ) ≥
(

Γ(p+ 1)Γ(p+ 1)

2Γ(p+ p+ 1)

)1/p

hK(θ) ≥ c hK(θ),

where c is a universal constant.

6.8 Corollary. Let w be an even log-concave density of a probability measure µ in Rn.
Then

c

w(0)1/n
≤ |Zn(µ)|1/n ≤ C

w(0)1/n
,

where c, C are absolute constants.

Proof. From (6.4),

Zn(µ) = w(0)1/nZn(K2n) = w(0)1/n|K2n|2/nZn(K̃2n),
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where K2n = K2n(w) is a symmetric convex body in Rn and K̃2n is its homothetic image
of volume 1. We deduce from Proposition 6.7 that there is a universal constant c such
that c ≤ |Zn(K̃2n)|1/n ≤ 1. Therefore,

cw(0)1/n|K2n|2/n ≤ |Zn(µ)|1/n ≤ w(0)1/n|K2n|2/n. (6.7)

From Proposition 6.6,

|Kn|1/n ≤ |K2n|1/n ≤
Γ(2n+ 1)1/2n

Γ(n+ 1)1/n
|Kn|1/n ≤ C|Kn|1/n.

By definition of Kn, we get after integration in polar coordinates,

|Kn| = |Bn
2 |
∫
Sn−1

1

‖θ‖nKn
dσ(θ) = n|Bn

2 |
∫
Sn−1

∫ +∞

0

tn−1w(tθ)

w(0)
dt dσ(θ) =

1

w(0)

∫
w(x) dx.

Since µ is a probability measure, we have

|Kn| = w(0)−1 (6.8)

and conclude that w(0)−1/n ≤ |K2n|1/n ≤ Cw(0)−1/n. Combining this estimate with
(6.7) gives the conclusion.

6.9 Corollary. Let w be an even log-concave density of a probability measure µ in Rn.
Then (∫

K̃n+2

|x|22 dx

)1/2

≤ w(0)1/n

(∫
|x|22w(x) dx

)1/2

≤ C

(∫
K̃n+2

|x|22 dx

)1/2

,

where C is a universal constant. Moreover,(∫
K̃n+2

|x|22 dx

)1/2

≥

(∫
B̃n2

|x|22 dx

)1/2

=

√
n

n+ 2
|Bn

2 |−1/n ≥ c
√
n, (6.9)

where c is a universal constant.

Proof. The proof is again based on (6.4). We use it with p = 2 and get that

∀θ ∈ Rn,

∫
〈x, θ〉2+w(x) dx = w(0) |Kn+2|

2
n

+1

∫
K̃n+2

〈x, θ〉2+ dx. (6.10)

From Proposition 6.6

|Kn|1/n ≤ |Kn+2|1/n ≤
Γ(n+ 3)

1
n+2

Γ(n+ 1)
1
n

|Kn|1/n.
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Since |Kn| = w(0)−1, see (6.8), we deduce that

w(0)−2/n ≤ w(0) |Kn+2|
2
n

+1 ≤ (n+ 2)(n+ 1)

Γ(1 + n)2/n
w(0)−2/n ≤ C w(0)−2/n

by properties of the Gamma function. To conclude, we observe that for any orthonormal
basis u1, . . . , un of Rn, we have

w(0)2/n

∫
|x|22w(x) dx = w(0)2/n

n∑
i=1

∫
〈x, ui〉2w(x) dx

= w(0)2/n

n∑
i=1

∫
〈x, ui〉2+w(x) dx+

∫
〈x,−ui〉2+w(x) dx

and we use (6.10).
The “moreover” part is in fact slightly more general. Let K be of volume 1. Then∫

K

|x|22 dx =

∫
K∩B̃n2

|x|22 dx+

∫
K\B̃n2

|x|22 dx ≥
∫
B̃n2

|x|22 dx

since the Euclidean norm of any vector in K \ B̃n
2 is larger than for any vector in B̃n

2 \K
and |K \ B̃n

2 | = |B̃n
2 \K|.

6.3 The final step

Proof of inequality (6.1). Recall that to conclude the proof of Theorem 6.1 it is enough
to prove that for any random vector X distributed according to a log-concave symmetric
probability measure µ,

(E|X|p2)1/p ≤ C (E|X|2 + σp(X)) . (6.11)

Let k be the integer such that p ≤ k < p + 1. Then (E|X|p2)1/p ≤ (E|X|k2)1/k and by
Corollary 5.7, σk(X) ≤ σp+1(X) ≤ Cσp(X). From (6.3) we have

(E|X|k2)1/k =

(
E(hkZk(G))

)1/k(
Egk+

)1/k
≤ C√

k

(
E(hkZk(G))

)1/k
, (6.12)

where Zk is associated with µ. Observe that σk(X) is the smallest number b such that
Zk ⊂ bBn

2 . We split the discussion in two cases. Let c be a small enough constant.

If k >
(
c

EhZk (G)

σk(X)

)2

we deduce from Theorem 4.20 that

(
E(hkZk(G))

)1/k ≤ C
√
k σk(X)

and (6.11) is proved.
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If k ≤
(
c

EhZk (G)

σk(X)

)2

we deduce from Theorem 4.20 that

(
E(hkZk(G))

)1/k ≤ C E(hZk(G)). (6.13)

Moreover, from Dvoretzky’s Theorem, see Theorem 4.18, we get that the set of subspaces
E ∈ Gn,k such that

1

2

EhZk(G)

E|G|2
PEB

n
2 ⊂ PEZk ⊂

3

2

EhZk(G)

E|G|2
PEB

n
2

has a measure greater than 1− 4 exp(−ck). Therefore

EhZk(G)

E|G|2
≤ 2

(
|PEZk|
|Bk

2 |

)1/k

≤ C ′
√
k |PEZk|1/k (6.14)

since it is well known that |Bk
2 |1/k ≥ c/

√
k. The Zk-body is associated with the symmetric

log concave measure µ, therefore Lemma 6.5 implies that PE(Zk) = Zk(ΠEµ). We
conclude from Corollary 6.8 that

|PE(Zk)|1/k ≤
C

(ΠEµ(0))1/k
. (6.15)

Combining (6.12), (6.13), (6.14) and (6.15), and using the fact that E|G|2 ≤
√
n, we get

(E|X|k2)1/k ≤ C
√
n

(ΠEµ(0))1/k
. (6.16)

Let Y = PEX then ΠE(µ) is the density associated with Y which is even and log-concave.
Since E is of dimension k, we deduce from Corollary 6.9 that

(ΠEµ(0))1/k (E|Y |22)1/2 ≥ C
√
k.

Therefore the set of subspaces E ∈ Gn,k such that

(E|X|k2)1/k ≤ C

√
n

k
(E|PEX|22)1/2 (6.17)

has a measure greater than 1 − 4 exp(−ck). Rotational invariance of the Haar measure
νn,k on Gn,k implies that for each fixed θ0 ∈ Sn−1,

Eνn,k |PEθ0|22 =

∫
Sn−1

|PE0θ|22 dσ(θ)
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where E0 is a fixed subspace in Gn,k. We can choose E0 = span[e1, . . . , ek], where ei
are the vectors coming from the canonical basis of Rn. Since for every i = 1 . . . , n,∫
Sn−1 θ

2
i dσ(θ) =

∫
Sn−1 θ

2
1 dσ(θ) we get

∫
Sn−1

|PE0θ|22 dσ(θ) =
k∑
i=1

∫
Sn−1

θ2
i dσ(θ) = k

∫
Sn−1

θ2
1 dσ(θ) =

k

n

n∑
i=1

∫
Sn−1

θ2
i dσ(θ) =

k

n
.

Therefore,

EEνn,k |PEX|22 =
k

n
E|X|22

and the set of subspaces E ∈ Gn,k such that

(
E|PEX|22

)1/2 ≤
√

(ec/4)k

n

(
E|X|22

)1/2
(6.18)

has a measure greater than 4 exp(−c). We can find a subspace E such that (6.17) and
(6.18) hold true which proves that

(E|X|k2)1/k ≤ C (E|X|22)1/2.

By Proposition 5.16, we already know that (E|X|22)1/2 ≤ CE|X|2 and this finishes the
proof of (6.11).

6.4 Notes, comments and further readings

Theorem 6.1 is due to Paouris [78]. It had a great influence on the theory of high
dimensional convex bodies, as well as in the random matrix theory and the topics of
probability in Banach spaces. In his paper Paouris assumed a log-concave measure to be
in isotropic position. Theorem 6.1 is stated following [2] where the authors propose a new
short proof of the result in particular avoiding the notion of Zp-bodies associated with a
measure. In [2], they propose this formulation because it corresponds to a probabilistic
point of view. Indeed, it indicates that one can compare the strong moments and the
weak moments of a log-concave random vector in a Hilbert space. It is conjectured in [63]
that it still holds true in a general Banach space and some partial answers are given in
[63], in particular for an unconditional log-concave measure. In this particular case, the
“moreover” part of Theorem 6.1 was established by Bobkov and Nazarov [18]. To present
the proof of Theorem 6.1, we have followed the original approach of Paouris except the
fact that we have written all the formulas with a Gaussian random vector instead of
the uniform measure on the sphere. Moreover, we have simplified the presentation by
reducing the proof to the even log-concave setting. In this case, Proposition 6.7 and
Corollary 6.8 are simpler to state and to prove. Their analogues in the case of a log-
concave measure with barycentre at the origin are known and we refer to [79] for an
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extensive study of the Zp-bodies. Paouris (see [79]) studied also the negative moments.
This problem concerns small ball concentration.

In the log-concave setting, major progress has recently been made in the study of the
concentration of mass in a Euclidean thin shell [59, 39, 60, 38, 56]. We refer to [55] for
a short survey about the related open questions.

From a probabilistic point of view, it is worth noticing that Theorem 6.1 has been
extended to the case of general convex measures [1].

The interested reader is encouraged to read the upcoming book [27].
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[21] Borell, C. Inverse Hölder inequalities in one and several dimensions. J. Math. Anal. Appl. 41
(1973), 300–312.

[22] Borell, C. Convex measures on locally convex spaces. Ark. Mat. 12 (1974), 239–252.

[23] Borell, C. The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30, 2 (1975), 207–216.

[24] Borell, C. Convex set functions in d-space. Period. Math. Hungar. 6, 2 (1975), 111–136.

[25] Boucheron, S., Bousquet, O., and Lugosi, G. Concentration inequalities. In Advanced
Lectures in Machine Learning, vol. 3176 of Lecture Notes in Comput. Sci. Springer, Berlin, 2004,
pp. 208–240.

[26] Brascamp, H. J., and Lieb, E. H. On extensions of the Brunn-Minkowski and Prékopa-Leindler
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