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Some calculus courses feature an introduction to ODEs for those students
who do not need a full-fledged differential equations course. First order linear
equations of the form

y′(t) + p(t)y(t) = q(t) (1)

and second order linear equations with constant coefficients, of the form

ay′′(t) + by′(t) + cy(t) = 0 (2)

are typically covered. The standard approach is to apply a solution method for
(2) which is arguably imported without context from the differential equations
curriculum. This approach involves the characteristic equation

ar2 + br + c = 0

associated with (2); it requires complex numbers, and it necessarily raises the
problematic issue of whether there is a natural way to discover that y(t) = tert

is a solution to (2) when b2 − 4ac = 0.
However, in the context of a calculus course, one might consider it preferable

to bring to bear as much actual differentiation theory, and antidifferentiation
theory, as possible upon the enterprise of solving differential equations. There
is a way to solve (2) using only ideas and tools already familiar to the calculus
student, save one piece of unfamiliar theory, namely, that the complete solution
set to a linear ODE may be generated by linear combinations of (the right
number of) particular solutions.

The pedagogical approach we advocate here is to solve (1) and then gener-
alize the basic strategy to (2). The method of solving (2) is not new, and is
far from unknown, but it is seldom used. It has been relegated to exercises,
its pedagogical merits largely unrecognized. We reiterate that this approach is
best suited to a curriculum in which no ODEs more general than (2) will be
considered, and for which it is preferable to omit any theory which is otherwise
only pertinent to differential equations courses.

We start by noting the similarity of the left hand side of (1) to the right
hand side of

d

dt
(fg) = fg′ + f ′g,

the Product Rule for differentiation. If y plays the role of g, then for

y′ + py



to be the derivative of an actual product, we would need f ≡ 1, which of course
will not work. But if we multiply (1) by an as-yet-unknown and never-zero
function w(t), we get

wy′ + wpy = wq,

and then we need w′ = wp in order to transform (1) into the equivalent equation

d

dt
(wy) = wq, (3)

which we can then solve via antidifferentiation; in other words, (3) is a differ-
ential equation of the simplest type,

d

dt
(unknown function) = given function.

And of course, the “multiplier” function w which serves as an ingredient to help
us reduce (1) to (3) is

w(t) = exp
(∫

p(t)dt

)
.

Now let’s consider equations of type (2), but let us choose the alternate
standard form

y′′ + ay′ + by = 0. (4)

Now multiply but an as-yet-unknown, never-zero function w(t):

wy′′ + awy′ + bwy = 0. (5)

We now have two derivatives involved. Piggybacking on our strategy for (1), we
might try reducing (5) to the simple differential equation

d2

dt2
(w(t)y(t)) = 0,

which we could then solve with two antidifferentiation steps. So let’s see if that
will work. The Product Rule for second derivatives is

(fg)′′ = fg′′ + 2f ′g′ + f ′′g,

so we want to fit the left hand side of (5) into this mould. This would mean
that y should play the role of g, and then w should play the role of f , just as
before. But now we need both of

• w′ = a
2w

• w′′ = bw



to hold for
fg′′ + 2f ′g′ + f ′′g = wy′′ + awy′ + bwy

to be true. The first condition requires w(t) = eat/2. But then we would have
w′′(t) = a2

4 eat/2 = a2

4 w(t), and so the second condition only holds if b = a2

4 .
So it is not generally possible to express the left hand side of (5) as the

second derivative of a product. However, we can rewrite (5) as

wy′′ + awy′ +
a2

4
wy +

(
b− a2

4

)
wy = 0. (6)

Then let w(t) = eat/2, and recognize the first three terms of (6),

wy′′ + awy′ +
a2

4
wy,

as the second derivative of w(t)y(t). Therefore (6) becomes

d2

dt
(w(t)y(t)) +

(
b− a2

4

)
wy = 0.

Setting u = wy, we get

u′′ +
(

b− a2

4

)
u = 0.

One can point out to the students that the preceding steps are similar to the
technique of completing the square, used to solve (quadratic) algebraic equations.

At this point, one can discuss how to solve simple second order equations of
the form

u′′ + cu = 0,

or the equivalent form
u′′ = βu. (7)

(The instructor may even wish to discuss this type of equation much earlier so
it is already familiar to the students.) Regardless of the value of β, the calculus
student can pretty well solve (7) “by inspection”. We simply note that if β = 0,
solutions are linear and can be obtained by two antidifferentiations; if β > 0,
the exponential solutions

u1(t) = exp(
√

βt) and u2(t) = exp(−
√

βt)

are easy to find; and if β < 0, we can easily find solutions

u1(t) = cos(
√
−βt) and u2(t) = sin(

√
−βt).

So the strategy is to have students convert the problem of solving any given
instance of (4) to that of solving an equation of the form (7). Note what happens



if β = 0, which corresponds to b − a2

4 = 0. Then solutions to (6) are all of the
form

u(t) = C1t + C2,

and then, converting back to y, we get solutions to (4) all of the form

y(t) = C1te
−at/2 + C2e

−at/2.

And so we find the particular solution y(t) = te−at/2 without either (i) doing
anything special to look for it, e.g., reduction of order, or using the Wronskian,
or (ii) simply producing it like a rabbit from a hat. All of the calculus texts in
the references do (i) or (ii).

If β 6= 0, then solving (7) is not quite as simple as performing two antid-
ifferentiations. But we are able to find two particular solutions, whether of
exponential or trigonometric type. So, just as in the usual treatment of (2) in
calculus courses, we do need one piece of differential equations theory at this
point, namely the result that all solutions to a second order linear ODE may be
generated by linear combinations of two particular solutions, neither a constant
multiple of the other.

The only memorization students must do to apply this solution approach is
to remember to multiply (4) through by e−at/2. And complex numbers are not
needed; in particular, we never need to explain to students why a function like

y(t) = e(α+iβ)t

should make any sense to anyone. Ultimately we seek real-valued solutions, so
not having to deal with complex-valued solutions, and complex linear combina-
tions thereof, is a plus. Certainly the characteristic equation approach, general-
izable as it is to higher order ODEs, together with the complex-valued solutions
one must admit, is useful and powerful in a differential equations course. But
the approach is cumbersome and unnatural if (4) is the terminus of one’s ODE
studies. Perhaps some calculus instructors will find the method outlined here
to be an attractive alternative.
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