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Solutions to Homework #4 Exercises

7.1 (b) First we derive the Taylor series centered at 0 associated with f . We
note that

f (0)(x) = f(x) = sin x

f ′(x) = cos x

f ′′(x) = − sinx

f ′′′(x) = − cos x

f (4)(x) = sin x

and now we see that taking higher derivatives will result in cycling
through the same four functions. Evaluating f and its derivatives at
0 generates the values

0, 1, 0,−1, 0, 1, 0,−1, . . . .

So the Taylor coefficients are as follows:
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= 0, 1, 0,−1/3!, 0, 1/5!, 0,−1/7!, . . . .

The Taylor series T (x) associated with f (and centered at 0) is there-
fore
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Since only odd-order terms are present, we can write this series con-
cisely by observing that for each i = 0, 1, 2, 3, . . ., the number 2i + 1
is an odd integer, and the formula 2i + 1 generates the sequence
1, 3, 5, 7, . . .. To get the alternating signs in the Taylor coefficients,
we can introduce the factor (−1)i. So we have

T (x) =
∞∑

i=0

(−1)ix2i+1

(2i + 1)!
.

Though you were not asked to do so, I will show that f(x) = T (x)
at least for x in some interval (−r, r), r > 0, so that Proposition 7.5
yields the analyticity of f at 0. Let us fix x ∈ R. Using (33), we have

sinx− TN (x) =
f (N+1)(z)
(N + 1)!

· xN+1,



for some z between 0 and x. We must show that the limit of the right
hand side is 0 as N tends to infinity; whether this is true may depend
on how close x is to 0. Now since f (N+1) is one of the functions sin(·),
cos(·), − sin(·), − cos(·), we have that |f (N+1)(z)| ≤ 1, regardless of
the location of z. Hence∣∣∣∣f (N+1)(z)

(N + 1)!
· xN+1

∣∣∣∣ ≤ |x|N+1

(N + 1)!
,

and if

lim
N→∞

|x|N+1

(N + 1)!
= 0,

then we are finished. But this is precisely (36), and we showed in
the text (in the narrative following (36)), that this is true for any
value of x. Hence f is analytic at 0, and moreover f agrees with its
Taylor series on all of R. Now we note that P (x) = T5(x), so given
x ∈ [−π, π], and applying Theorem 7.7 with N = 5, we have

sinx = x− x3

6
+

x5

120
+
− sin z

7!
x6,

where z is between 0 and x. Since | − sin z| ≤ 1, we have

| sinx− T5(x)| ≤ |x|6

6!
≤ π6

6!
≈ 1.335262769.

This is a pretty crummy error bound, though, considering −1 ≤
sinx ≤ 1. But perhaps we can improve the error estimate by noting
that P (x) is also equal to T6(x). Then we can apply Taylor’s Theorem
with N = 6 instead and obtain

sinx = x− x3

6
+

x5

120
+
− cos z

7!
x7,

or
f(x)− P (x) =

− cos z

7!
x7.

To find a uniform bound on the error associated with approximating
f(x) by P (x), then, we note

|f(x)− P (x)| =
∣∣∣∣− cos z

7!
x7

∣∣∣∣ ≤ x7

7!
,

since | cos z| ≤ 1. Then since x ∈ [−π, π],

x7

7!
≤ π7

7!
≈ 0.599264529,

which is an improvement, but is still not very reassuring. Hence part
(c).



(c) Our observations in part (b) tell us that given N ,

| sinx− TN (x)| ≤ |x|N+1

(N + 1)!
≤ πN+1

(N + 1)!

holds for x ∈ [−π, π], and also that we need only consider even values
of N . So by calculator, we test π9/9! ≈ 0.0821, so that is not small
enough. Next π11/11! ≈ 0.00737 < 0.01, and therefore T10(x), which
is the same as

T9(x) = x− x3

6
+

x5

120
− x7

5040
+

x9

362, 880
,

will give the desired accuracy on [−π, π]. For reassurance, we cal-
culate T9(5π/6) ≈ 0.500949776, and yes, we get two (in fact three)
decimal places of accuracy.

7.2 (a) Since f ∈ C6(D), all partial derivatives of f up to and including order

6 are defined and continuous on D. In particular,
∂2f

∂x1∂x5
exists and

is continuous on D. By the theorem, then,
∂2f

∂x5∂x1
also exists and is

continuous, and moreover, for all x ∈ D,

∂2f

∂x1∂x5
(x) =

∂2f

∂x5∂x1
(x).

Now since ∂2f
∂x1∂x5

and ∂2f
∂x5∂x1

represent the same function, we can
consider the partial derivative of this function with respect to x4,
and we have

∂3f

∂x4∂x1∂x5
=

∂3f

∂x4∂x5∂x1
,

and now let us call this function g. Now f ∈ C6(D), which implies
that f ∈ C4(D), and therefore g ∈ C1(D). We also note that f ∈

C5(D) implies that
∂2g

∂x3∂x4
exists and is continuous on D. By the

theorem, then,
∂2g

∂x4∂x3
also exists and is continuous on D, and for

all x ∈ D,
∂2g

∂x3∂x4
(x) =

∂2g

∂x4∂x3
(x),

which translates to

∂5f

∂x3∂x2
4∂x5∂x1

(x) =
∂5f

∂x4∂x3∂x4∂x1∂x5
(x).



Denoting the above function by h, then, we have h representing two
equal fifth-order partial derivatives of f . Since f ∈ C6(D), any first-
order partial derivative of h exists; in particular ∂h

∂x3
exists, and

∂h

∂x3
≡ ∂6f

∂x2
3∂x2

4∂x5∂x1
≡ ∂6f

∂x3∂x4∂x3∂x4∂x1∂x5
, (∗∗)

as desired.

(b) Note that in (∗∗) we have two “different”, but identically equal, sixth-
order partial derivatives of f which, in either case, involves differenti-
ating with respect to x1 once, with respect to x3 twice, with respect
to x4 twice, and with respect to x5 once. We may also note that we
differentiate with respect to x2 zero times. This suggests the multiin-
dex α = (1, 0, 2, 2, 1), where the value of each αi indicates how many
times we differentiate with respect to the variable xi. However, we
need to know that the order in which the partial differentiations are
performed is not an issue, and our argument in part (a) essentially
shows this, for if we wish to consider any of the various sixth-order
partial derivatives of f which are suggested by α = (1, 0, 2, 2, 1) (such
as

∂6f

∂x5x2
4x

2
3x1

or
∂6f

∂x4x2
3x5x4x1

or
∂6f

∂x1x3x5x4x3x4
),

we can show that any two are equal to each other, and to those in
(∗∗), by applying the theorem as many times as necessary to “swap”
consecutive differentiations. Thus we are justified in using the sim-
plified notation

D(1,0,2,2,1)f

to refer to any one of these sixth-order partial derivatives.

7.5 (a) Let P (t, ω) be the desired Taylor polynomial. Note that

f(t, ω) = eσω− 1
2 σ2t = eσω · e− 1

2 σ2t,

and each of the variables t and ω appear in only one of the factors on
the right. Therefore, any partial derivative of f is a constant multiple
of f ; for example,

∂f

∂t
(t, ω) = −1

2
σ2eσω · e− 1

2 σ2t = −1
2
σ2f(t, ω).

So for any partial derivative

∂kf

∂ti∂ωk−i



of f, since f(0, 0) = 1, we will have

∂kf

∂ti∂ωk−i
(0, 0) =

(
−1

2
σ2

)i

· σk−i · f(0, 0) =
(
−1

2
σ2

)i

· σk−i.

So now we compute

f(0, 0) = 1
∂f
∂t (0, 0) = − 1

2σ2

∂f
∂ω (0, 0) = σ

∂2f
∂t2 (0, 0) = 1

4σ4

∂2f
∂t∂ω (0, 0) = − 1

2σ3

∂2f
∂ω2 (0, 0) = σ2

So now we can write down P :

P (t, ω) = 1− 1
2
σ2t + σω +

1
8
σ4t2 − 1

2
σ3tω +

1
2
σ2ω2.

(b) Using Theorem 7.16 with N = 2, if (t, ω) is any point in the given
set, then

f(t, ω) = P (t, ω) +
3∑

i=0

1
i!(3− i)!

(
∂3f

∂ti∂ω3−i
(z1, z2)

)
· tiω3−i,

where (z1, z2) is some point on the line segment between (0, 0) and
(t, ω). So we should start by determining the third order partial
derivatives:

∂3f
∂t3 = − 1

8σ6 · f
∂3f

∂t2∂ω = 1
4σ5 · f

∂3f
∂t∂ω2 = − 1

2σ4 · f
∂3f
∂ω3 = σ3 · f

So the error in using P to approximate f at the point (t, ω) is

f(z1, z2)
(
−1

8
σ6t3 +

1
4
σ5t2ω − 1

2
σ4tω2 + σ3ω3

)
. (∗)

Now note that since

f(t, ω) = eσω · e− 1
2 σ2t,

the factor on the left can be no larger than eσ (when ω = 1), and the
factor on the right can be no larger than 1 (when t = 0). So (∗) is no
larger than

eσ

∣∣∣∣−1
8
σ6t3 +

1
4
σ5t2ω − 1

2
σ4tω2 + σ3ω3

∣∣∣∣



≤ eσ

(
1
8
σ6t3 +

1
4
σ5t2ω +

1
2
σ4tω2 + σ3ω3

)
≤ eσ

(
1
8
σ6T 3 +

1
4
σ5T 2 +

1
2
σ4T + σ3

)
,

where we have used the triangle inequality. So the last quantity is a
uniform bound on the error associated with using P to approximate
f on the given rectangle. Often this type of “rough” analysis, using
the triangle inequality, is sufficient; finding the best possible upper
bound on the error is usually very time-consuming and not worth the
effort. However, by examining (∗) more closely, we can, in this case,
improve the error bound considerably with not too much additional
effort: Rewrite (∗) as

f(z1, z2) ·
σ3

48
(
8ω3 − 12σω2t + 6σ2ωt2 − σ3t3

)
and note that the last factor is equal to (2ω−σt)3. As we have already
noted that f(z1, z2) can be no greater than eσ, the error is no greater
than

eσσ3

48
|2ω − σt|3

Now we consider how large |2ω−σt|3 may be on the given rectangle,
and maximizing |2ω − σt|3 is equivalent to maximizing |2ω − σt|.
The key is to note that we have a linear expression; letting g(t, ω) =
2ω− σt, we observe that the level sets of g, that is, the curves in the
plane on which g takes any given constant value, are straight lines.
So for any c ∈ R, the set {(t, ω) : g(t, ω) = c} is a line in the plane,
with equation

2ω − σt = c, (∗∗)

or in slope-intercept form,

ω =
σ

2
t +

c

2
.

Now envision lines in the plane having slope σ/2 (which is a positive
slope no greater than 1/2). In view of (∗∗), maximizing |2ω − σt| is
tantamount to finding, among all lines intersecting

{(t, ω) : 0 ≤ t ≤ T, 0 ≤ ω ≤ 1},

the one with ω-intercept (which is c/2) largest in magnitude. Draw
a picture; the line which passes through (0, 0) is certainly not the
one we seek, for then c/2 = 0, and by taking instead the line which
intersects the rectangle at (0, 1), we get c/2 = 1. But note that if



we consider the line intersecting the rectangle at (T, 0), we get a
line with ω-intercept equal to −σT/2, which may be greater than 1
in magnitude; this of course depends on σ and T . So there are two
possibilities: Either |c| is maximized at (0, 1) or at (T, 0), so that

|2ω − σt| ≤ max{2, σT}.

Hence we get the following simplified error bound:

|f(t, ω)− P (t, ω)| ≤ eσσ3

48
·max{8, σ3T 3}

Problem A: We first observe that

x exp
{

σ
√

τ y +
(

r − 1
2
σ2

)
τ

}
≥ K ⇐⇒ exp

{
σ
√

τ y +
(

r − 1
2
σ2

)
τ

}
≥ K

x

⇐⇒ σ
√

τ y +
(

r − 1
2
σ2

)
τ ≥ log

K

x

⇐⇒ log
x

K
+

(
r − 1

2
σ2

)
τ ≥ −σ

√
τ y

⇐⇒ d−(τ, x) ≥ −y

⇐⇒ −d−(τ, x) ≤ y.

Therefore,

c(t, x) =
∫ ∞

−d−(τ,x)

e−rτ

(
x exp

{
σ
√

τ y +
(

r − 1
2
σ2

)
τ

}
−K

)
ϕ(y) dy

=
∫ d−(τ,x)

−∞
e−rτ

(
x exp

{
−σ

√
τ z +

(
r − 1

2
σ2

)
τ

}
−K

)
ϕ(z) dz

= x

∫ d−(τ,x)

−∞
exp

{
−σ

√
τ z − 1

2
σ2τ

}
ϕ(z) dz −Ke−rτ

∫ d−(τ,x)

−∞
ϕ(z) dz,

where we have made the change of variable z = −y and used the fact that
ϕ(−y) = ϕ(y). It remains to show that∫ d−(τ,x)

−∞
exp

{
−σ

√
τ z − 1

2
σ2τ

}
ϕ(z) dz = N

(
d+(τ, x)

)
, (1)∫ d−(τ,x)

−∞
ϕ(z) dz = N

(
d−(τ, x)

)
. (2)

Equation (2) follows immediately from the definition of N(d−(τ, x)). For
equation (1), we make the second change of variable w = z + σ

√
τ to



obtain ∫ d−(τ,x)

−∞
exp

{
−σ

√
τ z − 1

2
σ2τ

}
ϕ(z) dz

=
1√
2π

∫ d−(τ,x)

−∞
exp

{
−1

2
z2 − σ

√
τ z − 1

2
σ2τ

}
dz

=
1√
2π

∫ d−(τ,x)

−∞
exp

{
−1

2
(z + σ

√
τ)2

)
dz

=
1√
2π

∫ d+(τ,x)

−∞
exp

{
−1

2
w2

}
dw

= N
(
d+(τ, x)

)
.

Problem B: First we note a property of the dot product: If α is any scalar (that is,
real number), and u and v are both vectors in any Cartesian space Rk,
then

α(u · v) = (αu) · v = u · (αv)

(I will leave it to you to verify this with straightforward computation.)
Now recall from lecture that we have two different ways to view the prod-
uct Ax: (i) as the vector whose components are the dot products of x with
the rows of A, or (ii) as a linear combination of the columns of A, where
the components of x are the scalar multiples. Following the notation used
in lecture, we let A1, A2, . . . , Am be the rows of A, and let A1, . . . , An

denote the columns of A. Then

(Ax) · y = (x1A1 + . . . + xnAn) · y

= (x1A1) · y + . . . + (xnAn) · y = x1(A1 · y) + . . . xn(An · y),

and this last quantity is the dot product of x with the vector

A1 · y
A2 · y
·
·
·

An · y


But as the columns of A are the rows of AT , we may also write this vector



as 

(AT )1 · y
(AT )2 · y

·
·
·

(AT )n · y


This vector is exactly AT y. Therefore we have (Ax) · y = x · (AT y), as
desired.

Problem C: Since z = Ay for some y ∈ Rn, we have x·z = z·x = (Ay)·x, which is equal
to y · (AT x) by the previous exercise. But AT x = 0, so that x · z = y · 0,
which is zero, since the dot product of any vector with the zero vector
yields zero.

Problem D: Suppose α = 0. We will show that H is a subspace of Rn. Let v1, v2 ∈ H.
Then we know v1 · x0 = v2 · x0 = 0. Now let c1, c2 ∈ R, and consider
v = c1v1+c2v2. We have v ·x0 = (c1v1+c2v2)·x0 = c1(v1 ·x0)+c2(v2 ·x0) =
c1 · 0 + c2 · 0 = 0, so that v ∈ H. Therefore H is closed under linear
combinations, so that H is a subspace of Rn. Now assume that H is a
subspace of Rn. Then we must have 0 ∈ H, for H must be closed under
scalar multiplication, so if we take any v ∈ H, then we must have cv ∈ H
for any c ∈ R. In particular, if c = 0, so that cv = 0, then we have 0 ∈ H.
But if the zero vector belongs to H, then we have 0 · x0 = α. But since
0 · x0 = 0, we must have α = 0.

Problem E: (a) We showed in class that if Q is an orthogonal matrix, then QT Q = I.
Then using Problem A, (Qx) · (Qy) = x · (QT (Qy)) = x · ((QT Q)y) =
x · (Iy) = x · y, as desired.

(b) Using part (a) with x = y, we have ‖Qx‖ =
√

(Qx) · (Qx) =
√

x · x =
‖x‖.

(c) Let x be an eigenvector of Q, associated with the eigenvalue λ. Then
x 6= 0, and Qx = λx. Therefore, ‖Qx‖ = ‖λx‖ = |λ‖‖x‖, using part
(ii) of Proposition 2.13. But also, ‖Qx‖ = ‖x‖ by part (b); hence
‖x‖ = |λ|‖x‖. Since ‖x‖ 6= 0, the only way this last equation can
hold is if |λ| = 1, and if λ is real, then we must have λ = 1 or
λ = −1.


