MSCF Mathematics Preparatory Course

August 2006
Homework \#4
Homework \#4
Do exercises 7.1(b), 7.1(c), 7.2, 7.5(a), and those below. (A solution to Problem $7.5(\mathrm{~b})$ will be provided in case you are inclined to do that part in your copious spare time.)

Problem A: Let T, K, and σ be positive constants, let r be a nonnegative constant, and let $x>0$ and $t \in[0, T)$ be given. Define $\tau=T-t$, which is positive. Let

$$
\varphi(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}
$$

be the standard normal density, and let $N(d)$ be the cumulative standard normal distribution

$$
N(d)=\int_{-\infty}^{d} \varphi(y) d y
$$

Let

$$
d_{+}(\tau, x)=\frac{1}{\sigma \sqrt{\tau}}\left[\log \frac{x}{K}+\left(r+\frac{1}{2} \sigma^{2}\right) \tau\right]
$$

and let

$$
d_{-}(\tau, x)=\frac{1}{\sigma \sqrt{\tau}}\left[\log \frac{x}{K}+\left(r-\frac{1}{2} \sigma^{2}\right) \tau\right]
$$

Compute

$$
c(t, x)=\int_{-\infty}^{\infty} e^{-r \tau}\left(x \exp \left\{\sigma \sqrt{\tau} y+\left(r-\frac{1}{2} \sigma^{2}\right) \tau\right\}-K\right)^{+} \varphi(y) d y
$$

You should obtain the Black-Scholes formula

$$
c(t, x)=x N\left(d_{+}(\tau, x)\right)-K e^{-r \tau} N\left(d_{-}(\tau, x)\right)
$$

Remarks: (i) Firstly, it may bother you that we have written $c(t, x)$ when the variable t does not explicitly appear in either of the expressions for $c(t, x)$, above. However, t implicitly appears through the variable τ, and our work in this problem is simplified slightly since we can work with τ instead of $T-t$. (ii) For a European call expiring at time T with strike price K, if the time- t stock price is x, then the Black-Scholes price at time $t \in[0, T)$ is

$$
c(t, x)=x N\left(d_{+}(T-t, x)\right)-K e^{-r(T-t)} N\left(d_{-}(T-t, x)\right)
$$

Problem B: Show that if A is any $m \times n$ matrix, then

$$
(A x) \cdot y=x \cdot\left(A^{T} y\right)
$$

for all $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$.

Problem C: Let A be an $m \times n$ matrix. Show that if $z \in \mathbf{R}^{m}$ satisfies $A y=z$ for some $y \in \mathbf{R}^{n}$, and $x \in \mathbf{R}^{m}$ satisfies $A^{T} x=0$, then $x \cdot z=0$.

Problem D: Let $\alpha \in \mathbf{R}$ and $x_{0} \in \mathbf{R}^{n}$ be given. Define

$$
H=\left\{x \in \mathbf{R}^{n}: x \cdot x_{0}=\alpha\right\}
$$

Show that H is a subspace of \mathbf{R}^{n} if and only if $\alpha=0$.
Problem E: Let Q be an $n \times n$ orthogonal matrix.
(a) Show that $(Q x) \cdot(Q y)=x \cdot y$ for all $x, y \in \mathbf{R}^{n}$.
(b) Show that $\|Q x\|=\|x\|$ for all $x \in \mathbf{R}^{n}$.
(c) Suppose λ is a real eigenvalue of Q. Show that either $\lambda=1$ or $\lambda=-1$.

