
MSCF Mathematics Preparatory Course
August 2006

Solutions to Homework #3 Exercises

4.6 (a) Let r ∈ R be given. Since lim
x→−∞

f(x) = −∞, there exists z1 ∈ R

such that f(x) < r−1 for all x < z1. Then since lim
x→∞

f(x) = ∞, there

exists z2 ∈ R such that f(x) > r + 1 for all x > z2. Let z′1 = z1 − 1
and z′2 = z2 +1. Then f(z′1) < r− 1 and f(z′2) > r +1, and therefore
f(z′1) < r < f(z′2), and since f is continuous on R, in particular
f is continuous on [z′1, z

′
2], so we can apply the Intermediate Value

Theorem (3.20) on this interval and conclude that there exists x0 ∈
(z′1, z

′
2) for which f(x0) = r. (Note that this argument establishes

that the range of f is actually all of R.)

(b) A polynomial p of odd degree satisfies either

lim
x→−∞

p(x) = −∞ and lim
x→∞

p(x) = ∞

or
lim

x→−∞
p(x) = ∞ and lim

x→∞
p(x) = −∞

In the first case, as all polynomials are continuous on R, we can
apply (a) to p, with r = 0, and get the result. In the second case, an
argument similar to that in (a) shows that the range of p is R, so
that in particular, p “hits” the value 0.

4.9 (a) Let g(x) = sin x, and let h(x) = x. Pick any x0 ∈ R − {0}, and
note that g and h are differentiable at x0. Since h(x0) = x0 6= 0, f is
differentiable at x0 by Theorem 4.5(iii). To show the differentiability
of f at 0, we consider

f(x)− f(0)
x− 0

=
sin x

x − 1
x

=
sinx− x

x2
.

Letting k(x) = sinx − x and m(x) = x2, we see that lim
x→0

k(x) =

lim
x→0

m(x) = 0, and k and m are both defined and differentiable

on any deleted neighborhood of 0. We have k′(x) = cos x − 1, and
m′(x) = 2x. Now lim

x→0
k′(x) = lim

x→0
m′(x) = 0, and k′ and m′ are

both defined and differentiable in any deleted neighborhood of 0; in

fact, k′′(x) = − sinx, and m′′(x) ≡ 2. Also note lim
x→0

k′′(x)
m′′(x)

= 0. Ap-

plying l’Hôpital’s Rule (Theorem 4.14) to k′ and m′, then, we have

lim
x→0

k′(x)
m′(x)

= 0. But now having established the existence of this last



limit, we apply the theorem again to k and m to find lim
x→0

k(x)
m(x)

= 0.

We conclude that f is differentiable at 0, and that

f ′(0) = lim
x→0

f(x)− f(0)
x− 0

= 0.

So we have found that f is differentiable on R, and for x 6= 0, we

would have, by the Quotient Rule, f ′(x) =
h(x)g′(x)− g(x)h′(x)

h(x)2
=

x cos x− sinx

x2
. So the formula for f ′ is

f ′(x) =
{

x cos x−sin x
x2 for x 6= 0

0 for x = 0

(b) Let x0 ∈ R−{0}, and note that g(x) = x, h(x) = cos x, k(x) = sin x,
and m(x) = x2 are all continuous at x0, and m(x0) 6= 0. So f ′ is
continuous at x0 by the Algebra of Continuous Functions (3.4). But
to show the continuity of f ′ at 0, we need lim

x→0
f ′(x) = f ′(0) = 0. By

the Algebra of Limits, we have that lim
x→0

(x cos x−sinx) = 0·1−0 = 0,

and also lim
x→0

x2 = 0. Applying the Sum Rule and the Product Rule,

we have (gh − k)′(x) = −x sinx + cos x − cos x = −x sinx. Then

m′(x) = 2x, so lim
x→0

(gh− k)′(x)
m′(x)

= lim
x→0

−x sinx

2x
= lim

x→0

− sinx

2
= 0.

Applying l’Hôpital’s Rule to gh− k and m, we find

lim
x→0

(gh− k)(x)
m(x)

= lim
x→0

f ′(x) = 0,

as desired. So f ′ is continuous at 0 as well, and therefore f is contin-
uous on all of R.

(c) To show f ′ is differentiable at 0, we must show that

lim
x→0

f ′(x)− f ′(0)
x− 0

exists. So we consider

f ′(x)− f ′(0)
x− 0

=
x cos x−sin x

x2 − 0
x− 0

=
x cos x− sinx

x3
.

Letting g(x) = x cos x− sinx and h(x) = x3, we see that lim
x→0

g(x) =

lim
x→0

h(x) = 0. Consider g′(x) = −x sinx and h′(x) = 3x2. Note that

lim
x→0

g′(x) = lim
x→0

h′(x) = 0. Now consider g′′(x) = −x cos x − sinx



and h′′(x) = 6x. Note that lim
x→0

g′′(x) = lim
x→0

h′′(x) = 0. Finally,

g′′′(x) = x sinx − 2 cos x, and h′′′(x) = 6. By the Algebra of Limits,

lim
x→0

g′′′(x)
h′′′(x)

=
0− 2 · 1

6
= −1

3
. Applying l’Hôpital’s Rule three times,

then, we find that

lim
x→0

g(x)
h(x)

= lim
x→0

f ′(x)− f ′(0)
x− 0

= −1
3
.

Therefore, f ′ is differentiable at 0, and f ′′(0) = −1/3.

5.1 (a) Let P be any partition of [a, b] for which P does not contain x1 and
x2 as partition points, and for which x1 and x2 are contained in two
different subintervals Ik and Im. Then

S−P (f) =
n∑

j=1

(xj − xj−1) ·
(

inf
Ij

f

)

=
∑

j 6=k,m

(xj−xj−1)·
(

inf
Ij

f

)
+(xk−xk−1)·

(
inf
Ik

f

)
+(xm−xm−1)·

(
inf
Im

f

)
(∗)

Now consider S−P (g) and note that if we replace f with g in (∗), then
the last two terms vanish because

inf
Ik

g = inf
Im

g = 0,

using the positivity of f . But the first term in (∗) is unchanged. So
now altering the partition so that the subintervals Ik and Im are
small, we can, for any given ε > 0, find P so that

S−P (g) + ε > S−P (f).

But we always have S−P (g) ≤ S−P (f), and therefore

sup{S−P (g) : P is a partition of [a, b]}

= sup{S−P (f) : P is a partition of [a, b]} =
∫ b

a

f(x)dx

But now observing that for any P , S+
P (g) = S+

P (f), we also have

inf{S+
P (g) : P is a partition of [a, b]}

= inf{S+
P (f) : P is a partition of [a, b]} =

∫ b

a

f(x)dx

Therefore, g is integrable, and∫ b

a

g(x)dx =
∫ b

a

f(x)dx



(b) Let E = {x1, . . . , xk} be points of [a, b] and let g : [a, b] → R be given
by

g(x) =
{

f(x) if x ∈ E − [a, b]
ri if x = xi ∈ E

where ri are any numbers. Then f has been changed at finitely many
points to produce g. The idea now is to choose partitions P of [a, b]
so that the subintervals containing points of E are “small”. Since f is
bounded on [a, b], there exist m,M ∈ R such that m ≤ f(x) ≤ M for
all x ∈ [a, b], and if m ≤ ri ≤ M for all i, then we have m ≤ f(x) ≤ M
as well. Otherwise, we can at least say

min{m, r1, r2, . . . , rk} ≤ g(x) ≤ max{M, r1, r2, . . . , rk},

which we write as m′ ≤ g(x) ≤ M ′. So now observe that for all
x ∈ [a, b], we have

|f(x)− g(x)| ≤ M ′ −m′,

from which we obtain

| sup
I

f − sup
I

g| ≤ M ′ −m′ and | inf
I

f − inf
I

g| ≤ M ′ −m′

where I is any subinterval of [a, b], or even [a, b] itself. So now given
any ε > 0, choose a partition P so that the subintervals containing
points of E each have length less than

ε

2k(M ′ −m′)
. Then since

each xi ∈ E can be contained in at most two of the subintervals
(which occurs only if xi happens to be a common endpoint of two
adjacent subintervals), there are at most 2k subintervals containing
points of E, and their total length is less than

ε

M ′ −m′ . Now write

P = {y0, y1, . . . , yn}, and then

|S+
P (f)−S+

P (g)| =

∣∣∣∣∣∣
n∑

j=1

(yj − yj−1) ·

(
sup
Ij

f

)
−

n∑
j=1

(yj − yj−1) ·

(
sup
Ij

g

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

j=1

(yj − yj−1) ·

(
sup
Ij

f − sup
Ij

g

)∣∣∣∣∣∣ (∗)

Now
sup
Ij

f − sup
Ij

g = 0 if Ij ∩ E = φ.

Otherwise, ∣∣∣∣∣sup
Ij

f − sup
Ij

g

∣∣∣∣∣ ≤ M ′ −m′,



so (∗) is less than or equal to M ′ −m′ times the total of the lengths
of the subintervals containing points of E, and thus

|S+
P (f)− S+

P (g)| < ε.

Similarly, for any given ε > 0, we can find a partition P for which

|S−P (f)− S−P (g)| < ε.

Hence
inf{S+

P (g) : P is a partition of [a, b]}

= inf{S+
P (f) : P is a partition of [a, b]} =

∫ b

a

f(x)dx

and
sup{S−P (g) : P is a partition of [a, b]}

= sup{S−P (f) : P is a partition of [a, b]} =
∫ b

a

f(x)dx

Therefore, g is integrable, and∫ b

a

g(x)dx =
∫ b

a

f(x)dx

5.2 (a) Let ε > 0 be given.

Choose x1 ∈ (0, 1) such that x1 <
ε

2
(∗)

Let E′ = [x1, 1] ∩ E, and observe that this set is equal to the set{
1
N

,
1

N − 1
,

1
N − 2

, . . . ,
1
3
,
1
2
, 1
}

for some N ∈ N. Now choose a partition P which includes the point
x1, so that P = {a = x0, x1, x2, . . . , xn = b} and then note that
the subinterval I1 contains infinitely many points of E, while the
other subintervals contain the N points left over (i.e., the points of
E′). Choose P in such a way that any subinterval containing a point
of E′ has length less than

ε

4N
. There could be a total of 2N such

subintervals, so their total length is less than ε/2. Also, the length
of I1 is less than ε/2, by (∗). So the total length of all subintervals
containing points of E is less than ε. On each such subinterval, inf f =
0 and sup f = 1, but on all other subintervals of P , inf f = sup f = 0.
Hence S−P (f) = 0, while 0 < S+

P (f) < ε. But now since ε is arbitrary,

inf{S+
P (f) : P is a partition of [0, 1]} = 0,



and certainly

sup{S−P (f) : P is a partition of [0, 1]} = 0

since all lower sums are zero. So by Definition 5.2, f is integrable on

[0, 1], and
∫ 1

0

f(x)dx = 0.

(b) Though f turns out to be integrable with A taken to be the set E in
part (a), in general it is not true that f is integrable for any choice
of countably infinite subset A of [0, 1], for if we take A = [0, 1] ∩Q,
then we have f : [0, 1] → R given by

f(x) =
{

1 if x is rational
0 if x is irrational

So now no matter what partition P we choose, every subinterval
contains both rational and irrational numbers, and therefore, inf f =
0 and sup f = 1 on every subinterval. Therefore the lower sum equals
0 and the upper sum equals 1. So the supremum of all possible lower
sums is 0, and the infimum of all possible upper sums is 1, and since
these two numbers do not agree, f is not integrable on [0, 1].

5.7 First note that since f is continuous on [a, b], we know lim
x→x0

f(x) = f(x0).

So the number f(x0), which is positive, plays the role of L in Exercise
2.5(a). By that result, there is a positive number α and a deleted neigh-
borhood of x0 on which f(x) > α. In fact, if L > 0 in Exercise 2.5(a), one
can give an argument in which α is taken to be L/2, and show that the
existence of the limit at x0 implies that f(x) > L/2 holds on some deleted
neighborhood of x0. It follows that f remains positive on this deleted
neighborhood. Now in our case, L = f(x0), and so we have f(x) > 1

2f(x0)
on some deleted neighborhood of x0; but then if x is taken to be x0, it is
certainly true that f(x0) > 1

2f(x0), and so we in fact have some interval
on which f(x) > 1

2f(x0) > 0. If x0 is equal to either a or b, then the in-
terval is of the form [x0, x0 + δ) or (x0− δ, x0], but otherwise, the interval
can be chosen to be of the form (x0 − δ, x0 + δ). We shall assume this
is the case; the arguments for the other special cases are similar. Then
observe that we also have f(x) > 1

2f(x0) > 0 true on the closed interval

I = [x0 −
δ

2
, x0 +

δ

2
]. Therefore, inf

I
≥ 1

2
f(x0). So we choose P to be the

following partition of [a, b]:

P = {a, x0 −
δ

2
, x0 +

δ

2
, b}

Then by the nonnegativity of f on [a, b], the lower and upper sums as-
sociated with this P are nonnegative. The lower sum, S−P (f), involves



three subintervals, so there are three terms in the sum, each of which is
nonnegative. The middle term involves I, which has length δ, and we have

S−P (f) ≥ δ ·
(
inf
I

f
)
≥ δf(x0)

2
(∗)

But now if P is any partition of [a, b], and we consider the corresponding
lower sum, we can throw out all terms which involve subintervals that
do not intersect I, and we find that the inequality (∗) still holds. There-
fore the supremum of all possible upper sums is greater than or equal to
δf(x0)

2
. Since f is continuous on [a, b], we know f is integrable on [a, b] by

Proposition 5.4. Therefore the integral is defined, and we also know from
Defintion 5.2 that∫ b

a

f(x)dx = sup{S−P (f) : P is a partition of [a, b]},

which is greater than or equal to
δf(x0)

2
, a positive number. So the value

of the integral is positive.

6.3 By Proposition 6.3, there exists M ∈ R such that

f(x)− f(x0)
x− x0

≤ M (∗)

for all x ∈ [a, x0). Let

m = sup
x∈[a,x0)

f(x)− f(x0)
x− x0

,

i.e., m is the least value of M for which (∗) holds. Now define g : [a, b] → R
by g(x) = m(x−x0)+f(x0). (Note that g is of the form cx+d with c = m
and d = f(x0) −mx0.) Then we have g(x0) = f(x0), and we must show
that g(x) ≤ f(x) for all x ∈ [a, b] − {x0}. Suppose x ∈ [a, x0). Then by
(∗) and the definition of m,

f(x)− f(x0)
x− x0

≤ m (∗∗)

Since x− x0 < 0, multiplying (∗∗) by x− x0 yields

f(x)− f(x0) ≥ m(x− x0),

so that f(x) ≥ m(x − x0) + f(x0) = g(x), as desired. Now suppose
x ∈ (x0, b]. Referring again to the definition of m, note that if we choose
any ε > 0, we can find z ∈ [a, x0) for which

f(z)− f(x0)
z − x0

> m− ε.



Then since z < x0 < x, by Proposition 6.2 we have

m− ε <
f(z)− f(x0)

z − x0
<

f(x)− f(x0)
x− x0

Multiplying by x− x0 (which is now positive), we deduce

f(x)− f(x0) > (m− ε)(x− x0),

which yields
f(x) > g(x)− ε(x− x0) (∗ ∗ ∗)

So we find that (∗ ∗ ∗) holds for any given ε > 0. We claim that this
implies f(x) ≥ g(x), for suppose this were not true, and f(x) < g(x).
Then there would exist ε′ > 0 so that f(x) < g(x) − ε′ is also true. But
now let ε = ε′/(x − x0). Then we would have f(x) < g(x) − ε(x − x0),
contradicting (∗ ∗ ∗). Hence f(x) ≥ g(x).


