MSCF Mathematics Preparatory Course
 August 2006
 Solutions to Homework \#2 Exercises

3.3 (a) f is a rational function, and since $x^{3}+2 x^{2}+5 x+1 \geq 1$ for all $x \in[0,1]$, we certainly don't have $x^{3}+2 x^{2}+5 x+1=0$ for such x. Therefore, by Corollary 3.5, f is continuous on $[0,1]$.
(b) Let $g(x)=3 x^{2}$; let $h(x)=e^{x}$; let $k(x)=\sqrt{x}$; let $m(x)=\cos x$; and let $p(x)=-11$. Then k is continuous on $[\cos 1,1]$ by Exercise 3.1 , and m is continuous on $[0,1]$ (we may assume this is known by the comments preceding the chapter 3 exercises). By Corollary 3.12, then, $k \circ m=\sqrt{\cos x}$ is continuous on $[0,1]$. Next since h is continuous on \mathbf{R}, we have $h \circ(k \circ m)=e^{\sqrt{\cos x}}$ continuous on $[0,1]$, again by Corollary 3.12. Finally, g and p are continuous on \mathbf{R}, since they are polynomials. Therefore,

$$
f=g \cdot(h \circ(k \circ m))-p
$$

is continuous on $[0,1]$ by Theorem 3.4. As a bonus, let me include the following argument, which shows how we could prove this part without Corollary 3.12 . Occasionally you should challenge yourself to prove something with more primitive tools, just to see if it can be done, and also because sometimes the availability of a "powerful" theorem can cause you to lose sight of the foundational underpinnings of that theorem.
Lemma 1: If f is continuous at x_{0}, then $g(x)=e^{f(x)}$ is continuous at x_{0}.
Proof: Let $\varepsilon>0$ be given. Let $y_{0}=f\left(x_{0}\right)$. Then since e^{y} is continous on \mathbf{R}, and in particular at y_{0}, there exists $\eta>0$ such that $\left|e^{y}-e^{y_{0}}\right|<$ ε whenever $\left|y-y_{0}\right|<\eta$. Then since f is continuous at x_{0}, we can find $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\eta$ whenever $\left|x-x_{0}\right|<\delta$. Choose such an x, then, and let $y=f(x)$. Then $\left|y-y_{0}\right|=\left|f(x)-f\left(x_{0}\right)\right|<\eta$, and therefore

$$
\left|e^{f(x)}-e^{f\left(x_{0}\right)}\right|<\varepsilon
$$

as desired. The proof is complete. We also need
Lemma 2: If $f:[0,1] \rightarrow[0, \infty)$ is continuous at x_{0}, then $g(x)=$ $\sqrt{f(x)}$ is continuous at x_{0}.
I'll omit this proof, which would be a modification of the argument one would use to prove Exercise 3.1. Now we can use Lemma 2 to establish that $\sqrt{\cos x}$ is continuous on $[0,1]$; then we would have $e^{\sqrt{\cos x}}$ continuous on $[0,1]$ by Lemma 1 , and finally we would apply Theorem 3.4 to conclude that f is continuous on $[0,1]$.
(c) By Exercise 3.1, \sqrt{x} is continuous on $(0,1]$. We are given that $\sin x$ is continuous on \mathbf{R} and therefore on $[1, \infty)$. The function $1 / x$ is a rational function and is continuous on $(0, \infty)$ since $x \neq 0$ on this domain. So by Corollary $3.12, \sin (1 / x)$ is continuous on $(0,1]$. Finally, by Theorem 3.4, $\sqrt{x} \sin (1 / x)$ is continuous on $(0,1]$. Now we need to show that f is continuous at 0 , i.e., we need to show that $\lim _{x \rightarrow 0^{+}} f(x)=$ $f(0)=0$. Let $\varepsilon>0$ be given, and let $\delta=\varepsilon^{2}$. Then if $x \in(0, \delta)$, we have

$$
|f(x)-0|=|\sqrt{x} \sin (1 / x)| \leq|\sqrt{x}|=\sqrt{x}<\sqrt{\delta}=\sqrt{\varepsilon^{2}}=\varepsilon
$$

noting that $|\sin (1 / x)| \leq 1$ for all $x>0$. So f is continuous on $[0,1]$.
(d) The function $g(x)=\sqrt{x}$ is continuous on $[0,1]$ by Exercise 3.1. The function $h(x)=1-x$ is continuous on $[0,1]$, since h is a polynomial. So $f(x)=(g \circ h)(x)$ is continuous on $[0,1]$ by Corollary 3.12. Or we can argue as follows: Let $x_{0} \in[0,1]$. Then $\lim _{x \rightarrow x_{0}} h(x)=\lim _{x \rightarrow x_{0}}(1-x)=$ $\lim _{x \rightarrow x_{0}} 1-\lim _{x \rightarrow x_{0}} x=1-x_{0}=h\left(x_{0}\right)$, using the Algebra of Limits Theorem. So h is continuous at x_{0}, since $\lim _{x \rightarrow x_{0}} h(x)=h\left(x_{0}\right)$. Furthermore, if $x_{0} \in[0,1]$, then $h\left(x_{0}\right) \in[0,1]$ as well. Since g is continuous on [0,1] by Exercise 3.1, g is continuous at $h\left(x_{0}\right)$. By Proposition 3.11, $\lim _{x \rightarrow x_{0}} f(x)=g\left(\lim _{x \rightarrow x_{0}} h(x)\right)=g\left(h\left(x_{0}\right)\right)=f\left(x_{0}\right)$, so that f is continuous at x_{0}.
(e) Consider the function $g(x)=\frac{1-x^{2}}{1-x}$. Since g is a rational function, g is continuous on $\mathbf{R}-\{1\}$. Let $h:[0,1] \rightarrow \mathbf{R}$ be given by $h(x)=\tan x$. Since $h(x)=\frac{\sin x}{\cos x}$, and $\operatorname{since} \sin x$ and $\cos x$ are given to be continuous on \mathbf{R}, h is continuous at any point at which $\cos x \neq 0$; since $\cos x>0$ for all $x \in[0,1], h$ is continuous on $[0,1]$. Now let $x_{0} \in[0,1]-\left\{\frac{\pi}{4}\right\}$. Since $h\left(x_{0}\right) \neq 1$, we have that g is continuous at $h\left(x_{0}\right)$. Therefore by Corollary 3.12, f is continuous at x_{0}. We have established above that h is continuous on $[0,1]$; in particular, h is continuous at $\frac{\pi}{4}$. Therefore, $\lim _{x \rightarrow \pi / 4} \tan x=\tan (\pi / 4)=1$. Then

$$
\begin{gathered}
\lim _{x \rightarrow \pi / 4} f(x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan ^{2} x}{1-\tan x} \\
=\lim _{x \rightarrow \pi / 4} \frac{(1-\tan x)(1+\tan x)}{1-\tan x}=\lim _{x \rightarrow \pi / 4}(1+\tan x) \\
=1+\lim _{x \rightarrow \pi / 4} \tan x=1+1=2=f(\pi / 4) .
\end{gathered}
$$

This shows that f is continuous at $\pi / 4$. Hence f is continuous on $[0,1]$.
3.5 A polynomial of degree 3 on \mathbf{R}^{4} satisfying the given conditions takes the form

$$
\begin{aligned}
& P(x)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{2} x_{3} x_{4}+x_{1} x_{3} x_{4} \\
& \quad+x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3}+c_{1100} x_{1} x_{2}+c_{1010} x_{1} x_{3} \\
& +c_{1001} x_{1} x_{4}+c_{0110} x_{2} x_{3}+c_{0101} x_{2} x_{4}+c_{0011} x_{3} x_{4} \\
& +c_{1000} x_{1}+c_{0100} x_{2}+c_{0010} x_{3}+c_{0001} x_{4}+c_{0000} .
\end{aligned}
$$

3.8 (a) We take $x_{0}=0$ in this example, and let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be given by

$$
f(x)=\left\{\begin{array}{lll}
x & \text { if } & x \neq 0 \\
1 & \text { if } & x=0
\end{array}\right.
$$

and

$$
g(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \neq 0 \\
1 & \text { if } & x=0
\end{array}\right.
$$

Then first note that $g \circ f: \mathbf{R} \rightarrow \mathbf{R}$ is just the zero function, i.e., $g \circ f \equiv 0$. So we certainly have $\lim _{x \rightarrow 0}(g \circ f)(x)=0$. However, $\lim _{x \rightarrow 0} f(x)=0$, so we have $L=0$ here. But $g(L)=g(0)=1$, which is not the value of $\lim _{x \rightarrow 0}(g \circ f)(x)$.
(b) Take $x_{0}=0$ again, and g as above, but now let $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by

$$
f(x)=\left\{\begin{array}{cll}
x \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

Then by Exercise 2.2, $\lim _{x \rightarrow 0} f(x)$ exists and equals 0 . So we have $L=0$. Then g indeed has a limit at L, viz., $\lim _{x \rightarrow 0} g(x)=0$. But $\lim _{x \rightarrow 0}(g \circ f)(x)$ does not exist: Note that the formula for $g \circ f$ is

$$
(g \circ f)(x)=\left\{\begin{array}{lll}
0 & \text { if } & \sin \left(\frac{1}{x}\right) \neq 0 \\
1 & \text { if } & \sin \left(\frac{1}{x}\right)=0
\end{array} \text { or } x=0\right.
$$

Now no matter how small a deleted neighborhood of $x_{0}=0$ we consider, we have infinitely many values of x for which $f(x)=0$, so that we then have $g(f(x))=g(0)=1$. But we also have infinitely many values of x at which $f(x) \neq 0$, and at all these values of x, we have $g(f(x))=0$. So 1 and 0 are both "candidates" for the limit, and therefore $\lim _{x \rightarrow 0}(g \circ f)(x)$ does not exist.
3.10 First note that for any $x, x_{0} \in \mathbf{R}^{n}$, we have, as a consequence of the triangle inequality, Proposition 2.13 (iii),

$$
\left\|x_{0}\right\|=\left\|\left(x_{0}-x\right)+x\right\| \leq\left\|x_{0}-x\right\|+\|x\|,
$$

so that

$$
\begin{equation*}
\left\|x_{0}\right\|-\|x\| \leq\left\|x_{0}-x\right\|=\left\|x-x_{0}\right\| \tag{*}
\end{equation*}
$$

But if we reverse the roles of x and x_{0}, and repeat the argument, we get

$$
\|x\|=\left\|\left(x-x_{0}\right)+x_{0}\right\| \leq\left\|x-x_{0}\right\|+\left\|x_{0}\right\|,
$$

and then

$$
\|x\|-\left\|x_{0}\right\| \leq\left\|x-x_{0}\right\| \quad(* *)
$$

Since both inequalities $(*)$ and $(* *)$ hold, we in fact have

$$
\left|\|x\|-\left\|x_{0}\right\|\right| \leq\left\|x-x_{0}\right\|
$$

So now to show that f is continuous on \mathbf{R}^{n}, we need to show that for every $x_{0} \in \mathbf{R}^{n}$,

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}}\|x\|=f\left(x_{0}\right)=\left\|x_{0}\right\|
$$

holds. So let $\varepsilon>0$ be given. Choose $\delta=\varepsilon$. Then if $x \in B\left(x_{0}, \delta\right)-\left\{x_{0}\right\}$, we have

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|\|x\|-\left\|x_{0}\right\|\right| \leq\left\|x-x_{0}\right\|<\delta=\varepsilon
$$

as desired. So the result is proved.
4.1 Let $x_{0} \in(0, \infty)$ be given. Consider for a moment the functions $g, h:(0, \infty) \rightarrow \mathbf{R}$ given by $g(x)=-1$ for all $x>0$, and $h(x)=x_{0} x$. Then g, h are polynomials (restricted to $(0, \infty)$), and by Corollary $3.5, g$ and h are continuous at x_{0}; moreover, the rational function defined by g / h is continuous at x_{0}. Therefore,

$$
\lim _{x \rightarrow x_{0}} \frac{g(x)}{h(x)}=\lim _{x \rightarrow x_{0}} \frac{-1}{x_{0} x}=\frac{g\left(x_{0}\right)}{h\left(x_{0}\right)}=-1 / x_{0}^{2}
$$

So now we consider

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\frac{1}{x}-\frac{1}{x_{0}}}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{\frac{x_{0}-x}{x_{0} x}}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{-1}{x_{0} x}=\frac{-1}{x_{0}^{2}}
\end{aligned}
$$

and so we have the existence of the limit, and therefore f is differentiable at x_{0}, with $f^{\prime}\left(x_{0}\right)=-1 / x_{0}^{2}$.
4.2 (a) We investigate

$$
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0
$$

by Exercise 2.2. So this shows that $g^{\prime}(0)$ exists and equals 0 .
(b) To show that f is not differentiable at 0 , we investigate

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right),
$$

which does not exist by Example 2.4. So $f^{\prime}(0)$ does not exist. However, f is continuous at 0 , as

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0=f(0)
$$

again using Exercise 2.2.
(c) Basically what happens here is that the graph of f is "sandwiched" between the lines $y=x$ and $y=-x$, so that, intuitively speaking, the graph of f is allowed to "bounce" too much near $x_{0}=0$ to allow for a "tangent line" at the point $(0,0)$. But the graph of g is "sandwiched" between the curves $y=x^{2}$ and $y=-x^{2}$, and this forces a "horizontal tangent line" at $(0,0)$. (An informal explanation, as was requested.)
(d) We have already computed $g^{\prime}(0)$ and found it to be 0 . So now, if $x_{0} \neq 0$, we can compute $g^{\prime}\left(x_{0}\right)$ using the Algebra of Derivatives and the Chain Rule (Theorem 4.7), since the underlying limit involves deleted neighborhoods of x_{0} small enough to avoid 0 . So we find, for $x_{0} \neq 0$,

$$
\begin{aligned}
& g^{\prime}\left(x_{0}\right)=x_{0}^{2}\left(\cos \left(\frac{1}{x_{0}}\right)\right)\left(\frac{-1}{x_{0}^{2}}\right) \\
& =-\cos \left(\frac{1}{x_{0}}\right)+2 x_{0} \sin \left(\frac{1}{x_{0}}\right)
\end{aligned}
$$

so that the formula for $g^{\prime}: \mathbf{R} \rightarrow \mathbf{R}$ is

$$
g^{\prime}(x)=\left\{\begin{array}{cll}
2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

But this function is not continuous at 0 , because it is not true that $\lim _{x \rightarrow 0} g^{\prime}(x)=g^{\prime}(0)$. In fact, $\lim _{x \rightarrow 0} g^{\prime}(x)$ does not exist. Note that, by a similar argument as in Exercise 2.2,

$$
\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)
$$

does not exist. However,

$$
\lim _{x \rightarrow 0}\left(2 x \sin \left(\frac{1}{x}\right)\right)
$$

does exist and equals 0 . But since the limit of the other term does not exist, $\lim _{x \rightarrow 0} g^{\prime}(x)$ does not exist.
4.4 Choose any $x_{1}, x_{2} \in(a, b)$. Without loss of generality, suppose that $x_{1}<x_{2}$. Then $\left[x_{1}, x_{2}\right] \subset(a, b)$, and the differentiability of f on (a, b) implies the differentiability of f on $\left[x_{1}, x_{2}\right]$, and in view of Lemma 4.6, we also have that f is continuous on $\left[x_{1}, x_{2}\right]$. Applying the Mean Value Theorem (4.10) to f on $\left[x_{1}, x_{2}\right]$, then, there exists $z \in\left(x_{1}, x_{2}\right)$ such that

$$
f^{\prime}(z)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

But $f^{\prime} \equiv 0$ on (a, b) means that $f^{\prime}(z)=0$. Therefore, $f\left(x_{2}\right)-f\left(x_{1}\right)=0$, so that $f\left(x_{1}\right)=f\left(x_{2}\right)$. So arbitrarily choosing any two points $x_{1}, x_{2} \in(a, b)$, we find that f must take the same value at those two points. Therefore, f is constant on (a, b). (Note that the proof above is direct; if you found a proof by contradiction, look over your argument to see if it can modified to give a direct proof.)

