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3.3 (a) f is a rational function, and since x3 + 2x2 + 5x + 1 ≥ 1 for all
x ∈ [0, 1], we certainly don’t have x3 + 2x2 + 5x + 1 = 0 for such x.
Therefore, by Corollary 3.5, f is continuous on [0, 1].

(b) Let g(x) = 3x2; let h(x) = ex; let k(x) =
√

x; let m(x) = cos x;
and let p(x) = −11. Then k is continuous on [cos 1, 1] by Exercise
3.1, and m is continuous on [0, 1] (we may assume this is known
by the comments preceding the chapter 3 exercises). By Corollary
3.12, then, k ◦ m =

√
cos x is continuous on [0, 1]. Next since h is

continuous on R, we have h ◦ (k ◦m) = e
√

cos x continuous on [0, 1],
again by Corollary 3.12. Finally, g and p are continuous on R , since
they are polynomials. Therefore,

f = g · (h ◦ (k ◦m))− p

is continuous on [0, 1] by Theorem 3.4. As a bonus, let me include
the following argument, which shows how we could prove this part
without Corollary 3.12. Occasionally you should challenge yourself
to prove something with more primitive tools, just to see if it can
be done, and also because sometimes the availability of a “powerful”
theorem can cause you to lose sight of the foundational underpinnings
of that theorem.
Lemma 1: If f is continuous at x0, then g(x) = ef(x) is continuous
at x0.
Proof: Let ε > 0 be given. Let y0 = f(x0). Then since ey is continous
on R, and in particular at y0, there exists η > 0 such that |ey−ey0 | <
ε whenever |y − y0| < η. Then since f is continuous at x0, we can
find δ > 0 such that |f(x)−f(x0)| < η whenever |x−x0| < δ. Choose
such an x, then, and let y = f(x). Then |y−y0| = |f(x)−f(x0)| < η,
and therefore

|ef(x) − ef(x0)| < ε,

as desired. The proof is complete. We also need
Lemma 2: If f : [0, 1] → [0,∞) is continuous at x0, then g(x) =√

f(x) is continuous at x0.
I’ll omit this proof, which would be a modification of the argument
one would use to prove Exercise 3.1. Now we can use Lemma 2
to establish that

√
cos x is continuous on [0, 1]; then we would have

e
√

cos x continuous on [0, 1] by Lemma 1, and finally we would apply
Theorem 3.4 to conclude that f is continuous on [0, 1].



(c) By Exercise 3.1,
√

x is continuous on (0, 1]. We are given that sinx
is continuous on R and therefore on [1,∞). The function 1/x is
a rational function and is continuous on (0,∞) since x 6= 0 on this
domain. So by Corollary 3.12, sin(1/x) is continuous on (0, 1]. Finally,
by Theorem 3.4,

√
x sin(1/x) is continuous on (0, 1]. Now we need to

show that f is continuous at 0, i.e., we need to show that lim
x→0+

f(x) =

f(0) = 0. Let ε > 0 be given, and let δ = ε2. Then if x ∈ (0, δ), we
have

|f(x)− 0| = |
√

x sin(1/x)| ≤ |
√

x| =
√

x <
√

δ =
√

ε2 = ε,

noting that | sin(1/x)| ≤ 1 for all x > 0. So f is continuous on [0, 1].

(d) The function g(x) =
√

x is continuous on [0, 1] by Exercise 3.1. The
function h(x) = 1− x is continuous on [0, 1], since h is a polynomial.
So f(x) = (g ◦ h)(x) is continuous on [0, 1] by Corollary 3.12. Or we
can argue as follows: Let x0 ∈ [0, 1]. Then lim

x→x0
h(x) = lim

x→x0
(1−x) =

lim
x→x0

1− lim
x→x0

x = 1− x0 = h(x0), using the Algebra of Limits Theo-

rem. So h is continuous at x0, since lim
x→x0

h(x) = h(x0). Furthermore,

if x0 ∈ [0, 1], then h(x0) ∈ [0, 1] as well. Since g is continuous on
[0, 1] by Exercise 3.1, g is continuous at h(x0). By Proposition 3.11,
lim

x→x0
f(x) = g( lim

x→x0
h(x)) = g(h(x0)) = f(x0), so that f is continu-

ous at x0.

(e) Consider the function g(x) = 1−x2

1−x . Since g is a rational function, g
is continuous on R−{1}. Let h : [0, 1] → R be given by h(x) = tanx.
Since h(x) = sin x

cos x , and since sin x and cos x are given to be continuous
on R, h is continuous at any point at which cos x 6= 0; since cos x > 0
for all x ∈ [0, 1], h is continuous on [0, 1]. Now let x0 ∈ [0, 1]− {π

4 }.
Since h(x0) 6= 1, we have that g is continuous at h(x0). Therefore
by Corollary 3.12, f is continuous at x0. We have established above
that h is continuous on [0, 1]; in particular, h is continuous at π

4 .
Therefore, lim

x→π/4
tanx = tan(π/4) = 1. Then

lim
x→π/4

f(x) = lim
x→π/4

1− tan2 x

1− tanx

= lim
x→π/4

(1− tanx)(1 + tanx)
1− tanx

= lim
x→π/4

(1 + tanx)

= 1 + lim
x→π/4

tanx = 1 + 1 = 2 = f(π/4).

This shows that f is continuous at π/4. Hence f is continuous on
[0, 1].



3.5 A polynomial of degree 3 on R4 satisfying the given conditions takes the
form

P (x) = x3
1 + x3

2 + x3
3 + x3

4 + x2x3x4 + x1x3x4

+x1x2x4 + x1x2x3 + c1100x1x2 + c1010x1x3

+c1001x1x4 + c0110x2x3 + c0101x2x4 + c0011x3x4

+c1000x1 + c0100x2 + c0010x3 + c0001x4 + c0000.

3.8 (a) We take x0 = 0 in this example, and let f, g : R → R be given by

f(x) =
{

x if x 6= 0
1 if x = 0

and

g(x) =
{

0 if x 6= 0
1 if x = 0

Then first note that g ◦ f : R → R is just the zero function, i.e.,
g ◦ f ≡ 0. So we certainly have lim

x→0
(g ◦ f)(x) = 0. However,

lim
x→0

f(x) = 0, so we have L = 0 here. But g(L) = g(0) = 1, which is

not the value of lim
x→0

(g ◦ f)(x).

(b) Take x0 = 0 again, and g as above, but now let f : R → R be given
by

f(x) =
{

x sin
(

1
x

)
if x 6= 0

0 if x = 0

Then by Exercise 2.2, lim
x→0

f(x) exists and equals 0. So we have L = 0.

Then g indeed has a limit at L, viz., lim
x→0

g(x) = 0. But lim
x→0

(g ◦ f)(x)
does not exist: Note that the formula for g ◦ f is

(g ◦ f)(x) =
{

0 if sin
(

1
x

)
6= 0

1 if sin
(

1
x

)
= 0 or x = 0

Now no matter how small a deleted neighborhood of x0 = 0 we
consider, we have infinitely many values of x for which f(x) = 0, so
that we then have g(f(x)) = g(0) = 1. But we also have infinitely
many values of x at which f(x) 6= 0 ,and at all these values of x, we
have g(f(x)) = 0. So 1 and 0 are both “candidates” for the limit,
and therefore lim

x→0
(g ◦ f)(x) does not exist.

3.10 First note that for any x, x0 ∈ Rn, we have, as a consequence of the
triangle inequality, Proposition 2.13 (iii),

‖x0‖ = ‖(x0 − x) + x‖ ≤ ‖x0 − x‖+ ‖x‖,



so that
‖x0‖ − ‖x‖ ≤ ‖x0 − x‖ = ‖x− x0‖ (∗)

But if we reverse the roles of x and x0, and repeat the argument, we get

‖x‖ = ‖(x− x0) + x0‖ ≤ ‖x− x0‖+ ‖x0‖,

and then
‖x‖ − ‖x0‖ ≤ ‖x− x0‖ (∗∗)

Since both inequalities (∗) and (∗∗) hold, we in fact have

| ‖x‖ − ‖x0‖ | ≤ ‖x− x0‖

So now to show that f is continuous on Rn, we need to show that for
every x0 ∈ Rn,

lim
x→x0

f(x) = lim
x→x0

‖x‖ = f(x0) = ‖x0‖

holds. So let ε > 0 be given. Choose δ = ε. Then if x ∈ B(x0, δ) − {x0},
we have

|f(x)− f(x0)| = | ‖x‖ − ‖x0‖ | ≤ ‖x− x0‖ < δ = ε,

as desired. So the result is proved.

4.1 Let x0 ∈ (0,∞) be given. Consider for a moment the functions
g, h : (0,∞) → R given by g(x) = −1 for all x > 0, and h(x) = x0x.
Then g, h are polynomials (restricted to (0,∞)), and by Corollary 3.5, g
and h are continuous at x0; moreover, the rational function defined by g/h
is continuous at x0. Therefore,

lim
x→x0

g(x)
h(x)

= lim
x→x0

−1
x0x

=
g(x0)
h(x0)

= −1/x2
0

So now we consider

lim
x→x0

f(x)− f(x0)
x− x0

= lim
x→x0

1
x −

1
x0

x− x0

= lim
x→x0

x0−x
x0x

x− x0
= lim

x→x0

−1
x0x

=
−1
x2

0

,

and so we have the existence of the limit, and therefore f is differentiable
at x0, with f ′(x0) = −1/x2

0.

4.2 (a) We investigate

lim
x→0

g(x)− g(0)
x− 0

= lim
x→0

x2 sin( 1
x )

x
= lim

x→0
x sin

(
1
x

)
= 0

by Exercise 2.2. So this shows that g′(0) exists and equals 0.



(b) To show that f is not differentiable at 0, we investigate

lim
x→0

f(x)− f(0)
x− 0

= lim
x→0

x sin( 1
x )

x
= lim

x→0
sin

(
1
x

)
,

which does not exist by Example 2.4. So f ′(0) does not exist. How-
ever, f is continuous at 0, as

lim
x→0

f(x) = lim
x→0

x sin
(

1
x

)
= 0 = f(0),

again using Exercise 2.2.
(c) Basically what happens here is that the graph of f is “sandwiched”

between the lines y = x and y = −x, so that, intuitively speaking, the
graph of f is allowed to “bounce” too much near x0 = 0 to allow for a
“tangent line” at the point (0, 0). But the graph of g is “sandwiched”
between the curves y = x2 and y = −x2, and this forces a “horizontal
tangent line” at (0, 0). (An informal explanation, as was requested.)

(d) We have already computed g′(0) and found it to be 0. So now, if
x0 6= 0, we can compute g′(x0) using the Algebra of Derivatives and
the Chain Rule (Theorem 4.7), since the underlying limit involves
deleted neighborhoods of x0 small enough to avoid 0. So we find, for
x0 6= 0,

g′(x0) = x2
0

(
cos

(
1
x0

)) (
−1
x2

0

)
= − cos

(
1
x0

)
+ 2x0 sin

(
1
x0

)
,

so that the formula for g′ : R → R is

g′(x) =
{

2x sin
(

1
x

)
− cos

(
1
x

)
if x 6= 0

0 if x = 0

But this function is not continuous at 0, because it is not true that
lim
x→0

g′(x) = g′(0). In fact, lim
x→0

g′(x) does not exist. Note that, by a
similar argument as in Exercise 2.2,

lim
x→0

cos
(

1
x

)
does not exist. However,

lim
x→0

(
2x sin

(
1
x

))
does exist and equals 0. But since the limit of the other term does
not exist, lim

x→0
g′(x) does not exist.



4.4 Choose any x1, x2 ∈ (a, b). Without loss of generality, suppose that
x1 < x2. Then [x1, x2] ⊂ (a, b), and the differentiability of f on (a, b)
implies the differentiability of f on [x1, x2], and in view of Lemma 4.6,
we also have that f is continuous on [x1, x2]. Applying the Mean Value
Theorem (4.10) to f on [x1, x2], then, there exists z ∈ (x1, x2) such that

f ′(z) =
f(x2)− f(x1)

x2 − x1
.

But f ′ ≡ 0 on (a, b) means that f ′(z) = 0. Therefore, f(x2)−f(x1) = 0, so
that f(x1) = f(x2). So arbitrarily choosing any two points x1, x2 ∈ (a, b),
we find that f must take the same value at those two points. Therefore,
f is constant on (a, b). (Note that the proof above is direct; if you found
a proof by contradiction, look over your argument to see if it can modified
to give a direct proof.)


