MSCF Mathematics Preparatory Course
August 2006
Solutions to Homework \#1 Exercises

1.2
(a) Suppose $a_{1}, a_{2} \in A$ with $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$. Then we must have $f\left(a_{1}\right)=f\left(a_{2}\right)$ since g is one-to-one. But then since f is one-to-one, $a_{1}=a_{2}$. Therefore $g \circ f$ is one-to-one. To show that $g \circ f$ is onto, choose any $c \in C$. Since g is onto C, there exists $b \in B$ for which $g(b)=c$. But then since f is onto B, there exists $a \in A$ for which $f(a)=b$. Therefore, $g(f(a))=c$, and we have found $a \in A$ such that $(g \circ f)(a)=c$.
(b) Suppose $a_{1}, a_{2} \in A$ are such that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then we certainly have $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$ (otherwise $g \circ f$ is not a function). But since $g \circ f$ is one-to-one, this implies $a_{1}=a_{2}$. Therefore, f is one-to-one. Now we show that g is onto. Choose any $c \in C$. Then there exists $a \in A$ such that $g(f(a))=c$, since $g \circ f$ is onto. Let $b=f(a)$. Then $g(b)=c$. Hence we have found an element $b \in B$ which maps to c under g. So g is onto C.
(c) Let $f:\{w\} \rightarrow\{x, y\}$ be given by $f(w)=x$. Let $g:\{x, y\} \rightarrow\{z\}$ be given by $g(x)=z$ and $g(y)=z$ (which, observe, is the only possible function with the given domain and target space). Then f is not onto, since there does not exist any element a of the set $\{w\}$ for which $f(a)=y$. Also, g is not one-to-one, since $g(x)=g(y)$ but $x \neq y$. But $g \circ f:\{w\} \rightarrow\{z\}$ is given by $g(f(w))=z$ and is one-to-one and onto.
1.4 If there exists a one-to-one, onto function $f: A \rightarrow B$, then we must have $A \neq \phi$, for there must be at least one element $x \in A$ in order for us to have a function defined on A at all. Now by Definition 1.6, part (ii), since A is finite, there exists $n \in \mathbf{N}$ and a function $g:\{1, \ldots, n\} \rightarrow A$ which is one-to-one and onto. Then by Exercise 1.2 (a), the function $f \circ g$: $\{1, \ldots, n\} \rightarrow B$ is one-to-one and onto, and this shows that B is finite.
1.5 By Definition 1.12, A countably infinite implies that there exists a one-to-one, onto function $f: \mathbf{N} \rightarrow A$. Then we are given that there exists a one-to-one, onto function $g: A \rightarrow B$. So again by Exercise 1.2 (a), the function $g \circ f: \mathbf{N} \rightarrow B$ is one-to-one and onto, which shows that B is countably infinite.
1.11 Since A is countably infinite, there exists a one-to-one, onto function $f: \mathbf{N} \rightarrow A$. Since B is countably infinite, there exists a one-to-one, onto function $g: \mathbf{N} \rightarrow B$. Consider the following "list" of elements of $A \cup B$:

$$
f(1), g(1), f(2), g(2), f(3), g(3), \ldots
$$

The list certainly includes every element of $A \cup B$ by virtue of f and g being onto. However, the list may involve repetition, since for example if $x \in A$ and $x \in B$, we may have $f(74)=g(1021)=x$. To avoid this, delete any item $g(k)$ on the list if $g(k)=f(i)$ for any $i \in\{1,2, \ldots, k\}$, and delete any item $f(k)$ on the list if $f(k)=g(i)$ for any $i \in\{1,2, \ldots, k-1\}$. The function $h: \mathbf{N} \rightarrow A \cup B$ induced by the resulting list is then one-to-one and onto, so that $A \cup B$ is countably infinite.
1.14 First suppose $n=2$. Then

$$
\mathbf{Q}^{2}=\left\{\left(q_{1}, q_{2}\right): q_{1}, q_{2} \in \mathbf{Q}\right\}
$$

Since \mathbf{Q} is countably infinite, we can write $\mathbf{Q}=\left\{q_{1}, q_{2}, q_{3}, q_{4}, \ldots\right\}$. (This is true due to the existence of a one-to-one, onto function $f: \mathbf{N} \rightarrow \mathbf{Q}$. By setting $q_{i}=f(i)$ for each i, we generate a "list" of elements of \mathbf{Q}.) Now construct a table of ordered pairs like so:

$$
\begin{array}{ccccc}
\left(q_{1}, q_{1}\right) & \left(q_{1}, q_{2}\right) & \left(q_{1}, q_{3}\right) & \left(q_{1}, q_{4}\right) & \ldots \\
\left(q_{2}, q_{1}\right) & \left(q_{2}, q_{2}\right) & \left(q_{2}, q_{3}\right) & \left(q_{2}, q_{4}\right) & \ldots \\
\left(q_{3}, q_{1}\right) & \left(q_{3}, q_{2}\right) & \left(q_{3}, q_{3}\right) & \left(q_{3}, q_{4}\right) & \ldots \\
\left(q_{4}, q_{1}\right) & \left(q_{4}, q_{2}\right) & \left(q_{4}, q_{3}\right) & \left(q_{4}, q_{4}\right) & \ldots \\
\left(q_{5}, q_{1}\right) & \left(q_{5}, q_{2}\right) & \left(q_{5}, q_{3}\right) & \left(q_{5}, q_{4}\right) & \ldots
\end{array}
$$

Now convert the table into a single list, selecting items by moving through the table in diagonal fashion as in Figure 2 on page 25. Then we get

$$
\begin{aligned}
& \quad\left(q_{1}, q_{1}\right),\left(q_{2}, q_{1}\right),\left(q_{1}, q_{2}\right),\left(q_{3}, q_{1}\right),\left(q_{2}, q_{2}\right), \\
& \left(q_{1}, q_{3}\right),\left(q_{4}, q_{1}\right),\left(q_{3}, q_{2}\right),\left(q_{2}, q_{3}\right),\left(q_{1}, q_{4}\right), \ldots
\end{aligned}
$$

and the list induces a one-to-one onto function from \mathbf{N} to \mathbf{Q}^{2}. So \mathbf{Q}^{2} is countably infinite. Now to show \mathbf{Q}^{3} is countably infinite, we can essentially use the same strategy by writing $\mathbf{Q}=\left\{q_{1}, q_{2}, q_{3}, q_{4}, \ldots\right\}$ and $\mathbf{Q}^{2}=\left\{p_{1}, p_{2}, p_{3}, p_{4}, \ldots\right\}$ (now that we know that \mathbf{Q}^{2} is countably infinite and can be so represented). Then by regarding a generic element (r, s, t) of \mathbf{Q}^{3} as (r, u), with $r \in \mathbf{Q}$ and $u=(s, t) \in \mathbf{Q}^{2}$, one can construct a table similar to the one above and then convert it to a list, thereby inducing a one-to-one, onto function from \mathbf{N} to \mathbf{Q}^{3}. Continuing in this manner, one can ultimately establish the existence of a one-to-one onto function from $\mathbf{N} \rightarrow \mathbf{Q}^{n}$ for any given n.
1.15 Define $f: I \rightarrow J$ as follows: Given $x \in I$, write $x=0 . d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} \ldots$, where the d_{i} are the digits in a decimal expansion of x, chosen if necessary to avoid $d_{i}=9$ for all i greater than or equal to some k. Let

$$
f(x)=\left(0 . d_{1} d_{3} d_{5} d_{7} \ldots, 0 . d_{2} d_{4} d_{6} d_{8} \ldots\right)
$$

Then $f(x)$ is an element of J since each coordinate is between 0 and 1 . To show that f is onto J, suppose we choose any $(s, t) \in J$. Then since s and t each belong to $(0,1)$, we can consider their decimal expansions and write

$$
\begin{equation*}
(s, t)=\left(0 . s_{1} s_{2} s_{3} s_{4} \ldots, 0 . t_{1} t_{2} t_{3} t_{4} \ldots\right) \tag{*}
\end{equation*}
$$

Then $x=0 . s_{1} t_{1} s_{2} t_{2} s_{3} t_{3} \ldots$ satisfies $f(x)=(s, t)$. So we can always find some element of I which maps to a given element of J; therefore f is onto. To show that f is one-to-one, suppose $x, y \in I$ with $x \neq y$, and we will show that $f(x) \neq f(y)$. Write $x=0 . d_{1} d_{2} d_{3} d_{4} \ldots$ and $y=0 . c_{1} c_{2} c_{3} c_{4} \ldots$ Then there exists some i for which $d_{i} \neq c_{i}$. Let $(s, t)=f(x)$ and consider (s, t) as in $(*)$. Let $(u, v)=f(y)$ and write

$$
(u, v)=\left(0 . u_{1} u_{2} u_{3} u_{4} \ldots, 0 . v_{1} v_{2} v_{3} v_{4} \ldots\right)
$$

If i is odd, then we have

$$
s_{\frac{i+1}{2}} \neq u_{\frac{i+1}{2}},
$$

so that $s \neq u$ and hence $f(x) \neq f(y)$. But if i is even, then we have

$$
t_{\frac{i}{2}} \neq v_{\frac{i}{2}},
$$

so that $t \neq v$ and hence $f(x) \neq f(y)$. Therefore, f is one-to-one.
2.1 Let $\varepsilon>0$ be given. Then since $\lim _{x \rightarrow 0} f(x)=0$, there exists $\delta>0$ so that if $x \in C$ and $0<|x|<\delta$,

$$
|f(x)|=|f(x)-0|<\varepsilon / B .
$$

But then for such x, we have

$$
|f(x) g(x)-0|=|f(x) g(x)|=|f(x)||g(x)|<(\varepsilon / B) \cdot B=\varepsilon .
$$

Therefore, $\lim _{x \rightarrow 0} f(x) g(x)=0$, as desired.
2.2 We note that for any $x \neq 0,\left|\sin \left(\frac{1}{x}\right)\right| \leq 1$. Therefore $g: \mathbf{R}-\{0\} \rightarrow \mathbf{R}$, defined by $g(x)=\sin \left(\frac{1}{x}\right)$, is bounded on any deleted neighborhood of 0 . Since $\lim _{x \rightarrow 0} x=0$, we have $d s \lim _{x \rightarrow 0} f(x)=0$ by Exercise 2.1.
2.7 Let $D=[-1,1]$, and let $f: D \rightarrow \mathbf{R}$ and $g: D \rightarrow \mathbf{R}$ be given by $f(x)=0$ for all $x \in D$, and

$$
g(x)=\left\{\begin{array}{ccc}
|x| & \text { for } & x \neq 0 \\
1 & \text { for } & x=0
\end{array}\right.
$$

Then we have $f(x)<g(x)$ for all $x \in D$. Let $x_{0}=0$. Then $\lim _{x \rightarrow 0} f(x)=0$, which, for good measure, we will prove: If $\varepsilon>0$ is given, choose any $\delta \in(0,1)$. Then if $x \in(-\delta, \delta)-\{0\}$, we have

$$
|f(x)-0|=|0-0|=0<\varepsilon,
$$

as desired. We also have $\lim _{x \rightarrow 0} g(x)=0$, since if $\varepsilon>0$ is given, we can choose $\delta=\varepsilon$ (we may as well assume $\varepsilon<1$), and if $x \in(-\delta, \delta)-\{0\}$, we have

$$
|g(x)-0|=||x|-0|=|x|<\delta=\varepsilon .
$$

We could not have $L>M$ under these hypotheses, for then if we let $\varepsilon=\frac{L-M}{2}$, we can find $\delta^{\prime}, \delta^{\prime \prime}>0$ such that

$$
\begin{equation*}
L-\varepsilon<f(x)<L+\varepsilon \tag{*}
\end{equation*}
$$

for $x \in\left(x_{0}-\delta^{\prime}, x_{0}+\delta^{\prime}\right)-\left\{x_{0}\right\}$ and

$$
\begin{equation*}
M-\varepsilon<g(x)<M+\varepsilon \tag{**}
\end{equation*}
$$

for $x \in\left(x_{0}-\delta^{\prime \prime}, x_{0}+\delta^{\prime \prime}\right)-\left\{x_{0}\right\}$. Now take $\delta=\min \left\{\delta^{\prime}, \delta^{\prime \prime}\right\}$, and for $x \in\left(x_{0}-\delta, x_{0}+\delta\right)-\left\{x_{0}\right\},(*)$ and $(* *)$ both hold. Taking the right hand inequality in $(* *)$ and multiplying by -1 , we obtain

$$
-g(x)>-M-\varepsilon
$$

which when added to left hand inequality in $(*)$ yields

$$
f(x)-g(x)>L-M-2 \varepsilon=L-M-2\left(\frac{L-M}{2}\right)=0
$$

But this implies $f(x)>g(x)$ on $\left(x_{0}-\delta, x_{0}+\delta\right)-\left\{x_{0}\right\}$, which is a contradiction. Hence we must have $L \leq M$.
2.8 We claim that if $x_{0} \notin \mathbf{Z}$, then f does have a limit at x_{0}, and that $\lim _{x \rightarrow x_{0}} f(x)=x_{0}-\left[x_{0}\right]=f\left(x_{0}\right)$. Let $\varepsilon>0$ be given, and choose $\delta=$ $\min \left\{\varepsilon, x_{0}-\left[x_{0}\right], 1+\left[x_{0}\right]-x_{0}\right\}$. Then if x satisfies $0<\left|x-x_{0}\right|<\delta$, then we note that $x \in\left(\left[x_{0}\right], 1+\left[x_{0}\right]\right)$ by choice of δ, so that $[x]=\left[x_{0}\right]$. Therefore

$$
\begin{gathered}
\quad\left|f(x)-f\left(x_{0}\right)\right|=\left|x-[x]-\left(x_{0}-\left[x_{0}\right]\right)\right| \\
=\left|x-x_{0}+\left(\left[x_{0}\right]-[x]\right)\right|=\left|x-x_{0}\right|<\delta \leq \varepsilon,
\end{gathered}
$$

so that indeed, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
2.9 (i) First suppose that $\lim _{x \rightarrow x_{0}} f(x)=L$. Then given $\varepsilon>0$, we can find $\delta>0$ so that if

$$
\begin{equation*}
0<\left\|x-x_{0}\right\|<\delta \tag{*}
\end{equation*}
$$

then $\|f(x)-L\|<\varepsilon$. But if $(*)$ applies, then

$$
\begin{gathered}
\left|f_{j}(x)-L_{j}\right|=\sqrt{\left|f_{j}(x)-L_{j}\right|^{2}} \\
\leq \sqrt{\sum_{i=1}^{m}\left|f_{i}(x)-L_{i}\right|^{2}}=\|f(x)-L\|<\varepsilon
\end{gathered}
$$

Hence $\lim _{x \rightarrow x_{0}} f_{j}(x)=L_{j}$. (ii) On the other hand, if $\lim _{x \rightarrow x_{0}} f_{j}(x)=L_{j}$ is true for each $j \in\{1, \ldots, m\}$, then given $\varepsilon>0$, we can find $\delta_{j}>0$ so that $\left|f_{j}(x)-L_{j}\right|<\frac{\varepsilon}{\sqrt{m}}$ is true whenever x satisfies

$$
0<\left\|x-x_{0}\right\|<\delta_{j} . \quad(* *)
$$

Now let $\delta=\min \left\{d_{j}: j=1,2, \ldots, m\right\}$. Then if $0<\left\|x-x_{0}\right\|<\delta$, we have (**) satisfied for every j, so that

$$
\begin{gathered}
\|f(x)-L\|=\sqrt{\sum_{j=1}^{m}\left|f_{j}(x)-L_{j}\right|^{2}} \\
\quad<\sqrt{\sum_{j=1}^{m} \frac{\varepsilon^{2}}{m}}=\sqrt{\frac{m \varepsilon^{2}}{m}}=\varepsilon,
\end{gathered}
$$

as desired. Therefore, $\lim _{x \rightarrow x_{0}} f(x)=L$.

