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1.2

(a) Suppose a1, a2 ∈ A with g(f(a1)) = g(f(a2)). Then we must have
f(a1) = f(a2) since g is one-to-one. But then since f is one-to-one,
a1 = a2. Therefore g ◦ f is one-to-one. To show that g ◦ f is onto,
choose any c ∈ C. Since g is onto C, there exists b ∈ B for which
g(b) = c. But then since f is onto B, there exists a ∈ A for which
f(a) = b. Therefore, g(f(a)) = c, and we have found a ∈ A such that
(g ◦ f)(a) = c.

(b) Suppose a1, a2 ∈ A are such that f(a1) = f(a2). Then we certainly
have g(f(a1)) = g(f(a2)) (otherwise g◦f is not a function). But since
g ◦ f is one-to-one, this implies a1 = a2. Therefore, f is one-to-one.
Now we show that g is onto. Choose any c ∈ C. Then there exists
a ∈ A such that g(f(a)) = c, since g ◦ f is onto. Let b = f(a). Then
g(b) = c. Hence we have found an element b ∈ B which maps to c
under g. So g is onto C.

(c) Let f : {w} → {x, y} be given by f(w) = x. Let g : {x, y} → {z}
be given by g(x) = z and g(y) = z (which, observe, is the only
possible function with the given domain and target space). Then
f is not onto, since there does not exist any element a of the set
{w} for which f(a) = y. Also, g is not one-to-one, since g(x) = g(y)
but x 6= y. But g ◦ f : {w} → {z} is given by g(f(w)) = z and is
one-to-one and onto.

1.4 If there exists a one-to-one, onto function f : A → B, then we must have
A 6= φ, for there must be at least one element x ∈ A in order for us
to have a function defined on A at all. Now by Definition 1.6, part (ii),
since A is finite, there exists n ∈ N and a function g : {1, . . . , n} → A
which is one-to-one and onto. Then by Exercise 1.2 (a), the function f ◦g :
{1, . . . , n} → B is one-to-one and onto, and this shows that B is finite.

1.5 By Definition 1.12, A countably infinite implies that there exists a one-
to-one, onto function f : N → A. Then we are given that there exists a
one-to-one, onto function g : A → B. So again by Exercise 1.2 (a), the
function g ◦ f : N → B is one-to-one and onto, which shows that B is
countably infinite.

1.11 Since A is countably infinite, there exists a one-to-one, onto function
f : N → A. Since B is countably infinite, there exists a one-to-one, onto
function g : N → B. Consider the following “list” of elements of A ∪B:

f(1), g(1), f(2), g(2), f(3), g(3), . . .



The list certainly includes every element of A ∪ B by virtue of f and g
being onto. However, the list may involve repetition, since for example if
x ∈ A and x ∈ B, we may have f(74) = g(1021) = x. To avoid this, delete
any item g(k) on the list if g(k) = f(i) for any i ∈ {1, 2, . . . , k}, and delete
any item f(k) on the list if f(k) = g(i) for any i ∈ {1, 2, . . . , k − 1}. The
function h : N → A ∪ B induced by the resulting list is then one-to-one
and onto, so that A ∪B is countably infinite.

1.14 First suppose n = 2. Then

Q2 = {(q1, q2) : q1, q2 ∈ Q}.

Since Q is countably infinite, we can write Q = {q1, q2, q3, q4, . . .}. (This
is true due to the existence of a one-to-one, onto function f : N → Q. By
setting qi = f(i) for each i, we generate a “list” of elements of Q.) Now
construct a table of ordered pairs like so:

(q1, q1) (q1, q2) (q1, q3) (q1, q4) . . .
(q2, q1) (q2, q2) (q2, q3) (q2, q4) . . .
(q3, q1) (q3, q2) (q3, q3) (q3, q4) . . .
(q4, q1) (q4, q2) (q4, q3) (q4, q4) . . .
(q5, q1) (q5, q2) (q5, q3) (q5, q4) . . .

· · · ·
· · · ·
· · · ·

Now convert the table into a single list, selecting items by moving through
the table in diagonal fashion as in Figure 2 on page 25. Then we get

(q1, q1), (q2, q1), (q1, q2), (q3, q1), (q2, q2),

(q1, q3), (q4, q1), (q3, q2), (q2, q3), (q1, q4), . . .

and the list induces a one-to-one onto function from N to Q2. So Q2

is countably infinite. Now to show Q3 is countably infinite, we can es-
sentially use the same strategy by writing Q = {q1, q2, q3, q4, . . .} and
Q2 = {p1, p2, p3, p4, . . .} (now that we know that Q2 is countably infinite
and can be so represented). Then by regarding a generic element (r, s, t)
of Q3 as (r, u), with r ∈ Q and u = (s, t) ∈ Q2, one can construct a table
similar to the one above and then convert it to a list, thereby inducing a
one-to-one, onto function from N to Q3. Continuing in this manner, one
can ultimately establish the existence of a one-to-one onto function from
N → Qn for any given n.

1.15 Define f : I → J as follows: Given x ∈ I, write x = 0.d1d2d3d4d5d6 . . .,
where the di are the digits in a decimal expansion of x, chosen if necessary
to avoid di = 9 for all i greater than or equal to some k. Let

f(x) = (0.d1d3d5d7 . . . , 0.d2d4d6d8 . . .).



Then f(x) is an element of J since each coordinate is between 0 and 1.
To show that f is onto J , suppose we choose any (s, t) ∈ J . Then since s
and t each belong to (0, 1), we can consider their decimal expansions and
write

(s, t) = (0.s1s2s3s4 . . . , 0.t1t2t3t4 . . .). (∗)

Then x = 0.s1t1s2t2s3t3 . . . satisfies f(x) = (s, t). So we can always find
some element of I which maps to a given element of J ; therefore f is onto.

To show that f is one-to-one, suppose x, y ∈ I with x 6= y, and we will
show that f(x) 6= f(y). Write x = 0.d1d2d3d4 . . . and y = 0.c1c2c3c4 . . ..
Then there exists some i for which di 6= ci. Let (s, t) = f(x) and consider
(s, t) as in (∗). Let (u, v) = f(y) and write

(u, v) = (0.u1u2u3u4 . . . , 0.v1v2v3v4 . . .).

If i is odd, then we have
s i+1

2
6= u i+1

2
,

so that s 6= u and hence f(x) 6= f(y). But if i is even, then we have

t i
2
6= v i

2
,

so that t 6= v and hence f(x) 6= f(y). Therefore, f is one-to-one.

2.1 Let ε > 0 be given. Then since lim
x→0

f(x) = 0, there exists δ > 0 so that if

x ∈ C and 0 < |x| < δ,

|f(x)| = |f(x)− 0| < ε/B.

But then for such x, we have

|f(x)g(x)− 0| = |f(x)g(x)| = |f(x)||g(x)| < (ε/B) ·B = ε.

Therefore, lim
x→0

f(x)g(x) = 0, as desired.

2.2 We note that for any x 6= 0, |sin( 1
x )| ≤ 1. Therefore g : R − {0} → R,

defined by g(x) = sin( 1
x ), is bounded on any deleted neighborhood of 0.

Since lim
x→0

x = 0, we have

ds limx→0 f(x) = 0 by Exercise 2.1.

2.7 Let D = [−1, 1], and let f : D → R and g : D → R be given by f(x) = 0
for all x ∈ D, and

g(x) =
{

|x| for x 6= 0
1 for x = 0



Then we have f(x) < g(x) for all x ∈ D. Let x0 = 0. Then lim
x→0

f(x) = 0,
which, for good measure, we will prove: If ε > 0 is given, choose any
δ ∈ (0, 1). Then if x ∈ (−δ, δ)− {0}, we have

|f(x)− 0| = |0− 0| = 0 < ε,

as desired. We also have lim
x→0

g(x) = 0, since if ε > 0 is given, we can

choose δ = ε (we may as well assume ε < 1), and if x ∈ (−δ, δ)− {0}, we
have

|g(x)− 0| = ||x| − 0| = |x| < δ = ε.

We could not have L > M under these hypotheses, for then if we let

ε =
L−M

2
, we can find δ′, δ′′ > 0 such that

L− ε < f(x) < L + ε (∗)

for x ∈ (x0 − δ′, x0 + δ′)− {x0} and

M − ε < g(x) < M + ε (∗∗)

for x ∈ (x0 − δ′′, x0 + δ′′) − {x0}. Now take δ = min{δ′, δ′′}, and for
x ∈ (x0 − δ, x0 + δ)−{x0}, (∗) and (∗∗) both hold. Taking the right hand
inequality in (∗∗) and multiplying by −1, we obtain

− g(x) > −M − ε,

which when added to left hand inequality in (∗) yields

f(x)− g(x) > L−M − 2ε = L−M − 2
(

L−M

2

)
= 0.

But this implies f(x) > g(x) on (x0 − δ, x0 + δ)−{x0}, which is a contra-
diction. Hence we must have L ≤ M .

2.8 We claim that if x0 /∈ Z, then f does have a limit at x0, and that
lim

x→x0
f(x) = x0 − [x0] = f(x0). Let ε > 0 be given, and choose δ =

min{ε, x0− [x0], 1+[x0]−x0}. Then if x satisfies 0 < |x−x0| < δ, then we
note that x ∈ ([x0], 1 + [x0]) by choice of δ, so that [x] = [x0]. Therefore

|f(x)− f(x0)| = |x− [x]− (x0 − [x0])|

= |x− x0 + ([x0]− [x])| = |x− x0| < δ ≤ ε,

so that indeed, lim
x→x0

f(x) = f(x0).



2.9 (i) First suppose that lim
x→x0

f(x) = L. Then given ε > 0, we can find δ > 0

so that if
0 < ‖x− x0‖ < δ, (∗)

then ‖f(x)− L‖ < ε. But if (∗) applies, then

|fj(x)− Lj | =
√
|fj(x)− Lj |2

≤

√√√√ m∑
i=1

|fi(x)− Li|2 = ‖f(x)− L‖ < ε.

Hence lim
x→x0

fj(x) = Lj . (ii) On the other hand, if lim
x→x0

fj(x) = Lj is true

for each j ∈ {1, . . . ,m}, then given ε > 0, we can find δj > 0 so that
|fj(x)− Lj | < ε√

m
is true whenever x satisfies

0 < ‖x− x0‖ < δj . (∗∗)

Now let δ = min{dj : j = 1, 2, . . . ,m}. Then if 0 < ‖x− x0‖ < δ, we have
(∗∗) satisfied for every j, so that

‖f(x)− L‖ =

√√√√ m∑
j=1

|fj(x)− Lj |2

<

√√√√ m∑
j=1

ε2

m
=

√
mε2

m
= ε,

as desired. Therefore, lim
x→x0

f(x) = L.


