MSCF Mathematics Preparatory Course August 2006 Solutions to Homework #1 Exercises

1.2

- (a) Suppose $a_1, a_2 \in A$ with $g(f(a_1)) = g(f(a_2))$. Then we must have $f(a_1) = f(a_2)$ since g is one-to-one. But then since f is one-to-one, $a_1 = a_2$. Therefore $g \circ f$ is one-to-one. To show that $g \circ f$ is onto, choose any $c \in C$. Since g is onto C, there exists $b \in B$ for which g(b) = c. But then since f is onto B, there exists $a \in A$ for which f(a) = b. Therefore, g(f(a)) = c, and we have found $a \in A$ such that $(g \circ f)(a) = c$.
- (b) Suppose a₁, a₂ ∈ A are such that f(a₁) = f(a₂). Then we certainly have g(f(a₁)) = g(f(a₂)) (otherwise g ∘ f is not a function). But since g ∘ f is one-to-one, this implies a₁ = a₂. Therefore, f is one-to-one. Now we show that g is onto. Choose any c ∈ C. Then there exists a ∈ A such that g(f(a)) = c, since g ∘ f is onto. Let b = f(a). Then g(b) = c. Hence we have found an element b ∈ B which maps to c under g. So g is onto C.
- (c) Let f: {w} → {x, y} be given by f(w) = x. Let g: {x, y} → {z} be given by g(x) = z and g(y) = z (which, observe, is the only possible function with the given domain and target space). Then f is not onto, since there does not exist any element a of the set {w} for which f(a) = y. Also, g is not one-to-one, since g(x) = g(y) but x ≠ y. But g ∘ f : {w} → {z} is given by g(f(w)) = z and is one-to-one and onto.
- **1.4** If there exists a one-to-one, onto function $f : A \to B$, then we must have $A \neq \phi$, for there must be at least one element $x \in A$ in order for us to have a function defined on A at all. Now by Definition 1.6, part (ii), since A is finite, there exists $n \in \mathbb{N}$ and a function $g : \{1, \ldots, n\} \to A$ which is one-to-one and onto. Then by Exercise 1.2 (a), the function $f \circ g : \{1, \ldots, n\} \to B$ is one-to-one and onto, and this shows that B is finite.
- **1.5** By Definition 1.12, A countably infinite implies that there exists a oneto-one, onto function $f : \mathbf{N} \to A$. Then we are given that there exists a one-to-one, onto function $g : A \to B$. So again by Exercise 1.2 (a), the function $g \circ f : \mathbf{N} \to B$ is one-to-one and onto, which shows that B is countably infinite.
- **1.11** Since A is countably infinite, there exists a one-to-one, onto function $f : \mathbf{N} \to A$. Since B is countably infinite, there exists a one-to-one, onto function $g : \mathbf{N} \to B$. Consider the following "list" of elements of $A \cup B$:

 $f(1), g(1), f(2), g(2), f(3), g(3), \dots$

The list certainly includes every element of $A \cup B$ by virtue of f and g being onto. However, the list may involve repetition, since for example if $x \in A$ and $x \in B$, we may have f(74) = g(1021) = x. To avoid this, delete any item g(k) on the list if g(k) = f(i) for any $i \in \{1, 2, \ldots, k\}$, and delete any item f(k) on the list if f(k) = g(i) for any $i \in \{1, 2, \ldots, k-1\}$. The function $h : \mathbf{N} \to A \cup B$ induced by the resulting list is then one-to-one and onto, so that $A \cup B$ is countably infinite.

1.14 First suppose n = 2. Then

$$\mathbf{Q}^2 = \{ (q_1, q_2) : q_1, q_2 \in \mathbf{Q} \}.$$

Since **Q** is countably infinite, we can write $\mathbf{Q} = \{q_1, q_2, q_3, q_4, \ldots\}$. (This is true due to the existence of a one-to-one, onto function $f : \mathbf{N} \to \mathbf{Q}$. By setting $q_i = f(i)$ for each i, we generate a "list" of elements of **Q**.) Now construct a table of ordered pairs like so:

(q_1, q_1)	(q_1, q_2)	(q_1, q_3)	(q_1, q_4)	
(q_2, q_1)	(q_2, q_2)	(q_2, q_3)	(q_2, q_4)	
(q_3, q_1)	(q_3, q_2)	(q_3, q_3)	(q_3, q_4)	
(q_4, q_1)	(q_4, q_2)	(q_4, q_3)	(q_4, q_4)	
(q_5, q_1)	(q_5, q_2)	(q_5, q_3)	(q_5, q_4)	
•	•	•	•	
	•			
	•	•	•	

Now convert the table into a single list, selecting items by moving through the table in diagonal fashion as in Figure 2 on page 25. Then we get

$(q_1, q_1), (q_2, q_1), (q_1, q_2), (q_3, q_1), (q_2, q_2),$

 $(q_1, q_3), (q_4, q_1), (q_3, q_2), (q_2, q_3), (q_1, q_4), \dots$

and the list induces a one-to-one onto function from **N** to \mathbf{Q}^2 . So \mathbf{Q}^2 is countably infinite. Now to show \mathbf{Q}^3 is countably infinite, we can essentially use the same strategy by writing $\mathbf{Q} = \{q_1, q_2, q_3, q_4, \ldots\}$ and $\mathbf{Q}^2 = \{p_1, p_2, p_3, p_4, \ldots\}$ (now that we know that \mathbf{Q}^2 is countably infinite and can be so represented). Then by regarding a generic element (r, s, t) of \mathbf{Q}^3 as (r, u), with $r \in \mathbf{Q}$ and $u = (s, t) \in \mathbf{Q}^2$, one can construct a table similar to the one above and then convert it to a list, thereby inducing a one-to-one, onto function from \mathbf{N} to \mathbf{Q}^3 . Continuing in this manner, one can ultimately establish the existence of a one-to-one onto function from $\mathbf{N} \to \mathbf{Q}^n$ for any given n.

1.15 Define $f: I \to J$ as follows: Given $x \in I$, write $x = 0.d_1d_2d_3d_4d_5d_6...$, where the d_i are the digits in a decimal expansion of x, chosen if necessary to avoid $d_i = 9$ for all i greater than or equal to some k. Let

$$f(x) = (0.d_1d_3d_5d_7\dots, 0.d_2d_4d_6d_8\dots).$$

Then f(x) is an element of J since each coordinate is between 0 and 1. To show that f is onto J, suppose we choose any $(s,t) \in J$. Then since s and t each belong to (0,1), we can consider their decimal expansions and write

$$(s,t) = (0.s_1 s_2 s_3 s_4 \dots, 0.t_1 t_2 t_3 t_4 \dots). \quad (*)$$

Then $x = 0.s_1t_1s_2t_2s_3t_3...$ satisfies f(x) = (s, t). So we can always find some element of I which maps to a given element of J; therefore f is onto. To show that f is one-to-one, suppose $x, y \in I$ with $x \neq y$, and we will show that $f(x) \neq f(y)$. Write $x = 0.d_1d_2d_3d_4...$ and $y = 0.c_1c_2c_3c_4...$ Then there exists some i for which $d_i \neq c_i$. Let (s,t) = f(x) and consider (s,t) as in (*). Let (u,v) = f(y) and write

$$(u, v) = (0.u_1u_2u_3u_4\dots, 0.v_1v_2v_3v_4\dots).$$

If i is odd, then we have

$$s_{\frac{i+1}{2}} \neq u_{\frac{i+1}{2}},$$

so that $s \neq u$ and hence $f(x) \neq f(y)$. But if i is even, then we have

$$t_{\frac{i}{2}} \neq v_{\frac{i}{2}},$$

so that $t \neq v$ and hence $f(x) \neq f(y)$. Therefore, f is one-to-one.

2.1 Let $\varepsilon > 0$ be given. Then since $\lim_{x \to 0} f(x) = 0$, there exists $\delta > 0$ so that if $x \in C$ and $0 < |x| < \delta$,

$$|f(x)| = |f(x) - 0| < \varepsilon/B.$$

But then for such x, we have

$$|f(x)g(x) - 0| = |f(x)g(x)| = |f(x)||g(x)| < (\varepsilon/B) \cdot B = \varepsilon.$$

Therefore, $\lim_{x\to 0} f(x)g(x) = 0$, as desired.

2.2 We note that for any $x \neq 0$, $|sin(\frac{1}{x})| \leq 1$. Therefore $g : \mathbf{R} - \{0\} \to \mathbf{R}$, defined by $g(x) = sin(\frac{1}{x})$, is bounded on any deleted neighborhood of 0. Since $\lim_{x\to 0} x = 0$, we have

 $ds \lim_{x \to 0} f(x) = 0$ by Exercise 2.1.

2.7 Let D = [-1, 1], and let $f : D \to \mathbf{R}$ and $g : D \to \mathbf{R}$ be given by f(x) = 0 for all $x \in D$, and

$$g(x) = \begin{cases} |x| & \text{for } x \neq 0\\ 1 & \text{for } x = 0 \end{cases}$$

Then we have f(x) < g(x) for all $x \in D$. Let $x_0 = 0$. Then $\lim_{x \to 0} f(x) = 0$, which, for good measure, we will prove: If $\varepsilon > 0$ is given, choose any $\delta \in (0, 1)$. Then if $x \in (-\delta, \delta) - \{0\}$, we have

$$|f(x) - 0| = |0 - 0| = 0 < \varepsilon,$$

as desired. We also have $\lim_{x\to 0} g(x) = 0$, since if $\varepsilon > 0$ is given, we can choose $\delta = \varepsilon$ (we may as well assume $\varepsilon < 1$), and if $x \in (-\delta, \delta) - \{0\}$, we have

$$|g(x) - 0| = ||x| - 0| = |x| < \delta = \varepsilon.$$

We could not have L > M under these hypotheses, for then if we let $\varepsilon = \frac{L-M}{2}$, we can find $\delta', \delta'' > 0$ such that

$$L - \varepsilon < f(x) < L + \varepsilon \qquad (*)$$

for $x \in (x_0 - \delta', x_0 + \delta') - \{x_0\}$ and

$$M - \varepsilon < g(x) < M + \varepsilon \qquad (**)$$

for $x \in (x_0 - \delta'', x_0 + \delta'') - \{x_0\}$. Now take $\delta = \min\{\delta', \delta''\}$, and for $x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$, (*) and (**) both hold. Taking the right hand inequality in (**) and multiplying by -1, we obtain

$$-g(x) > -M - \varepsilon,$$

which when added to left hand inequality in (*) yields

$$f(x) - g(x) > L - M - 2\varepsilon = L - M - 2\left(\frac{L - M}{2}\right) = 0.$$

But this implies f(x) > g(x) on $(x_0 - \delta, x_0 + \delta) - \{x_0\}$, which is a contradiction. Hence we must have $L \leq M$.

2.8 We claim that if $x_0 \notin \mathbf{Z}$, then f does have a limit at x_0 , and that $\lim_{x \to x_0} f(x) = x_0 - [x_0] = f(x_0)$. Let $\varepsilon > 0$ be given, and choose $\delta = \min\{\varepsilon, x_0 - [x_0], 1 + [x_0] - x_0\}$. Then if x satisfies $0 < |x - x_0| < \delta$, then we note that $x \in ([x_0], 1 + [x_0])$ by choice of δ , so that $[x] = [x_0]$. Therefore

$$|f(x) - f(x_0)| = |x - [x] - (x_0 - [x_0])|$$

= $|x - x_0 + ([x_0] - [x])| = |x - x_0| < \delta \le \varepsilon$,

so that indeed, $\lim_{x \to x_0} f(x) = f(x_0)$.

2.9 (i) First suppose that $\lim_{x\to x_0} f(x) = L$. Then given $\varepsilon > 0$, we can find $\delta > 0$ so that if

$$0 < \|x - x_0\| < \delta, \qquad (*)$$

then $||f(x) - L|| < \varepsilon$. But if (*) applies, then

$$|f_j(x) - L_j| = \sqrt{|f_j(x) - L_j|^2}$$

$$\leq \sqrt{\sum_{i=1}^m |f_i(x) - L_i|^2} = ||f(x) - L|| < \varepsilon.$$

Hence $\lim_{x\to x_0} f_j(x) = L_j$. (ii) On the other hand, if $\lim_{x\to x_0} f_j(x) = L_j$ is true for each $j \in \{1, \ldots, m\}$, then given $\varepsilon > 0$, we can find $\delta_j > 0$ so that $|f_j(x) - L_j| < \frac{\varepsilon}{\sqrt{m}}$ is true whenever x satisfies

$$0 < \|x - x_0\| < \delta_j. \quad (**)$$

Now let $\delta = \min\{d_j : j = 1, 2, ..., m\}$. Then if $0 < ||x - x_0|| < \delta$, we have (**) satisfied for every j, so that

$$\|f(x) - L\| = \sqrt{\sum_{j=1}^{m} |f_j(x) - L_j|^2}$$
$$< \sqrt{\sum_{j=1}^{m} \frac{\varepsilon^2}{m}} = \sqrt{\frac{m\varepsilon^2}{m}} = \varepsilon,$$

as desired. Therefore, $\lim_{x \to x_0} f(x) = L$.