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(a) Suppose ay,as € A with g(f(a1)) = g(f(az)). Then we must have
f(a1) = f(a2) since g is one-to-one. But then since f is one-to-one,
a1 = as. Therefore g o f is one-to-one. To show that g o f is onto,
choose any ¢ € C'. Since g is onto C, there exists b € B for which
g(b) = c. But then since f is onto B, there exists a € A for which
f(a) = b. Therefore, g(f(a)) = ¢, and we have found a € A such that
(9o f)la) =c.

(b) Suppose aj1,as € A are such that f(a;) = f(a2). Then we certainly
have g(f(a1)) = g(f(az2)) (otherwise go f is not a function). But since
g o f is one-to-one, this implies a; = as. Therefore, f is one-to-one.
Now we show that g is onto. Choose any ¢ € C. Then there exists
a € A such that g(f(a)) = ¢, since go f is onto. Let b = f(a). Then
g(b) = c. Hence we have found an element b € B which maps to ¢
under g. So g is onto C.

(c) Let f: {w} — {z,y} be given by f(w) = z. Let g : {z,y} — {z}
be given by g(x) = z and g(y) = z (which, observe, is the only
possible function with the given domain and target space). Then
f is not onto, since there does not exist any element a of the set
{w} for which f(a) =y. Also, g is not one-to-one, since g(x) = g(y)
but z # y. But go f : {w} — {z} is given by ¢g(f(w)) = z and is
one-to-one and onto.

If there exists a one-to-one, onto function f : A — B, then we must have
A # ¢, for there must be at least one element z € A in order for us
to have a function defined on A at all. Now by Definition 1.6, part (ii),
since A is finite, there exists n € N and a function ¢ : {1,...,n} — A
which is one-to-one and onto. Then by Exercise 1.2 (a), the function fog :
{1,...,n} — B is one-to-one and onto, and this shows that B is finite.

By Definition 1.12, A countably infinite implies that there exists a one-
to-one, onto function f : N — A. Then we are given that there exists a
one-to-one, onto function g : A — B. So again by Exercise 1.2 (a), the
function go f : N — B is one-to-one and onto, which shows that B is
countably infinite.

Since A is countably infinite, there exists a one-to-one, onto function
f : N — A. Since B is countably infinite, there exists a one-to-one, onto
function g : N — B. Consider the following “list” of elements of AU B:

f(1),9(1), £(2),9(2), f(3),9(3), - ..
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The list certainly includes every element of A U B by virtue of f and g
being onto. However, the list may involve repetition, since for example if
z € A and z € B, we may have f(74) = g(1021) = z. To avoid this, delete
any item g(k) on the list if g(k) = f(¢) for any ¢ € {1,2,...,k}, and delete
any item f(k) on the list if f(k) = g(¢) for any 7 € {1,2,...,k — 1}. The
function h : N — A U B induced by the resulting list is then one-to-one
and onto, so that AU B is countably infinite.

First suppose n = 2. Then

Q2 ={(q1,%2) : q1, 02 € Q}.

Since Q is countably infinite, we can write Q = {q1, g2, ¢3,q4, - -.}. (This
is true due to the existence of a one-to-one, onto function f : N — Q. By
setting ¢; = f(4) for each i, we generate a “list” of elements of Q.) Now
construct a table of ordered pairs like so:

(q,q1) (q1,92) (q1,93) (q1,94)
(2,q1) (92,92) (g2,93) (q2,44)
(CI?nfh) (QS,CI2) (CI37Q3) (Q3,Q4)
(@,q1) (9492) (qa,93) (qa,q4)
(¢5,91) (g5,92) (¢5,93) (45,q4)

gs,

Now convert the table into a single list, selecting items by moving through
the table in diagonal fashion as in Figure 2 on page 25. Then we get

(q17 Q1)7 (q27 Ch), (q17 q2)7 (q37 Ch), (q27 q2)7

(91,93), (g1, 1) (43, 92), (92, 93), (91, G4), - - -

and the list induces a one-to-one onto function from N to Q2. So Q?
is countably infinite. Now to show Q2 is countably infinite, we can es-
sentially use the same strategy by writing Q = {¢1,42,93,44,...} and
Q?% = {p1,p2,P3,D4, - ..} (now that we know that Q? is countably infinite
and can be so represented). Then by regarding a generic element (r, s,t)
of Q3 as (r,u), with r € Q and u = (s,t) € Q?, one can construct a table
similar to the one above and then convert it to a list, thereby inducing a
one-to-one, onto function from N to Q3. Continuing in this manner, one
can ultimately establish the existence of a one-to-one onto function from
N — Q" for any given n.

Define f : I — J as follows: Given z € I, write x = 0.d1d2dsdydsds . . .,
where the d; are the digits in a decimal expansion of x, chosen if necessary
to avoid d; = 9 for all ¢ greater than or equal to some k. Let

f(.]?) = (0.d1d3d5d7 ey 0.d2d4d6dg .. )
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Then f(z) is an element of J since each coordinate is between 0 and 1.
To show that f is onto J, suppose we choose any (s,t) € J. Then since s
and t each belong to (0,1), we can consider their decimal expansions and
write

(S, t) = (0.51828384 N ,0.t1t2t3t4 .. ) (>(<)

Then x = 0.s1t182t283t3 - . . satisfies f(x) = (s,t). So we can always find
some element of I which maps to a given element of J; therefore f is onto.

To show that f is one-to-one, suppose z,y € I with z # y, and we will
show that f(z) # f(y). Write © = 0.dydadsdy ... and y = 0.cicacsey . . ..
Then there exists some 4 for which d; # ¢;. Let (s,t) = f(x) and consider
(s,t) as in (x). Let (u,v) = f(y) and write

(u,v) = (0.ugusuzuy - . ., 0.01V20304 . . .).

If i is odd, then we have

Sit1 75 Uitl,
2 2

so that s # u and hence f(z) # f(y). But if 7 is even, then we have
t% #* Vi,
so that ¢ # v and hence f(z) # f(y). Therefore, f is one-to-one.

Let € > 0 be given. Then since lin% f(x) =0, there exists 6 > 0 so that if
x € Cand0< |z| <9,

[f (@) = |f(z) - 0] <&/B.

But then for such x, we have

|f(x)g(x) — 0] = [f(x)g(2)| = |f(x)|lg(x)| < (¢/B) - B =e.

Therefore, lin%) f(x)g(x) =0, as desired.

We note that for any x # 0, |sin(1)| < 1. Therefore g : R — {0} — R,

x

defined by g(z) = sim(%)7 is bounded on any deleted neighborhood of 0.
Since lim x = 0, we have

z—0

dslim,_o f(z) = 0 by Exercise 2.1.

Let D=[-1,1],and let f : D — R and g : D — R be given by f(z) =0

for all z € D, and
_f Jx| for z#0
g(x) = { 1 for z=0
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Then we have f(x) < g(z) for all z € D. Let g = 0. Then lin}) f(z) =0,

which, for good measure, we will prove: If € > 0 is given, choose any
0 € (0,1). Then if z € (-4, ) — {0}, we have

[f(z) =0[=10-0[=0 <&,

as desired. We also have lir% g(x) = 0, since if € > 0 is given, we can
xr—

choose § = ¢ (we may as well assume ¢ < 1), and if z € (—=4,0) — {0}, we
have
l9(z) = O] = |Jz| = 0] = [z] <6 =e.

We could not have L > M under these hypotheses, for then if we let

L—-—M
g€ = ———, we can find §’,6” > 0 such that

L—e<f(z)<L+e (%)
for x € (xg — 0", 20 +¢') — {20} and
M-e<g(z)<M+e  (xx)

for x € (mg — 8", 20 + 6"”) — {z0}. Now take § = min{d’,4”}, and for
x € (xg — 0, x0+6) — {x0}, () and (**) both hold. Taking the right hand
inequality in (%) and multiplying by —1, we obtain

—g(lE) > _M_Ea

which when added to left hand inequality in (x) yields

f(ac)—g(m)>L—M—25:L—M—2(L_2M> =0.

But this implies f(z) > g(z) on (xo — &, 20 + ) — {x0}, which is a contra-
diction. Hence we must have L < M.

We claim that if xg ¢ Z, then f does have a limit at zg, and that
lim f(xz) = xo — [®o] = f(xo). Let € > 0 be given, and choose § =

T—xo
min{e, xg — [zo], 1 + [x0] — o }. Then if z satisfies 0 < |x — x| < 9, then we
note that = € ([xg], 1 + [zo]) by choice of §, so that [z] = [zg]. Therefore

[f(2) = f(zo)| = & — [2] = (x0 — [xo])|
= |& — 2o + ([wo] = [2])] = & — w0 < <,

so that indeed, lim f(z) = f(=zo).
T—To



2.9 (i) First suppose that lim f(x) = L. Then given £ > 0, we can find 6 > 0
Tr—x0o
so that if
0 < ||l —x0]] <6, (%)

then || f(z) — L|| < e. But if (%) applies, then

@) L] = 1) — L,
<\ 2 file) = Lif? = (@) — LIl < &

Hence lim f;(z) = L;. (ii) On the other hand, if lim f;(x) = L, is true
Tr—xo

Tr—T0
for each j € {1,...,m}, then given ¢ > 0, we can find §; > 0 so that
|fi(z) — L;| < ﬁ is true whenever z satisfies

0< ||.T*$0H <5j' (**)

Now let 6 = min{d; : j =1,2,...,m}. Then if 0 < ||z — z¢|| < §, we have
(xx) satisfied for every j, so that

If(2) = LIl = Z fi(z) = Ly[?

as desired. Therefore, lim f(x) = L.

T—T0



