Regarding Exercise 1.15

Firstly, the set $(0,1)$ is the open interval from 0 to 1 . (This means the endvalues 0 and 1 are excluded. If we wanted to include 0 and 1 , we would write $[0,1]$.) So $(0,1)$ means the set of all real numbers strictly between 0 and 1 . In set notation, we might write this:

$$
(0,1)=\{a \in \mathbf{R}: 0<a<1\}
$$

Some of you might have thought that $(0,1)$ meant the set consisting of two elements, the numbers 0 and 1 . But if we meant this set, we would write this: $\{0,1\}$

Now, we have given the "name" I to the set $(0,1)$. The definition of the set J, then, references this name I. To interpret the line

$$
J=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in I\right\}
$$

and put it in sentence form, we might say (in our heads):
J is the set of objects of the form $\left(x_{1}, x_{2}\right)$, where x_{1} and x_{2} belong to I.

Or, we might say:
J is the set of all ordered pairs of members of I.
Or:
J is the set of all possible ordered pairs of numbers which are each constrained to lie between 0 and 1 .

So here we are dealing with 2-tuples, or pairs, and again, repetition is allowed. So here are a few of the members of J :

$$
(0.5,0.99123),(0.3,0.3),\left(\frac{1}{\sqrt{2}}, 0.1\right),\left(\frac{2}{\pi}, \frac{3 \sqrt{7}}{8}\right)
$$

Any other such pair you can imagine is also a member of J.
To further reinforce what this set J is, consider this alternate defintion/explanation which does not refer to I :

$$
J=\{(a, b): 0<a<1 \text { and } 0<b<1\}
$$

