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Clustering

Partition the data into meaningful groups.

.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.

.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.

Partition the graph

.
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Connect nearby vertices: Edge weights Wi,j .
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Wi,j

Connect nearby vertices: Edge weights Wi,j .
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Graph cut

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Wi,j
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A Ac

Connect nearby vertices: Edge weights Wi,j

Graph Cut: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .

.
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Let V = {X1, . . . ,Xn} be a point cloud in Rd :

hhhhhh
hhhhhh
hhhhhh
hhhhhh

Connect nearby vertices: Edge weights Wi,j

Minimize: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .
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Let V = {X1, . . . ,Xn} be a point cloud in Rd :
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A Ac

Graph Cut: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .

Cheeger Cut: Minimize

GC(A) =
Cut(A,Ac)

min{|A|, |Ac|}
.

.
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Graph Constructions

proximity based graphs

Wi,j = η(Xi − Xj)

η

L

η

L

kNN graphs: Connect each vertex with its k nearest neighbors

.
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Task

Minimize GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

.
12 / 79



Task

Minimize GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

Algorithm of Bresson, Laurent, Uminsky and von Brecht (2013).
.
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Graph Total Variation

Graph total variation

For a function u : V → R

GTVn(u) =
1
n2

∑
i,j

Wi,j |ui − uj |

where ui = u(Xi).

Note that for a set of vertices A ⊂ V

GTVn(χA) =
1
n2 Cut(A,Ac)

where χA is the characteristic function of A

χA(Xi) =

{
1 if Xi ∈ A

0 otherwise.

.
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Relaxed Problem

GTVn(u) =
1
n2

∑
i,j

Wi,j |ui − uj |.

Balance term
Bn(u) =

1
n

min
c∈R

∑
i

|ui − c|

Bn(χA) =
1
n

min{|A|, |Ac|}.Note that

Relaxed problem

Minimize GCn(u) =
GTVn(u)

Bn(u)

Theorem
Relaxation is exact: There exists a set of vertices An such that un = χAn

minimizes GCn.
.

15 / 79



Relaxation is sharp

GTVn(u) = 1
n2

∑
i,j Wi,j |ui − uj |, Bn(u) = 1

n minc∈R
∑

i |ui − c|.

Minimize GCn(u) =
GTVn(u)

Bn(u)

Assume u : V → [0, 1]. Then u(x) =
∫ 1

0 χ{u≥λ}(x)dλ.

Coarea formula: GTVn(u) =
∫ 1

0 GTVn(χ{u≥λ})dλ.

Convexity Bn(u) ≤
∫ 1

0 Bn(χ{u≥λ})dλ

If u is a minimizer then for all λ

GTVn(χ{u≥λ})

Bn(χ{u≥λ})
≥ GTVn(u) ≥

∫ 1
0 GTVn(χ{u≥λ})dλ∫ 1

0 Bn(χ{u≥λ})dλ
.

Thus {u ≥ λ} minimizes the Cheeger cut for a.e. λ.

.
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Ground Truth Assumption

Assume points X1,X2, . . . , are drawn i.i.d out of measure dν = ρdx

.
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Consistency of Cheeger cut clustering

Consistency of clustering

Do the minimizers of

GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

converge as the number of data points n→∞?
Can one characterize the limiting object as a minimizer of a continuum
functional?

.
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Localizing the kernel

Localizing the kernel as n→∞

ηε(z) =
1
εd η

(z
ε

)
.

Cheeger Cut

GCn,εn (un) =
1

εn n2

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

1
n minc∈R

∑
i |un

i − c|
=:

GTVn,εn (un)

Bn(un)

Question (Consistency) Do minimizers of GCn,εn converge as the number
of data points n→∞?

Characterize the limit and the rates ε(n) for which the asymptotic behavior
holds.

.
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Heuristics for the limiting functional

Cheeger Cut

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

=:
GTVn,εn (un)

Bn(un)

Heuristics for fixed smooth u. Let µn = 1
n

∑
i δXi be the empirical measure

GTVn,ε(u) =
1
εn2

∑
i,j

ηεn (Xi − Xj)|u(Xi)− u(Xj)|

=
1
ε

∫∫
ηε(x − y)|u(x)− u(y)|dµn(x)dµn(y)

n�1
≈ 1

ε

∫∫
ηε(x − y)|u(x)− u(y)|dµ(x)dµ(y) =: TVε(u)

ε�1
≈ 1

ε

∫∫
ηε(x − y)|∇u(x) · (x − y)|dµ(y)dµ(x)

ε�1
≈ ση

∫
|∇u(x)|ρ2(x)dx .

.
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Total variation in continuum setting
dν = ρdx probability measure, supp(ν) = D, 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) =

∫
D∩∂A

ρ2dSd−1

Weighted TV

TV (u, ρ2) =

∫
D
|∇u|ρ2dx

.
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Total variation in continuum setting
dν = ρdx probability measure, supp(ν) = D, 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) =

∫
D∩∂A

ρ2dSd−1 = TV (χA, ρ
2)

Weighted TV

TV (u, ρ2) = sup

{∫
D

u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}

.
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Clustering in continuum setting
ν probability measure with compact support supp(ν) = D.
ν has continuous on D density ρ and 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted TV

TV (u, ρ2) = sup

{∫
D

u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}
Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) = TV (χA, ρ
2)

Balance term

B(A) = min{|A|, 1− |A|} where |A| = ν(A).

Weighted Cheeger Cut: Minimize

C(A) =
P(A; D, ρ2)

B(A)

.
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Relaxation in continuum setting

ν probability measure with compact support supp(ν) = D.
ν has continuous on D density ρ and 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted TV

TV (u, ρ2) = sup

{∫
D

u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}

Balance term

B(u) = min
c∈R

∫
D
|u(x)− c|ρ(x)dx

Minimize

C(u) =
TV (u, ρ2)

B(u)

.
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Clustering in continuum setting

Minimize

C(u) =
TV (u, ρ2)

B(u)

.
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Localizing the kernel as n→∞

ηε(z) =
1
εd η

(z
ε

)
.

Consistency of clustering II

Do the minimizers of

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

converge as the number of data points n→∞ to a minimizer of

C(u) =
TV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx
?

Question 1: For what scaling of ε(n) can this hold?
Question 2: What is the topology for which un −→ u?

.
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n = 120, ε = 0.15 n = 120, ε = 0.20

n = 120, ε = 0.30 n = 120, ε = 0.40

.
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n = 500, ε = 0.14

n = 500, ε = 0.2

.
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What was known

Consistency results in statistics/machine learning

Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem

Pollard 1981 - k -means

Hartigan 1981 - single linkage

Belkin and Niyogi 2006 - Laplacian eigenmaps

von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

Chaudhuri and Dasgupta 2010 - cluster tree

.
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What was known

Consistency results in statistics/machine learning

Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem

Pollard 1981 - k -means

Hartigan 1981 - single linkage

Belkin and Niyogi 2006 - Laplacian eigenmaps

von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

Chaudhuri and Dasgupta 2010 - cluster tree

Calculus of Variations
Discrete to continuum for functionals on grids: Braides 2010, Braides and
Yip 2012, Chambolle, Giacomini and Lussardi 2012, Gobbino and Mora
2001, Van Gennip and Bertozzi 2014

.
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Γ-Convergence

(Y , dY ) - metric space, Fn : Y → [0,∞]

Definition

The sequence {Fn}n∈N Γ-converges ( w.r.t dY ) to F : Y → [0,∞] if:

Liminf inequality: For every y ∈ Y and whenever yn → y

lim inf
n→∞

Fn(yn) ≥ F (y),

Limsup inequality: For every y ∈ Y there exists yn → y such that

lim sup
n→∞

Fn(yn) ≤ F (y).

Definition (Compactness property)

{Fn}n∈N satisfies the compactness property if

{yn}n∈N bounded and
{Fn(yn)}n∈N bounded

}
=⇒ {yn}n∈N has convergent subsequence

.
29 / 79



Proposition: Convergence of minimizers

Γ-convergence and Compactness imply: If yn is a minimizer of Fn and
{yn}n∈N is bounded in Y then along a subsequence

yn → y as n→∞

and
y is a minimizer of F .

In particular, if F has a unique minimizer, then a sequence {yn}n∈N
converges to the unique minimizer of F .

.
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Consistency of clustering III

Show that

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

Γ-converge as the number of data points n→∞, and εn → 0 at certain
rate to

F (u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

and show that compactness property holds.

Questions
1 For what scaling of ε(n) can this hold?
2 What is the topology for un −→ u?

.
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Consistency of graph total variation

Show that

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-converge to σTV (u, ρ2), as the number of data points n→∞, and
εn → 0 at certain rate and show that compactness property holds.

Questions
1 For what scaling of ε(n) can this hold?
2 What is the topology for un −→ u?

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un : Vn → R and u : D → R in a way consistent with
L1 topology?

Note that u ∈ L1(ν) and un ∈ L1(νn), where νn = 1
N

∑n
i=1 δXi .

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un ∈ L1(νn) and u ∈ L1(D) in a way consistent with
L1 topology?

.
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Transport map

Let µ and ν be probability measures.

Assume that all measures are supported in B(0,R) for some large R.

X = supp(µ), Y = supp(ν).

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

.
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Transport map

Let µ and ν be probability measures.

X = supp(µ), Y = supp(ν).

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

∫
T−1(A)

ρ(x)dx =

∫
A
η(y)dy

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

∫
T−1(A)

ρ(x)dx =

∫
A
η(y)dy =

∫
T−1(A)

η(T (x)) | det(DT (x)|dx

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

∫
T−1(A)

ρ(x)dx =

∫
A
η(y)dy =

∫
T−1(A)

η(T (x)) | det(DT (x)|dx

ρ(x) = η(T (x)) | det(DT (x)|

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

Change of variables: y = T (x), for f = χA, using χT−1(A)(x) = χA ◦ T (x)∫
Y

f (y)dν(y) = ν(A) = µ(T−1(A)) =

∫
X

f (T (x)) dµ(x)

.
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Transport map

Transport map. T : X → Y ,

T]µ = ν, that is ∀A measurable µ(T−1(A)) = ν(A)

Change of variables: y = T (x), for all f ∈ L1(dν)∫
Y

f (y)dν(y) =

∫
X

f (T (x)) dµ(x)

.
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Transport cost

c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let T be a transport map, T]µ = ν

C(T ) =

∫
X

c(x ,T (x)) dµ(x)

.
39 / 79



Optimal Transport Cost – Monge formulation

Monge 1781

Optimal Transport Cost: Given µ and ν

OTc,M(µ, ν) = inf
{T : T]µ=ν}

∫
X

c(|x − T (x)|)dµ(x)

Q1: Is the set of transport maps, T , nonempty?
Q2: Is infimum a minimum?

.
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Optimal Transport Cost – Monge formulation

Monge 1781

Optimal Transport Cost: Given µ and ν

OTc,M(µ, ν) = inf
{T : T]µ=ν}

∫
X

c(|x − T (x)|)dµ(x)

Q1: Is the set of transport maps, T , nonempty? Yes, if dµ = ρdx .
Q2: Is infimum a minimum?
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Optimal Transport Cost – Monge formulation

Monge 1781

Optimal Transport Cost: Given µ and ν

OTc,M(µ, ν) = inf
{T : T]µ=ν}

∫
X

c(|x − T (x)|)dµ(x)

Q1: Is the set of transport maps, T , nonempty? Yes, if dµ = ρdx .
Q2: Is infimum a minimum? Yes, if c is convex.

.
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Transport Plan

Kantorovich 1942

Let µ and ν be probability measures.

X = supp(µ), Y = supp(ν).

Transport plans, π are probability measures on X × Y with first marginal
µ and second marginal ν:

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X × A) = ν(A)}.

π(A× B) mass originally in A which is sent to B.

Unlike with transport maps, the mass can be split

Note that Π(µ, ν) is a convex set

.
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Transport Plan

Transport plans, π are probability measures on X × Y with first marginal µ and
second marginal ν:

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X × A) = ν(A)}.

µ = 1
2δx1 + 1

2δx2 ,

ν = 1
3δy1 + 1

3δy2 + 1
3δy3 .

x1

x2 y1

y2

y31
3

1
6

1
6

1
3

x1 x2

y1

y2

y3

1
3

1
6

1
6

1
3

π =
1
3
δx1,y1

+
1
6
δx1,y2

+
1
6
δx2,y2

+
1
3
δx2,y3

.
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Transport Plan

Transport plans, π are probability measures on X × Y with first marginal
µ and second marginal ν:

Π(µ, ν) = {π ∈ P(X × Y ) : π(A× Y ) = µ(A), π(X × A) = ν(A)}.

From a map to a plan: Let T be a transport map: T]µ = ν. Then
π = (I × T )]µ is a transport plan. Here (I × T )(x) = (x ,T (x)).

.
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Optimal Transport Cost - Kantorovich Formulation

c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let π be a transport plan, π ∈ Π(µ, ν)

C(π) =

∫
X×Y

c(x , y) dπ(x , y)

Optimal Transport Cost: Given µ and ν

OTc,K (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y)

Q1: Is the set of transport plans, nonempty?
Q2: Is infimum a minimum?

.
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c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let π be a transport plan, π ∈ Π(µ, ν)

C(π) =

∫
X×Y

c(x , y) dπ(x , y)

Optimal Transport Cost: Given µ and ν

OTc,K (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y)

Q1: Is the set of transport plans, nonempty? Yes, take π = µ× ν.
Q2: Is infimum a minimum?
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Optimal Transport Cost - Kantorovich Formulation

c(x , y) cost of transporting unit mass from x to y

Assume c is nonnegative and continuous

Typically c(x , y) = c(|x − y |), in particular c(x , y) = |x − y |p, p ≥ 1

Transport cost: Let π be a transport plan, π ∈ Π(µ, ν)

C(π) =

∫
X×Y

c(x , y) dπ(x , y)

Optimal Transport Cost: Given µ and ν

OTc,K (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y)

Q1: Is the set of transport plans, nonempty? Yes, take π = µ× ν.
Q2: Is infimum a minimum? Yes. Note Π(µ, ν) is a convex set, transport
cost is a linear function of π.

.
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Optimal Transportation Distance

Assume X = supp(µ), Y = supp(ν) are compact

Optimal Transportation Distance: Given µ and ν, and p ∈ [1,∞)

dp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×Y
|x − y |p dπ(x , y)

) 1
p

dp is a metric on P(K ) for any K compact.

dp metrizes weak convergence of measures on P(K ).

d2 is known as the Wasserstein distance.

.
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Optimal Transportation for p =∞

∞−transportation distance:

d∞(µ, ν) = inf
π∈Π(µ,ν)

esssupπ{|x − y | : x ∈ X , y ∈ Y}

There exists a minimizer π ∈ Π(µ, ν).

If µ = 1
n

∑n
i=1 δXi and ν = 1

n

∑n
j=1 δyj then

d∞(µ, ν) = min
σ−permutation

max
i
|xi − yσ(i)|.

If µ has density then OT map, T exists (Champion, De Pascale,
Juutinen 2008) and then

d∞(µ, ν) = ‖T − Id‖L∞(µ).

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un : Vn → R and u : D → R in a way consistent with
L1 topology?

Note that u ∈ L1(ν) and un ∈ L1(νn), where νn = 1
N

∑n
i=1 δXi .

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un ∈ L1(νn) and u ∈ L1(D) in a way consistent with
L1 topology?
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

un

νn

u

ν

How to compare un ∈ L1(νn) and u ∈ L1(D) in a way consistent with
L1 topology?

.
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Transport map

Tn]ν = νn

Composition

un ◦ Tn ∈ Lp(ν)

dp
TLp ((ν, u), (νn, un)) = inf

Tn ]ν=νn

∫
D
|un(Tn(x))− u(x)|p + |Tn(x)− x |pρ(x)dx

.
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Topology

For u ∈ L1(ν) and un ∈ L1(νn)

d((ν, u), (νn, un)) = inf
Tn ]ν=νn

∫
D
|un(Tn(x))− u(x)|+ |Tn(x)− x |ρ(x)dx

where
Tn ]ν = νn

.
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TL1 Space

Definition

TLp = {(ν, f ) : ν ∈ P(D), f ∈ Lp(ν)}

dp
TLp ((ν, f ), (σ, g)) = inf

π∈Π(ν,σ)

∫
D×D
|y − x |p + |g(y)− f (x))|pdπ(x , y).

where

Π(ν, σ) = {π ∈ P(D × D) : π(A× D) = ν(A), π(D × A) = σ(A)}.

If T]ν = σ then π = (I × T )]ν ∈ Π(ν, σ) and the integral becomes∫
|T (x)− x |p + |g(T (x))− f (x)|pdν(x)

Lemma

(TLp, dTLp ) is a metric space.

.
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TLp convergence

(ν, fn)
TLp

−→ (ν, f ) iff fn
L1(ν)−→ f

(νn, fn)
TLp

−→ (ν, f ) iff the measures (I × fn)]νn weakly converge to
(I × f )]ν. That is if graphs, considered as measures converge weakly.

The space TLp is not complete. Its completion are the probability
measures on the product space D × R.

If (νn, fn)
TLp

−→ (ν, f ) then there exists a sequence of transportation plans νn

such that

(1)
∫

D×D
|x − y |pdπn(x , y) −→ 0 as n→∞.

We call a sequence of transportation plans πn ∈ Π(νn, ν) stagnating if it
satisfies (1).

.
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Stagnating sequence:
∫

D×D |x − y |dπn(x , y) −→ 0

TFAE:
1 (νn, fn)

TLp

−→ (ν, f ) as n→∞.
2 νn ⇀ ν and there exists a stagnating sequence of transportation

plans {πn}n∈N for which

(2)
∫∫

D×D
|f (x)− fn(y)|p dπn(x , y)→ 0, as n→∞.

3 νn ⇀ ν and for every stagnating sequence of transportation plans
πn, (2) holds.
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Formally TLp(D) is a fiber bundle over P(D).
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Composition in TLp space

Lemma

Let p ≥ 1 and let {νn}n∈N and ν be Borel probability measures on Rd with
finite second moments. Let Fn ∈ Lp(νn,Rd ,Rk ) and F ∈ Lp(ν,Rd ,Rk ).
Consider the measures ν̃n,= Fn]νn and ν̃,= F]ν. Finally, let
f̃n ∈ Lp(ν̃n,Rk ,R) and f̃ ∈ Lp(ν̃,Rk ,R). If

(νn,Fn)
TLp

−→ (ν,F ) as n→∞,

and
(ν̃n, f̃n)

TLp

−→ (ν̃, f̃ ) as n→∞.

Then,
(νn, f̃n ◦ Fn)

TLp

−→ (ν, f̃ ◦ Fn) as n→∞.
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Consistency

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-convergence of Total Variation (d ≥ 3 Garcı́a Trillos and S. ’16, d = 2
Penrose and Müller ’19, see also Caroccia, Chambolle and S. ’20)

Let {εn}n∈N be a sequence of positive numbers converging to 0 satisfying

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0 if d ≥ 3.

Then, GTVn,εn Γ-converge to σTV ( · , ρ2) as n→∞ in the TL1 sense,
where σ depends explicitly on η.

Typical degree� log n. If Typical degree < log n then graph becomes
disconnected.

.
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Consistency

Γ-convergence of Perimeter

The conclusions hold when all of the functionals are restricted to
characteristic functions of sets. That is, the graph perimeters Γ-converge
to the continuum perimeter.

Compactness

With the same conditions on εn as before, if

sup
n∈N
‖un‖L1(D,νn) <∞,

and
sup
n∈N

GTVn,εn (un) <∞,

then {un}n∈N is TL1-precompact.
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Consistency of Cheeger Cuts

Recall:

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

C(u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

.
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Consistency of Cheeger Cuts

Recall:

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

C(u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

Consistency of Cheeger Cuts (von Brecht, Garcı́a Trillos, Laurent, S.)

For the same conditions on εn as before, with probability one:

GCn,εn

Γ−→ C w.r.t. TL1 metric.

Moreover, for any sequence of sets En ⊆ {X1, . . . ,Xn} of almost
minimizers of the Cheeger energy, every subsequence has a convergent
subsequence (in the TL1 sense ) to a minimizer of the Cheeger energy on
the domain D.
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∞-OT between a measure and its random sample

Optimal matchings in dimension d ≥ 3: Ajtai-Komlós-Tusnády (1983), Yukich and
Shor (1991), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 (depending on d) such that with
probability one we can find a sequence of transportation maps {Tn}n∈N
from ν0 to νn (Tn#ν0 = νn) and such that:

c ≤ lim inf
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ lim sup
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ C.
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∞-OT between a measure and its random sample

Optimal matchings in dimension d = 2: Leighton and Shor (1986), new proof by
Talagrand (2005), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 such that with probability one we
can find a sequence of transportation maps {Tn}n∈N from ν0 to νn

(Tn#ν0 = νn) and such that:

(3) c ≤ lim inf
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ lim sup
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ C.
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Consistency: Other point sets

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-convergence of and Compactness for Graph Total Variation

Assume d∞(νn, ν)→ 0 as n→∞. Let {εn}n∈N be a sequence of positive
numbers converging to 0 satisfying

lim
n→∞

d∞(νn, ν)

εn
= 0

Then, GTVn,εn Γ-converge to σTV ( · , ρ2) as n→∞ in the TL1 sense,
where σ depends explicitly on η.

Furthermore if ‖un‖L1(D,νn) and GTVn,εn (un) are uniformly bounded the
sequence {un}n∈N is TL1-precompact.
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Hint about the proof

Assume that un
TL1

−→ u as n→∞.
There exists Tn]ν = νn stagnating (i.e.

∫
|x − Tn(x)|dν(x)→ 0 ).

GTVn,εn (un) =
1
εn

∫
D×D

ηεn (x̃ − ỹ)) |un(x̃)− un(ỹ)| dνn(x̃)dνn(ỹ)

=
1
εn

∫
D×D

ηεn (Tn(x)− Tn(y)) |un ◦ Tn(x)− un ◦ Tn(y)| ρ(x)ρ(y)dxdy

Define TVε(u; ρ) :=
1
ε

∫
D×D

ηε(x − y)|u(x)− u(y)|ρ(x)ρ(y)dxdy .

TVε
Γ−→ TV ( · , ρ2) wrt L1(ν) metric.

(Alberti-Bellettini, Ponce, Chambolle-Giacomini-Lussardi,
Savin-Valdinocci)

If |Tn(x)− x | � εn then one may be able to compare GTVn,εn (un)
and TVε(un ◦ Tn; ρ).
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Sketch for liminf part

Assume η = χB(0,1). Assume un
TL1

−→ u as n→∞. Since Tn]ν = νn,

GTVn,εn (un)=
1
εn

∫
D2
ηεn (Tn(x)−Tn(y)) |un ◦Tn(x)− un ◦Tn(y)| ρ(x)ρ(y)dxdy .

For almost every (x , y) ∈ D × D and n large

|Tn(x)− Tn(y)| > εn ⇒ |x − y | > ε̃n := εn − 2‖Id − Tn‖∞ > 0.

η

(
|x − y |
ε̃n

)
≤ η

(
|Tn(x)− Tn(y)|

εn

)
.

Let ũn = un ◦ Tn. For large enough n

GTVn,εn (un) ≥ 1

εd+1
n

∫
D×D

η

(
|x − y |
ε̃n

)
|ũn(x)− ũn(y)| ρ(x)ρ(y)dxdy

=

(
ε̃n

εn

)d+1

TVε̃n (ũn; ρ) .

Now use ε̃n
εn
→ 1 and that un

TL1

−→ u implies ũn
L1(D)−→ u as n→∞.
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Spectral Clustering

Vn = {X1, . . . ,Xn}, similarity matrix W , as before:

Wij :=
1
εd η

(
|Xi − Xj

ε

)
.

The weighted degree of a vertex is di =
∑

j Wi,j .
Dirichlet energy of un : Vn → R is

F (u) =
1
2

∑
i,j

Wij |un(Xi)− un(Xj)|2.

Associated operator is the graph laplacian L = D −W , where
D = diag(d1, . . . , dn).
To partition the point cloud into two clusters, consider the eigenvector
corresponding to second eigenvalue:

un
2 := arg min

∑
i,j

Wij |u(Xi)− u(Xj)|2 :
∑

i

u(Xi) = 0, ‖u‖2 = 1


.
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Spectral Clustering: Two moons (easy)

1D embedding: xi 7→ u2(xi)

.
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k -means clustering

Given X = {x1, . . . , xn} ⊂ Rd find a set of k points A = {a1, . . . , ak} which
minimizes

min
A

1
n

n∑
i=1

dist(Xi ,A)2

where dist(x ,A) = mina∈A |x − a|.
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k -means clustering

Given X = {x1, . . . , xn} ⊂ Rd and µn = 1
nδxi . Find a set of k points

A = {a1, . . . , ak} which minimizes

min
A

inf
supp(ξ)⊆A

d2(µn, ξ).
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Spectral Clustering

Shi and Malik, 2000, Ng, Jordan, Weiss 2001

Input: Number of clusters k and similarity matrix W .

– Construct the graph Laplacian L.

– Compute the eigenvectors un
2 , . . . , u

n
k of L associated to the k

smallest (nonzero) eigenvalues of L.

– Nonlinear transformation

Xi 7→ Yi = [un
1(Xi), . . . , un

k (Xi)]T . ∈ Rk , for i = 1, . . . , n.

– Use the k -means algorithm to partition the set of points {Y1, . . . ,Yn}
into k groups, that we denote by G1, . . . ,Gk .

Output: Clusters G1, . . . ,Gk .

.
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Comparison of Clustering Algorithms

(a) k - means (b) spectral (c) Cheeger cut

.
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Spectral Convergence of Graph Laplacian

von Luxburg, Belkin, Bousquet ’08, Belkin-Nyogi ’07, Ting, Huang, Jordan ’10,
Singer, Wu ’13, Burago, Ivanov, Kurylev ’14, Shi, Sun ’15

un
k = arg min

∑
i,j

Wij |u(Xi )− u(Xj )|2 :
∑

i

u(Xi )un
m(Xi ) = 0 (∀m < k), ‖u‖2 = 1


Theorem [Garcı́a Trillos and S.] Suppose X1, . . . ,Xn, . . . are i.i.d
samples of a distribution with density ρ. Then, for εn → 0

un
k

TL2

−→ uk

where uk is eigenfunction, corresponding to k -th eigenvalue, of

Lc(uk ) := −1
ρ

div(ρ2∇uk ) = λk uk in D

∂uk

∂n
= 0 on ∂D.
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Spectral Convergence of Graph Laplacian II

un
k = arg min

∑
i,j

Wij |u(Xi )− u(Xj )|2 :
∑

i

u(Xi )un
m(Xi ) = 0 (∀m < k), ‖u‖2 = 1


Suppose X1, . . . ,Xn, . . . are i.i.d samples of a distribution with density
ρ. Then, for εn → 0 as before

un
k

TL2

−→ uk

where uk is eigenfunction, corresponding to k -th eigenvalue, of

−1
ρ

div(ρ2∇uk ) = λk uk in D

∂uk

∂n
= 0 on ∂D.
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Consistency of spectral clustering

Discrete Spectral Clustering:

– Construct the graph Laplacian L for the geometric graph of the sample

– Compute the eigenvectors un
1 , . . . , u

n
k of L associated to the k smallest

(nonzero) eigenvalues of L.

– Nonlinear transformation

Xi 7→ Y n
i = [un

1(Xi ), . . . , un
k (Xi )]T . ∈ Rk , for i = 1, . . . , n.

– Use the k -means algorithm to partition the set of points {Y n
1 , . . . ,Y

n
k } into k

groups. We denote the resulting partitioning of Vn by Gn
1, . . . ,G

n
k .

Continuum Spectral Clustering:

– Compute the eigenvectors u1, . . . , uk of Lc associated to the k smallest
(nonzero) eigenvalues of Lc .

– Consider the measure µ = (u1, . . . , uk )]ν.

– Let G̃i ⊂ Rk be the clusters obtained by k-means clustering of µ.

– Gi = (u1, . . . , uk )−1(G̃i ) for i = 1, . . . , k define the spectral clustering of ν.
.
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Consistency of spectral clustering

Discrete Spectral Clustering:

– Construct the graph Laplacian L for the geometric graph of the sample

– Compute the eigenvectors un
1 , . . . , u

n
k of L associated to the k smallest

(nonzero) eigenvalues of L.

– Nonlinear transformation

Xi 7→ Y n
i = [un

1(Xi ), . . . , un
k (Xi )]T . ∈ Rk , for i = 1, . . . , n.

– Use the k -means algorithm to partition the set of points {Y n
1 , . . . ,Y

n
k } into k

groups. We denote the resulting partitioning of Vn by Gn
1, . . . ,G

n
k .

Theorem (Garciá–Trillos, S. ’18)

Let Gn
1, . . .G

n
k be the clusters above. Let νn

i = νnxGn
i

(the restriction of
empirical measure to clusters) for i = 1, . . . , k. Then (νn

1 , . . . , ν
n
k ) is

precompact with respect to weak convergence of measures and
converges along a subsequence to (ν1, . . . , νk ) = (νxG1 , . . . , νxGk ) where
G1, . . . ,Gk is a continuum spectral clustering of ν.
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Normalized Graph Laplacian

As before: Wij := 1
εd η

(
|Xi−Xj
ε

)
, di =

∑
j Wi,j =

∑
j ηε(|Xi − Xj |).

Dirichlet energy of un : Vn → R is

F (u) =
1
2

∑
i,j

Wij

(
un(Xi)√

di
−

un(Xj)√
dj

)2

.

Associated operator is the normalized graph laplacian
D−1/2LD−1/2 = I − D−1/2WD−1/2, where D = diag(d1, . . . , dn).

To partition the point cloud into two clusters, consider the eigenvector
corresponding to second eigenvalue:

un := arg min

∑
i,j

Wij

∣∣∣∣∣un(Xi)√
di
−

un(Xj)√
dj

∣∣∣∣∣
2

:
∑

i

u(Xi) = 0, ‖u‖2 = 1


.
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Consistency of Normalized Graph Laplacian

un
k = arg min

∑
i,j

∣∣∣∣∣un(Xi )√
di
− un(Xj )√

dj

∣∣∣∣∣
2

:
∑

i

u(Xi )un
m(Xi ) = 0 (∀m < k), ‖u‖2 = 1


Suppose X1, . . . ,Xn, . . . are i.i.d samples of a distribution with density
ρ. Then, for εn → 0 as before

un
k

TL2

−→ uk

where uk is eigenfunction, corresponding to k -th eigenvalue, of

− 1
ρ3/2
∇ ·
(
ρ2∇

(
uk√
ρ

))
= λk uk in D

∂(uk/
√
ρ)

∂n
= 0 on ∂D.
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Consistency of Spectral Clustering in Manifold Setting

M compact manifold of dimension m. Data measure µ has density
dµ = ρdVolM.

α ≤ ρ ≤ 1
α

for some α > 0.

The continuum operator is a weighted Laplace-Beltrami operator

u 7→ 1
ρ

divM(ρ2 grad u).

This operator is symmetric with respect to L2(dµ):

‖u‖2
L2(dµ) =

∫
M

u2dµ.

It has a spectrum
0 = λ1 < λ2 ≤ λ3 ≤ · · · .

with corresponding orthornomal set of eigenfunctions uk , k = 1, . . . .
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Consistency of Spectral Clustering in Manifold Setting

Techniques inspired by Burago, Ivanov, Kurylev

Theorem (Garcı́a Trillos, Gerlach, Hein and S.)

There exists a constant Cm,K ,Vol(M),i0 such that for every β > 1 and every
n ∈ N the following holds with probability at least 1− Cm,K ,Vol(M),i0 · n−β .
For every k ∈ {1, . . . , n} there exists a constant C > 0 depending on K ,
m, ρ, η, R and λk (M) such that∣∣∣∣ 2

nε2ση
λk (Γn)− λk (M)

∣∣∣∣ ≤ C
(
ε+

`

ε

)
,

whenever ` < ε < C−1.

Recent results by Calder and Garcia Trillos When ε ≥ n−
1

d+4∣∣∣∣ 2
nε2ση

λk (Γn)− λk (M)

∣∣∣∣ ≤ Cε.
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