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Abstract. The performance of traditional graph Laplacian methods for semi-supervised
learning degrades substantially as the ratio of labeled to unlabeled data decreases, due to
a degeneracy in the graph Laplacian. Several approaches have been proposed recently to
address this, however we show that some of them remain ill-posed in the large-data limit.

In this paper, we show a way to correctly set the weights in Laplacian regularization so
that the estimator remains well posed and stable in the large-sample limit. We prove that our
semi-supervised learning algorithm converges, in the infinite sample size limit, to the smooth
solution of a continuum variational problem that attains the labeled values continuously.
Our method is fast and easy to implement.

1. Introduction

For many applications of machine learning, such as medical image classification and speech
recognition, labeling data requires human input and is expensive [13], while unlabeled data
is relatively cheap. Semi-supervised learning aims to exploit this dichotomy by utilizing the
geometric or topological properties of the unlabeled data, in conjunction with the labeled data,
to obtain better learning algorithms. A significant portion of the semi-supervised literature is
on transductive learning, whereby a function is learned only at the unlabeled points, and not
as a parameterized function on an ambient space. In the transductive setting, graph based
algorithms, such the graph Laplacian-based learning pioneered by [53], are widely used and
have achieved great success [3, 26,27,44–48,50,52].

Using graph Laplacians to propagate information from labeled to unlabeled points is one of
the earliest and most popular approaches [53]. The constrained version of the graph Laplacian
learning problem is to minimize over all u : X Ñ R

GLpuq “
ÿ

x,yPX
wxypupxq ´ upyqq

2

subject to constraint upxq “ gpxq for all x P Γ

(1)
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Figure 1. Example of the degeneracy of graph Laplacian learning with few
labels. The graph is a sequence of n “ 105 i.i.d. random variables drawn
from the unit box r0, 1s2 in R2, and two labels are given gp0, 0.5q “ 0 and
gp1, 0.5q “ 1.

where the data points X form the vertices of a graph with edge weights wxy and Γ Ă X are the
labeled nodes with label function g : Γ Ñ R. The minimizer u of (1) is the learned function,
which extends the given labels g on Γ to the remainder of the graph. In classification contexts,
the values of u are often rounded to the nearest label. The method amounts to minimizing a
Dirichlet energy on the graph, subject to a Dirichlet condition u “ g on Γ. Minimizers u are
harmonic functions on the graph, and thus the problem can be view as harmonic extension.

It has been observed [18, 33] that when the size of Γ (the labeled points) is small, the
performance of graph Laplacian learning algorithms degrades substantially. In practice, the
learned function u fails to attain the conditions u “ g on Γ continuously, and degenerates into
a constant label function that provides little information about the machine learning problem.
Figure 1 gives an example of this issue. There are several ways to explain this degeneracy.
First, in the limit of infinite data, the variational problem (1) is consistent with the continuum
Dirichlet problem

(2) min
u

ż

Ω
|∇u|2 dx,

subject to a boundary condition u “ g on Γ Ă Ω Ă Rd. If Γ is finite this problem is ill-posed
since the trace of an H1pΩq function at a point is not well-defined. In particular, there are
minimizing sequences for the constrained problem converging to a constant function outside of
Γ for which the Dirichlet energy converges to zero. In particular the minimum is not attained.
From another perspective, minimizers of the continuum Dirichlet problem (2) satisfy Laplace’s
equation ∆u “ 0 with Dirichlet condition u “ g on Γ, and Laplace’s equation is not well-posed
without some boundary regularity (an exterior sphere condition), which does not hold for
isolated points. In both cases, we are simply observing that the capacity of a point is zero in
dimensions d ě 2.

Several methods have been proposed recently to address the degeneracy of Laplacian learning
with few labels. In [18], a class of p-Laplacian learning algorithms was proposed, which replace
the exponent 2 in (1) with p ą 2. The p-Laplacian models were considered previously for other
applications [2,9,18,49], and the pÑ8 case, which is called Lipschitz learning, was considered
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in [29, 32]. The idea behind the p-Laplacian models is that the continuum variational problem
is now the p-Dirichlet problem

(3) min
u

ż

Ω
|∇u|p dx,

and for p ą d the Sobolev embedding W 1,ppΩq ãÑ C0,αpΩq allows the assignment of boundary
values at isolated points. The p-Laplacian models, including the p “ 8 version, were proven
to be well-posed in the limit of infinite unlabeled data and finite labeled data precisely when
p ą d in [10, 11,39]. The disadvantage of p-Laplacian models is the nonlinearity renders them
more computationally challenging to solve, compared with standard Laplacian regularization.
Other approaches include higher order Laplacian regularization [6, 17, 51] and using a spectral
cut-off [5].

The approach most closely related to our work is the weighted nonlocal Laplacian of Shi,
Osher, and Zhu [36], which replaces the learning problem (1) with

(4) min
u:XÑR

ÿ

xPX zΓ

ÿ

yPX
wxypupxq ´ upyqq

2 ` µ
ÿ

xPΓ

ÿ

yPX
wxypgpxq ´ upyqq

2,

where µ ą 0 is selected as the ratio of unlabeled to labeled data. The method increases the
weights of edges adjacent to labels, which encourages the label function to be flat near labels.
The authors show in [36] that the method produces superior results, compared to the standard
graph Laplacian, for classification with very few labels. Furthermore, since the method is
a standard graph Laplacian with a modified weight matrix, it has similar computational
complexity to Laplacian learning, and is fast compared to the non-linear p-Laplace methods,
for example. However, as we prove in this paper, the weighted nonlocal Laplacian of [36]
becomes ill-posed (degenerate) in the limit of infinite unlabeled and finite labeled data. This
is a direct consequence of Corollary 3.8. Numerical simulations in Section 5 illustrate the way
in which the method becomes degenerate. The issue is the same as for Laplacian learning,
since the weights are modified only locally near label points and the size of this neighborhood
shrinks to zero in the large sample size limit.

1.0.1. Properly weighted laplacian. In this paper, we show how to properly weight the graph
Laplacian so that it remains well-posed in the limit of infinite unlabeled and finite labeled
data. Our method, roughly speaking, modifies the problem to one of the form:

Minimize
ÿ

x,yPX
γpxqwxypupxq ´ upyqq

2 over u : X Ñ R,

subject to constraint upxq “ gpxq for all x P Γ

(5)

where γpxq “ distpx,Γq´α and α ą d´ 2 (see Section 1.1 for precise definitions). Here, we are
modifying the weights not just of edges connecting to points of Γ, but also in a neighborhood
of Γ. We show that this model is stable as the number unlabeled data points increases to
infinity, under appropriate scaling of the graph construction. In particular we show that the
minimizers of the graph problem above converge as the number of unlabeled data points
increases to the minimizer of a “continuum learning problem”. We give the precise assumptions
on the discrete model below and describe the continuum problem in Section 2. Here we give a
brief explanation as to why α ą d´ 2 is the natural scaling for the weight.

To illustrate what is happening near a labeled point, consider Γ “ t0u and take the domain
from which the points are sampled to be the unit ball Ω “ Bp0, 1q in Rd. The continuum
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variational problem corresponding to (5) involves minimizing

(6) Irus “

ż

Bp0,1q
|x|´α|∇u|2 dx.

The Euler-Lagrange equation satisfied by minimizers of I is

(7) div
`

|x|´α∇u
˘

“ 0.

This equation has a radial solution upxq “ |x|α`2´d, which is continuous at x “ 0 when
α ą d´2. This suggests the solutions will assume this radial profile near labels, and the model
will be well-posed for α ą d ´ 2. Furthermore when α ě d ´ 1 one can expect the solution
to be Lipschitz near labels, and for α ě d it is should be differentiable at the labels. It is
important to point out that the proper weighting changes the degenerate limiting continuum
problem to one that is well-posed with “boundary” data at isolated points.

We now provide a precise description of the properly-weighted graph Laplacian.

1.1. Model and definitions. Let Ω Ă Rd be open and bounded with a Lipschitz boundary.
Let Γ Ă Ω be a finite collection of points along with a given label function g : Γ Ñ R. Let
x1, x2, ¨ ¨ ¨ , xn be independent and identically distributed random variables drawn probability
measure µ with continuous density ρ supported on Ω, and set

Xn :“ tx1, x2, ¨ ¨ ¨ , xnu,

and Xn :“ XnYΓ. To define the edge weights we use a radial kernel η with profile η : r0,8q Ñ
r0,8q which is nonincreasing, continuous at 0 and satisfies

(8)

#

ηptq ě 1, if 0 ď t ď 1

ηptq “ 0, if t ą 2.

All of the results we state can be extended to kernels which decay sufficiently fast, in particular
the Gaussian. For ε ą 0 we define the rescaled kernel

(9) ηεpx´ yq “
1

εd
η

ˆ

|x´ y|

ε

˙

.

We now introduce the penalization of the gradient, which is heavier near labeled points.
Let R ą 0 be the minimum distance between pairs of points in Γ:

R “ mint|x´ y| : x, y P Γ, x ‰ yu.

For r0 ą 0 and α ě 0 let γ P C8pΩzΓq be any function satisfying γ ě 1 on Ω and

(10) γpxq “ 1`

ˆ

r0

distpx,Γq

˙α

whenever distpx,Γq ď
R

4
,

where distpx,Γq denotes the Euclidean distance from x to the closest point in Γ. For ζ ą 1 we
set

(11) γζpxq “ mintγpxq, ζu.

For u P L2pXnq we define the energy

(12) GEn,ε,ζpuq “
1

n2ε2

ÿ

x,yPXn

γζpxqηεpx´ yq|upxq ´ upyq|
2.
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The Laplacian learning problem is to

(13) minimize GEn,ε,ζpuq over
 

u P L2pXnq and u “ g on Γ
(

.

We note that the unique minimizer u P L2pXnq of (13) satisfies the optimality condition

(14)

#

GLn,ε,ζupxq “ 0, if x P Xn p“ XnzΓq
upxq “ gpxq, if x P Γ,

where GLn,ε,ζ : L2pXnq Ñ L2pXnq is the graph Laplacian, given by

(15) GLn,ε,ζupxq “
1

2nε2

ÿ

yPXn

pγζpxq ` γζpyqqηεpx´ yqpupyq ´ upxqq.

Some remarks about the model are in order.

Remark 1.1. When considering the discrete functional ζ depends on n and converges to
infinity (sufficiently fast) as nÑ8. The constant r0 represents the length scale of the crossover
from the strong local penalization near Γ to uniform far-field penalization. The introduction
of ζ is needed since γpxq “ 8 on Γ and so using γ directly would impose a hard constraint on
neighbors of labeled points. While we can allow ζ “ 8 in our model by interpreting products
8 ¨ 0 as 0, we wanted to allow for a model with far less stringent constraints on agreement
with the labeled points in the immediate vicinity of Γ. We note that the critical distance to Γ,
when γζ crosses over from γ to ζ equals

(16) rζ “ r0pζ ´ 1q´1{α provided that r0pζ ´ 1q´1{α ă
R

4
.

Remark 1.2. In practice, one can take (10) to be the definition of the weights on the whole
domain Ω. We only need γ to be smooth for a part of our analysis in Section 2.2. The issue is
that since the distance function dpx,Γq is not differentiable (it is only Lipschitz on ΩzΓ if Γ
has more than one point), γ cannot be both smooth and globally given by (10). To elaborate,
γ appears as part of the diffusion coefficient in the limiting elliptic problem (see Eq. (21)).
The solutions have nicer regularity properties when we take γ to be smooth, away from the
labels. For the other results we only need that γ is bounded from below by a positive number
and has singularities, with a particular growth rate, near the points of Γ.

Remark 1.3. Instead of truncating γ at the radius rζ to construct the weights γζ , we can
take a possibly discontinuous model of the form

(17) γζ,rpxq “

#

γpxq, if distpx,Γq ą r

ζ, if distpx,Γq ď r.

This model is more general, since we can set r “ rζ to recover (11). Choosing ζ " 1` pr0{rq
α

places a larger penalty on the gradient in the inner region where distpx,Γq ď r, compared to
Eq. (11). This model is useful in the analysis of the graph based problem, and gives a shaper
result for continuity at the labels (see Remark 4.3). In the limit as n Ñ 8 we would take
ζ Ñ8 and r Ñ 0 with r ě rζ .

Remark 1.4. We remark that the discrete functional (12) can be rewritten as

(18) GEn,ε,ζpuq “
1

2n2ε2

ÿ

x,yPXn

pγζpxq ` γζpyqqηεpx´ yq|upxq ´ upyq|
2,

and so the problem has a symmetric weight matrix.
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1.2. Outline. The continuum properly-weighted Dirichlet energy, which describes the as-
ymptotic behavior of the properly-weighted graph Laplacian (13) is presented in Section 2
(equations (19) and (20)). To show that the continuum problem is well posed and to establish
its basic properties, in Section 2 we also study properties of singularly weighted Sobolev spaces.
In particular the Trace Theorem 2.2 plays a key role in showing that the data can be imposed
on a set of isolated points, which enables us to show the well-posedness in Theorem 2.7. The
Euler-Lagrange equation of the variational problem is the elliptic problem we study in Section
2.2. In particular we show that solutions are C2 away from the labels and Hölder continuous
globaly.

In Section 3 we turn to asymptotics of the graph-based problems. We prove in Theorem 3.1
that the solutions of the graph-based learning problem (13), for the properly-weighted Laplacian,
converge in the large sample size limit to the solution of a continuum variational problem
(19)-(20). We achieve this by showing the Γ-convergence of the discrete variational problems
to the corresponding continuum problem. We also prove a negative result, showing that the
nonlocal weighted Laplacian [36] is degenerate (ill-posed) in the large data limit (with fixed
number of labeled points). In Section 4.1 we prove that solutions of the graph-based learning
problem for the properly-weighted Laplacian attain their labeled values continuously with
high probability (Theorem 4.1). In Section 5 we present the results of numerical simulations
illustrating the estimators obtained by our method, and its performance in classification
tasks on synthetic data and in classifying handwritten digits from the MNIST dataset [30].
The classification problems on synthetic data contrast the stability of the properly-weighted
Laplacian with the instability of the standard graph Laplacian and related methods. The
MNIST experiments show superior performance of our method compared to the standard
graph Laplacian, and similar performance to the weighted Laplacian of [36]. In the Appendix
A we recall some background results used and show and auxilliary technical result.

1.3. Acknowledgements. Calder was supported by NSF grant DMS:1713691. Slepčev ac-
knowledges the NSF support (grants DMS-1516677 and DMS-1814991). He is grateful to
University of Minnesota, where this project started, for hospitality. He is also grateful to the
Center for Nonlinear Analysis of CMU for its support.

2. Analysis of the continuum problem

The continuum variational problem corresponding to the graph-based problem (13) is

(19) minimize Epuq over
 

u P H1
γpΩq and u “ g on Γ

(

,

where E is given by

(20) Epuq “ 1

2

ż

Ω
γ|∇u|2ρ2 dx

and the weighted Sobolev Space H1
γpΩq is defined by (24). It follows from Lemma 2.1 that for

γ which grow near points of Γ as fast or faster than distpx,Γq´α, the functions in H1
γpΩq have

a trace at Γ (defined by (32)), which enables one to assign the condition u “ g on Γ in (19).
The Euler-Lagrange equation satisfied by minimizers of (20) is the elliptic equation

(21)

$

’

’

&

’

’

%

´divpγρ2∇uq “ 0 in ΩzΓ

u “ g on Γ

Bu

Bν
“ 0 on BΩ.
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In this section we study the variational problem (19) and the elliptic problem (21) rigorously.
The theory is nonstandard due to the boundary condition u “ g on Γ, since Γ is a collection
of isolated points and does not satisfy an exterior sphere condition. As a consequence of this
analysis, we prove in Section 4.1 that solutions of the graph-based problem are continuous at
the labels.

Before studying this problem, we need to perform a careful analysis of a particular weighted
Sobolev space.

2.1. Weighted Sobolev spaces. In this section we study the Sobolev space with norm
weighted by γ. While there exists a rich literature on Weighted Sobolev Spaces, we did not
find the precise results we need. Below we develop a self-contained, but brief, description of
the spaces with particular weights of interest.

For u P H1pΩq we define

(22) rus2H1
γpΩq

“

ż

Ω
γ|∇u|2 dx,

and

(23) }u}2H1
γpΩq

“ }u}2L2pΩq ` rus
2
H1
γpΩq

.

We define

(24) H1
γpΩq “

!

u P H1pΩq : }u}H1
γpΩq

ă 8

)

,

and endow H1
γpΩq with the norm }u}H1

γpΩq
. We also denote by H1

γ,0pΩq the closure of C8c pΩzΓq
in H1

γpΩq. The space H1
γpΩq is the natural function space on which to pose the variational

problem (19).
Throughout this section we let Br denote the open ball of radius r ą 0 centered at the

origin in Rd. Whenever we consider the space H1
γpBrq, we will implicitly assume the choice of

γpxq “ |x|´α. Hence

(25) rus2H1
γpBrq

“

ż

Br

|∇u|2|x|´α dx.

We also use the notation puqx,r “ ´
ş

Bpx,rq u dx for the average of u over the ball Bpx, rq, and
puqr :“ puq0,r. We also assume in this section that Ω has a Lipschitz boundary.

First, we study the trace of H1
γpΩq functions on Γ. Before proving a general trace theorem,

we require a preliminary lemma.

Lemma 2.1. Let α ą d ´ 2 and u P H1
γpBrq. Then x “ 0 is a Lebesgue point for u, i.e.,

up0q “ limεÑ0puqε, and

(26) |up0q ´ puqε| ď Cεpα`2´dq{2rusH1
γpBεq

for all 0 ă ε ď r.

Proof. We compute
ż

Bε

|∇u|2 dx ď
ż

Bε

|∇u|2|x|´αrα dx ď rus2H1
γpBεq

rα.

By the Poincaré inequality we have

(27) ´

ż

Bε

pu´ puqεq
2 dx ď Cr2´

ż

Bε

|∇u|2 dx ď Crus2H1
γpBεq

rα`2´d.



8 PROPERLY-WEIGHTED GRAPH LAPLACIAN

For 0 ă s ă t ď r we have

sdppuqs ´ puqtq
2 ď C

ż

Bs

ppuqs ´ puqtq
2 dx(28)

ď C

ż

Bs

ppuqs ´ uq
2 dx` C

ż

Bs

ppuqt ´ uq
2 dx

ď Crus2H1
γpBtq

psα`2 ` tα`2q.

For 0 ă q ă ε ď r with ε ď 4q we can set s “ q and t “ ε above to obtain

(29) |puqq ´ puqε|
2 ď Crus2H1

γpBεq
εα`2´d.

For 0 ă q ă ε ď r with ε ą 4q, let k P N be the greatest integer smaller than log2pε{qq.
Since ε ą 2q, we have k ě 1. Choose b ą 0 so that bk “ ε{q. Then

logpbq “
logpε{qq

k
ě

logpε{qq

log2pε{qq
ě logp2q

and

logpbq ď
logpε{qq

log2pε{qq ´ 1
“

logp2q log2pε{qq

log2pε{qq ´ 1
ď 2 logp2q,

since log2pε{qq ą 2. Therefore 2 ď b ď 4. Let us set εj “ εb´j and aj “ puqεj . Then ε0 “ ε

and εk “ εb´k “ q. Setting t “ εj and s “ εj`1 in (28) yields

|aj ´ aj`1|
2 ď Crus2H1

γpBεq
pεα`2´d
j`1 ` εα`2

j ε´dj`1q ď Crus2H1
γpBεq

b´jpα`2´dqεα`2´d.

Therefore

(30) |puqq ´ puqε| ď
k´1
ÿ

j“0

|aj`1 ´ aj | ď CrusH1
γpBεq

εpα`2´dq{2

holds for all k ě 1, where C is independent of u, ε and k.
In either case, we have established that

(31) |puqq ´ puqε|
2 ď Crus2H1

γpBεq
εα`2´d

holds for all 0 ă q ă ε ď r. Thus, the sequence ε ÞÑ puqε is Cauchy and converges to a real
number as εÑ 0, which we will call up0q. Sending q Ñ 0 in (31) completes the proof. �

By Lemma 2.1, we can define the trace operator Tr : H1
γpΩq Ñ RΓ by

(32) Trruspxq “ lim
εÑ0

´

ż

Bpx,εq
u dx px P Γq.

We endow RΓ with the Euclidean norm. We now prove our main trace theorem.

Theorem 2.2 (Trace Theorem). Assume α ą d´2. Then the trace operator Tr : H1
γpΩq Ñ RΓ

is bounded, and satisfies Trruspxq “ upxq whenever u is continuous at x P Γ. Furthermore, for
every u, v P H1

γpΩq with }u´ v}
2{pα`2q
L2pΩq

ď R{2 we have

(33) |Trrus ´ Trrvs| ď Cp1` rusH1
γpΩq

` rvsH1
γpΩq

q}u´ v}
1´d{pα`2q
L2pΩq

.
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Proof. By Lemma 2.1 each x P Γ is a Lebesgue point of u, and we have for r ď R{2

|Trruspxq| ď ´

ż

Bpx,rq
u dx` Crpα`2´dq{2rusH1

γpΩq
ď Crd{2}u}L2pΩq ` Cr

pα`2´dq{2}u}H1
γpΩq

.

Fixing r “ R{2 we have |Trruspxq| ď C}u}H1
γpΩq

, hence Tr : H1
γpΩq Ñ R is bounded.

To prove (33), let u, v P H1
γpΩq and x P Γ. For simplicity, we write upxq and vpxq for

Trruspxq and Trrvspxq, respectively. By Lemma 2.1 we have for 0 ă ε ď R{2

|upxq ´ vpxq| ď |upxq ´ puqx,ε| ` |vpxq ´ pvqx,ε| ` |puqx,ε ´ pvqx,ε|

ď Cεpα`2´dq{2prusH1
γpBpx,εqq

` rvsH1
γpBpx,εqq

q ` Cε´d
ż

Bε

|u´ v| dx

ď Cεpα`2´dq{2prusH1
γpΩq

` rvsH1
γpΩq

q ` Cε´d{2}u´ v}L2pΩq.

Choosing ε “ }u´ v}2{pα`2q
L2pΩq

, we obtain

|upxq ´ vpxq| ď Cp1` rusH1
γpΩq

` rvsH1
γpΩq

q}u´ v}
1´d{pα`2q
L2pΩq

,

provided ε ď R{2. �

We now examine the decay of the L2 norm of trace zero functions.

Lemma 2.3. Let α ą d´ 2 and u P H1
γpBrq with Trrusp0q “ 0. Then

(34) ´

ż

BBε

u2 dS `´

ż

Bε

u2 dx ď Cεα`2´drus2H1
γpBεq

for all 0 ă ε ď r.

Proof. Since Trrusp0q “ 0, Lemma 2.1 yields

}puqε}L2pBεq ď Crd{2|puqε| ď Cεpα`2q{2rusH1
γpBεq

.

Recalling (27) from the proof of Lemma 2.1 we deduce

}u´ puqε}L2pBεq ď Cεpα`2q{2rusH1
γpBεq

.

Therefore

´

ż

Bε

u2 dx “ Cε´d}u}2L2pBεq
ď Cεα`2´drus2H1

γpBεq
,

which establishes one part of (34).
For the other part, we use a standard trace estimate that we include for completeness. We

have

ε

ż

BBε

u2 dS “

ż

Bε

divpxu2q dx

“

ż

Bε

du2 ` 2u∇u ¨ x dx

ď C

ż

Bε

u2 dx` Cε2

ż

Bε

|∇u|2 dx

ď C

ż

Bε

u2 dx` Cεα`2rus2H1
γpBεq

.
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Dividing both sides by εd we obtain

´

ż

BBε

u2 dS ď C´

ż

Bε

u2 dx` Cεα`2´drus2H1
γpBεq

,

which completes the proof. �

We now show that trace zero functions can be approximated in H1
γpΩq by smooth functions

compactly supported away from Γ.

Theorem 2.4 (Trace zero functions). If α ą d´ 2 then u P H1
γ,0pΩq if and only if u P H1

γpΩq

and Trrus “ 0.

Proof. If u P H1
γ,0pΩq, then there exists uk P C8c pΩzΓq so that uk Ñ u in H1

γpΩq. In particular,
uk is uniformly bounded in H1

γpΩq. Thus, by Theorem 2.2, we have Trruspxq “ limkÑ8 ukpxq “
0 for each x P Γ.

Conversely, let u P H1
γpΩq such that Trrus “ 0. Without loss of generality, we may assume

Ω “ Br, Γ “ t0u, and Trrusp0q “ 0. Choose a smooth nonincreasing function ξ : r0,8q Ñ r0, 1s
such that ξptq “ 1 for 0 ď t ď 1 and ξptq “ 0 for t ě 2. For a positive integer k ě 1 define
ξkpxq “ ξpk|x|q and wk “ up1´ ξkq. We compute

ż

Br

|∇wk ´∇u|2|x|´α dx “
ż

Br

ˇ

ˇ

ˇ

ˇ

ξk∇u` kuξ1pk|x|q
x

|x|

ˇ

ˇ

ˇ

ˇ

2

|x|´α dx(35)

ď C

ż

B2{k

|∇u|2|x|´α dx` Ck2

ż

B2{kzB1{k

u2|x|´α dx

ď C

ż

B2{k

|∇u|2|x|´α dx` Ckα`2

ż

B2{k

u2 dx

ď C

ż

B2{k

|∇u|2|x|´α dx,

the last line following from Lemma 2.3. Therefore wk Ñ u in H1
γpBrq as k Ñ8. To produce

a smooth approximating sequence uk, we simply mollify the sequence wk. �

As a corollary, we can prove density of smooth functions that are locally constant near Γ.

Corollary 2.5. For any α ą 0 the set

S “ tu P C8pΩq : pDs ą 0qp@x P Γqp@z P Bp0, 1qq upx` szq “ upxqu

is a dense subset of H1
γpΩq.

Proof. We split the proof into two cases.
Case 1: α ą d ´ 2. Let u P H1

γpΩq. There exists ψ P S such that Trrψs “ Trrus. Since
w :“ u ´ ψ P H1

γ,0pΩq, there exists by Theorem 2.4 a sequence ϕk P C8c pΩzΓq such that
ϕk Ñ w as k Ñ8. We simply note that ψk :“ ϕk ` ψ P S and ψk Ñ u in H1

γpΩq as k Ñ8.
Case 2: α ď d ´ 2. In this case, C8pΩq is dense in H1

γpΩq by a standard mollification
argument, since the weighting kernel |x|´α is integrable. Hence, for u P H1

γpΩq with α ď d´ 2

there exists ϕk P C8pΩq such that ϕk Ñ u in H1
γpΩq. Since ϕk is smooth, we automatically

have
ż

Ω
distpx,Γq1´d|∇ϕk|2 dx ă 8.

Thus, by case 1, there exists a sequence ψk,j P S such that for each k, ψk,j Ñ ϕk in H1
γ as

j Ñ8, since α ď d´ 2 ď d´ 1. The proof is completed with a diagonal argument. �
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Finally, we prove a Hardy-type inequality for trace zero functions in H1
γpBRq.

Theorem 2.6 (Hardy’s inequality). Let α ą d´ 2 and u P H1
γpBrq with Trrusp0q “ 0. Then

u
|x|pα`2q{2 P L

2pBrq and

(36)
ż

Br

u2

|x|α`2
dx ď Crus2H1

γpBrq
.

Proof. By a change of variables we can reduce to the case of r “ 1. We first note that

div

ˆ

x

|x|α`2

˙

“ ´
α` 2´ d

|x|α`2

for x ‰ 0. Thus, for ε ą 0 we have
ż

B1zBε

u2

|x|α`2
dx “ ´pα` 2´ dq

ż

B1zBε

u2 div

ˆ

x

|x|α`2

˙

dx

“ pα` 2´ dq

«

2

ż

B1zBε

u∇u ¨ x

|x|α`2
dx´

ż

BB1

u2 dS `
1

εα`1

ż

BBε

u2 dS

ff

ď C

ż

B1zBε

|u||∇u||x|´α´1 dx` Crus2H1
γpB1q

` C

ż

Bε

|x|´α|∇u|2 dx,

where the last line follows from Lemma 2.3 and the assumption α ą d´ 2. Applying Cauchy’s
inequality to the first term and rearranging yields

ż

B1zBε

u2

|x|α`2
dx ď Crus2H1

γpB1q
` C

ż

Bε

|x|´α|∇u|2 dx.

Sending εÑ 0 completes the proof. �

We now establish the well posedness of the continuum properly-weighted Laplacian learning
problem.

Theorem 2.7. Assume α ą d´ 2. Then the problem (19) has a unique solution.

Proof. The existence follows by the direct method of the calculus of variations. Namely let
uk, k “ 1, 2, . . . be a minimizing sequence. By the Sobolev Embedding Theorem, uk has a
subsequence which converges weakly in H1

γpΩq and in L2pΩq towards u P H1
γpΩq. Since E is

convex, it is weakly lower-semicontinuous and thus Epuq ď lim infkÑ8 Epukq. Furthermore
note that (33) implies that Trpukqpzq Ñ Trpuqpzq for every z P Γ. Thus u “ g on Γ. We
conclude that u is the desired minimizer. The uniqueness follows from convexity of E , by a
standard argument, which is recalled in the proof of Lemma 2.11. �

2.2. Elliptic problem. We now study the elliptic Euler-Lagrange equation (21). We ad-
ditionally assume in this section that Ω has a C2,α boundary and ρ P C1,σpΩq for some
σ ą 0.

Definition 2.8. We say that u P H1
γpΓq is a weak solution of (21) if

(37)
ż

Ω
γρ2∇u ¨∇ϕdx “ 0

for all ϕ P H1
γ,0pΩq and Trruspxq “ gpxq for all x P Γ.

We first need a preliminary proposition on barrier functions.
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Proposition 2.9 (Barrier). Let α ą d´ 2 and fix any 0 ă β ă α` 2´ d. Then there exists
c ą 0 depending on α, β, ρ and d such that ϕpxq “ |x|β satisfies

(38) divpρ2p1` |x|´αq∇wq ď ´β
2
pα` 2´ β ´ dqρ2|x|´pα`2´βq

for all 0 ă |x| ď c.

Proof. Since ∇ϕpxq “ β|x|β´2x we have

divpρ2p1` |x|´αq∇wq “ β divpρ2|x|β´2xq ` β divpρ2|x|β´α´2xq

“ 2β|x|β´α´2p1` |x|αqρ∇ρ ¨ x` βρ2 divp|x|β´2xq ` βρ2 divp|x|β´α´2xq

“ βρ2|x|β´α´2r2p1` |x|αq∇ log ρ ¨ x` pd` β ´ 2q|x|α ` d` β ´ α´ 2s

ď βρ2|x|β´α´2rCp1` |x|αq ` d` β ´ α´ 2s.

Choosing c ą 0 so that Cp1` cαq ď 1
2pα` 2´ β ´ dq completes the proof. �

Theorem 2.10. Let α ą d ´ 2. The elliptic equation (21) has a unique weak solution
u P H1

γpΩq. Furthermore, u P CpΩq X C2,σ
loc pΩzΓq and satisfies for every 0 ă β ă α` 2´ d

(39) |upxq ´ upyq| ď Cpβq|x´ y|β px P Ω, y P Γq.

Proof. For ε ą 0 set
Ωε :“ Ωz

ď

yPΓ

Bpy, εq

and let uε P C2,σpΩεq be the unique solution of the approximating problem

(40)

$

’

’

’

&

’

’

’

%

´divpγρ2∇uεq “ 0 in Ωε

uε “ gpyq on BBpy, εq for all y P Γ

Buε
Bν

“ 0 on BΩ.

It is a classical result that uε is the unique solution of the variational problem

(41) min

"
ż

Ωε

γρ2|∇u|2 dx : u P H1pΩεq and @y P Γ, u “ gpyq on BBpy, εq
*

.

In particular, it follows that

(42) sup
εą0

ż

Ωε

γρ2|∇uε|2 dx ă 8.

By the maximum principle

(43) min
Γ
g ď uε ď max

Γ
g.

Let y P Γ. By Proposition 2.9, wpxq :“ |x´ y|β satisfies

´divpγρ2∇wq ě β

2
pα` 2´ β ´ dq|x´ y|´pα`2´βq ą 0

for 0 ă |x| ď c, where c depends on α, β, ρ, and d. Thus, another application of the maximum
principle yields

uεpxq ď gpyq ` C|x´ y|β

for all x P Ωε, where C is independent of ε ą 0. The other direction is similar, yielding

(44) |uεpxq ´ gpyq| ď C|x´ y|β for all x P Ωε.
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By the Schauder estimates [24], for each δ ą 0 there exists a constant C ą 0, independent of
ε, such that

}uε}C2,σpΩδq
ď C

for all 0 ă ε ă δ. Therefore, there exists a subsequence uεk and u P C2,σ
loc pΩzΓq such that

uεk Ñ u in C2
locpΩzΓq. In particular, u solves (21) classically and satisfies (39), due to (44).

Thus u P CpΩq and u “ g on Γ. Finally, it follows from (42) that u P H1
γpΩq, and so u is a

weak solution of (21), as per Definition 2.8. Uniqueness of weak solutions follows a standard
energy method argument. �

Lemma 2.11. The solution u of the variational problem (19) is the unique weak solution of
the Euler-Lagrange equation (21).

Proof. Let u P H1
γpΩq be the unique weak solution of (21), and let w P H1

γpΩq with Trrws “
Trrus. Then by the definition of weak solution

ż

Ω
γρ2∇u ¨∇pu´ wq dx “ 0.

Therefore
ż

Ω
γρ2|∇u|2 dx “

ż

Ω
γρ2∇u ¨∇w dx

“
1

2

ż

Ω
γρ2|∇u|2 dx` 1

2

ż

Ω
γρ2|∇w|2 dx´ 1

2

ż

Ω
γρ2|∇u´∇w|2 dx,

and so
ż

Ω
γρ2|∇u|2 dx “

ż

Ω
γρ2|∇w|2 dx´

ż

Ω
γρ2|∇u´∇w|2 dx.

It follows that u is the unique solution of the variational problem (19). �

3. Discrete to continuum Convergence

Consider Ω, Xn, and η which satisfy the assumptions of Section 1.1. Let µn “ 1
n

řn
i“1 δxi be

the empirical measure of the sample. Let d8pµ, µnq be the 8-transportation distance between
µ and µn, discussed in Appendix A.2.

We now state our main result. In order to compare discrete and continuum minimizers we
use the TLp topology introduced in [21]. We review the topology and its basic properties in
Appendix A.3.

Theorem 3.1. Let εn be a sequence of positive numbers converging to zero as n Ñ 8 and
such that εn " d8pµ, µnq. Let ζn P p1,8s be such that ζn " nε2

n. Consider α ą d´ 2. Let un
be a sequence of minimizers of the problem (13) for GEn,εn,ζn . Then pµn, unq converges in TL2

to pµ, uq where u is the minimizer of (19).

Our approach to proving the theorem is via establishing the Γ-convergence of the discrete
constrained functionals to the continuum ones. The overall approach to consistency of learning
algorithms follows the one developed in [21,23]. Ensuring that the discrete problem induces
enough regularity for one to be able to show that the label values are preserved in the limit at
points of Γ follows the general strategy of [39]. However the problems and proofs are rather
different. We remark that one can also use the PDE-based approach of [11], however this
would require a slightly more restrictive range on εn. However the PDE-based approach gives
superior regularity of solutions which we exploit in Section 4.
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Proof. Since εn " d8pµ, µnq Á n´1{d it follows that ζn Ñ 8 as n Ñ 8. By Lemma 3.5,
discrete energy GEn,εn,ζn Γ-converges to E and the compactness property holds. Therefore
pµn, unq converges along a subsequence in TL2 metric to prµ, uq. Since µn converges to µ in
Wasserstein metric, rµ “ µ. The fact that u is the minimizer of (19) now follows directly from
Γ-convergence of Proposition 3.4 below. Consequently, the fact that the whole sequence un
converges to u follows from the uniqueness of the minimizer of (19). �

Remark 3.2. While above we address only algebraically growing weights γ (see (10)) it is
straightforward to modify the proofs to show that if γ grows faster than algebraically at labeled
points (say γpxq “ expp1{distpx,Γq) the conclusion of the theorem hold (in any dimension
d ě 2).

Remark 3.3. In this paper we assume that the data measure is supported on the set Ω of full
dimension. There are no substantial obstacles in extending the results to the manifold setting
where the data are sampled from a measure which is supported on a smooth submanifold of
Rd. One would only need to adjust the statements using manifold analogues of the weighted
dirichlet energy and the laplacian. The convergence of graph laplacian in the manifold setting
has already been established in the standard setting [19]. In the manifold setting the dimension
d in the results above should be replaced by the dimension of the data manifold.

Proposition 3.4. Let εn be a sequence of positive numbers converging to zero as nÑ8 and
such that εn " d8pµ, µnq. Let ζn P p1,8s be such that ζn " nε2

n. Let α ą d ´ 2. Then the
constrained properly-weighted graph Dirichlet energy, defined on TL2pΩq by

GEconn,εn,ζnprµn, unq “

#

GEn,εn,ζnpunq if rµn “ µn and un “ g on Γ

8 else

Γ-converges in TL2 to the constrained continuum properly-weighted Dirichlet energy

θηEconprµ, uq “

#

θηEpuq if rµ “ µ, u P H1
γpΩq and u “ g on Γ

8 else,

where the value of u on Γ is considered in the sense of the trace and

θη “
1

d

ż

Rd
ηpzq|z|2dz.

Proof. To show the lim sup inequality recall that S, the set of smooth functions which are
constant in some neighborhood of Γ, is dense in H1

γpΩq, by Corollary 2.5. The fact that for
every f P S, GEn,εn,ζnpfq Ñ θηEpfq follows by a standard argument, which was for example
presented for total variation in Section 5 of [21]. The existence of a recovery sequence for
arbitrary f P H1

γpΩq follows by a density argument.
To show the lim inf inequality consider a sequence pµn, unq converging in TL2 to pµ, uq.

We can assume without a loss of generality that un|Γ “ g and that lim infnÑ8 GEn,εn,ζnpunq
is finite. Since εn " d8pµ, µnq Á n´1{d it follows that ζn Ñ 8 as n Ñ 8. By Lemma
3.5, discrete energy GEn,εn,ζn Γ-converges to E and the compactness property holds. Thus
u P H1

γpΩq and
lim inf
nÑ8

GEn,εn,ζnpunq ě θηEpuq.

What remains to be shown is that u|Γ “ g. The fact that u|Γ is a well defined object follows
from Lemma 2.1. Let us assume that lim infnÑ8 GEn,εn,ζnpunq “ limnÑ8 GEn,εn,ζnpunq. For
the general case one needs to consider a subsequence, which we omit for notational simplicity.
We have that Emax “ supn GEn,εn,ζnpunq ă 8.
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We first show that near points z P Γ, the values of un remain, on average, close to gpzq.
More precisely

Emax ě GEn,εn,ζnpuq ě
1

2n2ε2
n

ÿ

xPXn

ζnηεnpx´ zq|upxq ´ gpzq|
2.

and thus
1

n

ÿ

xPXn

ηεnpx´ zq|unpxq ´ gpzq|
2 ď 2Emax

nε2
n

ζn
.

Since η ě 1 on Bp0, 1q

1

n

ÿ

xPXn,|x´z|ăεn

|unpxq ´ gpzq|
2 ď 2Emax

nεd`2
n

ζn
.

Let Tn be a sequence of transport maps satisfying the conclusions of Theorem A.3 and let
rεn “ εn ´ 2}Tn ´ Id}L8pΩq. Then for a.e. x P Bpz, rεnq, Tnpxq P Bpz, εnq and thus

ż

Bpz,rεnq
|unpTnpxqq ´ gpzq|

2ρpxqdx ď 2Emax
nεd`2

n

ζn
.

Therefore

(45) ´

ż

Bpz,rεnq
|unpTnpxqq ´ gpzq|

2ρpxqdx À
nε2

n

ζn
! 1

by the assumption on ζn.
By Lemma 3.9 we know that, for rζn “ min

!

ζn,
`

r0
2C

˘α` n
lnn

˘α{d
)

where C is the constant
from Theorem A.3

(46) E
rεn,rζn

pun ˝ Tn; rηq À GEn,εn,ζnpun; ηq

Let J be a mollifier used in the proof of Lemma 3.10 and let run “ pun ˝ Tnq ˚ Jεn . From
(45) follows that

(47) |runpzq ´ gpzq| À
nε2

n

ζn

for all z P Γ. Combining the estimate of the lemma with (46) yields

Eprun; γ
rζn
,Ω1nq À GEn,εn,ζnpun; ηq.

Finally by Lemma 3.11 there exist vn P H1
γpΩ

1
nq such that vn|Γ “ run|Γ and

(48) Epvn,Ω1nq À GEn,εn,ζnpun; ηq.

We note that by construction dTL2ppµn, unq, pµ, runqq Ñ 0 and thus run Ñ u in L2pΩq. By
construction }vn ´ run}L2pΩ1nq

À }run}L2pΓ
rεn q

, where

(49) Γεn “ tx P Ω : distpx,Γq ă εnu.

Since pµn, unq
TL2

ÝÑ pµ, uq it follows that
ż

T´1
n pΓεn q

|unpTnpxqq ´ upxq|
2dµpxq Ñ 0 as nÑ8.
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Since u P L2pµq, limδÑ0 sup
 ş

A u
2pxqdx : µpAq ă δ

(

“ 0. Therefore

}run}L2pΓ
rεn q
ď 2

ż

T´1
n pΓεn q

|unpTnpxqq ´ upxq|
2 ` u2pxqdµpxq Ñ 0 as nÑ8.

Thus }vn ´ run}L2pΩ1nq
Ñ 0 and nÑ8 and consequently vn Ñ u in L2pµq. Since vn|Γ “ run|Γ,

from (47) and the assumption on ζn follows that vnpzq Ñ gpzq as nÑ8. Furthermore, (48)
implies that vn is a bounded sequence in H1

γpKq for any compact subset K ĂĂ Ω. Combining
this with the fact that vn Ñ u in L2pµq implies via estimate (33) of the Trace Theorem that
vnpzq Ñ Trupzq as nÑ8 for all z P Γ. Therefore Trupzq “ gpzq for all z P Γ. �

Lemma 3.5. Assume α ą 0 and ζn ě 1. Under assumptions on Xn and εn of Proposition
3.4, the discrete energy GEn,εn,ζn Γ-converges with respect to TL2 topology to the energy
θηE, defined in (20) as n Ñ 8 if ζn Ñ 8. Furthermore the compactness property holds for
sequences bounded in L8.

Proof. From the results in the literature [21,22] follows that for any fixed ζ ą 0 the discrete
energies GEn,εn,ζ Γ-converge to Ep ¨ ; γζq as n Ñ 8, under standard assumptions on εn. To
show the liminf inequality for general ζn consider a sequence pµn, unq TL2 converging to pµ, uq.
For any fixed k,

lim inf
nÑ8

GEn,εn,ζnpunq ě Epu; ζkq,

which implies the desired inequality by taking supremum over k. The limsup inequality follows
by a simple diagonalization argument.

We recall from the literature (e.g [21] or Proposition 4.4 of [39]) that the compactness already
holds for the weight γ ” 1. Thus the compactness for GEn,εn,ζn follows by comparison. �

3.0.1. The negative result.

Proposition 3.6. Let εn be a sequence of positive numbers converging to zero as nÑ8 and
such that εn " d8pµ, µnq. Let ζn ě 1 be a sequence converging to infinity. Consider α ď d´ 2.
Then the constrained energy GEn,εn,ζn , defined in Proposition 3.4, Γ-converges in TL2 metric
to the unconstrained continuum energy E.

Proof. The liminf part of the Γ-convergence claim follows]from the liminf claim of Lemma 3.5.
To show the limsup inequality, we first observe that by localizing near the points of Γ, and

given that limsup inequality holds for the unconstrained functional, the problem can be reduced
to considering Γ “ t0u, u ” 0, and the construction a sequence of functions un P L2pµnq such
that unp0q “ 1, GEn,εn,ζnpunq Ñ 0 as nÑ8 and un Ñ 0 in TL2 as nÑ8.

We now make some observation about the continuum functional. Namely when α ď d´2 then
the function ϕpxq “ ln

´

ln
´

1
|x|

¯¯

belongs to H1
γpBp0, 1qq. Let wk “ maxtmint 1

kϕpxq, 1u, 0u.
Let rk ą 0 be such that wk “ 1 on Bp0, rkq. By mollifying we can obtain a smooth
approximation vk, vk “ 1 on Bp0, rk{2q and }vk}H1

γpBp0,1qq
ď 2}uk}H1

γpBp0,1qq
. Arguing as in

Section 5 of [21], if one defines for each k P N, the sequence ukn P L2pµnq by uknpxiq “ vnpxiq
for all xi P Vn one has ukn Ñ vn in TL2 and lim supnÑ8 GEn,εn,ζnpuknq ě Epvnq. Since vk Ñ 0
in H1

γpBp0, 1qq as k Ñ8, the conclusion follows by a diagonalization argument. �

Corollary 3.7. Let εn be a sequence of positive numbers converging to zero as nÑ 8 and
such that εn " d8pµ, µnq. Let ζn ě 1 be a sequence converging to 8 as nÑ8. Let α ď d´ 2.
Let un be a sequence of minimizers of the problem (13) for GEn,εn,ζn. Let cn be the average
of un (with respect to measure µn). Then pµn, un ´ cnq converges in TL2 to pµ, 0q; in other
words the information about the labels is forgotten in the limit.
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Proof. Assume the claim is false. Then there exists δ ą 0 and a subsequence unj such that
foe all j, dTL2ppµnj , unj ´ cnj q, pµ, 0qq ą δ for all j. By the maximum principle functions un
are bounded by extremal values of g. Consequently, by Lemma 3.5, unj ´ cnj has a further
convergent subsequence. Without a loss of generality we can assume that unj ´ cnj converges
to some v P L2pµq. Then

ş

vdµ “ limjÑ8

ş

unj ´ cnjdµnj “ 0.
By the limsup part of Γ-convergence of Proposition 3.6 there exists a sequence vn P L2pµnq

such that GEconn,εn,ζnpvnq Ñ 0 as nÑ8. Since unj are minimizers GEn,εn,ζnpunj ´ cnj q Ñ 0 as
nÑ8. We conclude by the liminf part of Γ-convergence that Epvq “ 0. Since

ş

vdµ “ 0 this
implies that v ” 0, which contradicts the assumption about the sequence. �

We note that the analogue of the negative result in Corollary 3.7 for the standard graph
Laplacian (corresponding to γ ” 1) was proved in [39][Theorem 2.1]. The following corollary
then follows by the squeeze theorem for Γ-convergence.

Corollary 3.8. Under the assumptions of Proposition 3.6 consider any sequence of graph
based functionals Fn such that for GEn,εn,1 ď Fn ď GEn,εn,ζn (where we note that GEn,εn,1 is
just a convenient way to write the standard graph Laplacian). Let un be the minimizers of
(13) for Fn and let cn be the average of un (with respect to measure µn). Then pµn, un ´ cnq
converges in TL2 to pµ, 0q.

A particular consequence of this corollary is that the minimizers of the algorithm in [36]
converge to a constant as nÑ8.

3.1. Estimates for the discrete to continuum convergence. Here we establish several
results needed in the proofs of the main results above. We follow a similar strategy as [39].
Let us define the nonlocal continuum energy as

(50) Eε,ζpuq “
1

ε2

ĳ

γζpxqηεpx´ yq|upxq ´ upyq|
2dµpxqdµpyq.

It serves as an intermediary between the discrete graph based functionals and the continuum
derivative-based functionals.

Lemma 3.9 (discrete to nonlocal control). Consider Ω, µ, η, ζ, and xi as in Theorem 3.1.
Let rηp|x|q “ 1 for |x| ď 1 and rηp|x|q “ 0 otherwise, and so rη ď η. Let Tn be a sequence of
transport maps satisfying the conclusions of Theorem A.3 and let rεn “ εn ´ 2}Tn ´ Id}L8pΩq.
Define GEn,εn,ζnp¨; ηq by (12), where we explicitly denote the dependence of η. Let rζn ą 0 be
such that ζn ě rζn and

`

r0
2C

˘α` n
lnn

˘α{d
ě rζn where C is the constant from Theorem A.3. Then

there exists n0 P N and a constant C ą 0 (independent of n and un) such that for all n ě n0

E
rεn,rζn

pun ˝ Tn; rηq ď C GEn,εn,ζnpun; ηq

Proof. If
ˇ

ˇ

ˇ

x´z
rεn

ˇ

ˇ

ˇ
ă 1 then

|Tnpxq ´ Tnpzq| ď 2}Tn ´ Id}L8pΩq ` |x´ z| ď 2}Tn ´ Id}L8pΩq ` rεn “ εn.

So,
ˇ

ˇ

ˇ

ˇ

x´ z

rεn

ˇ

ˇ

ˇ

ˇ

ă 1 implies
ˇ

ˇ

ˇ

ˇ

Tnpxq ´ Tnpzq

εn

ˇ

ˇ

ˇ

ˇ

ď 1

and therefore
ˇ

ˇ

ˇ

ˇ

x´ z

rεn

ˇ

ˇ

ˇ

ˇ

ă 1 implies rη

ˆ

|x´ z|

rεn

˙

“ 1 “ rη

ˆ

|Tnpxq ´ Tnpzq|

εn

˙

.
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Hence,

rη

ˆ

|x´ z|

rεn

˙

ď rη

ˆ

|Tnpxq ´ Tnpzq|

εn

˙

ď η

ˆ

|Tnpxq ´ Tnpzq|

εn

˙

.

From the assumptions on rζn and Tn follows that

2}Tn ´ Id}L8pΩq ď r0prζn ´ 1q´
1
α “ r

rζn

where r
rζn

is the length scale such that 1`
´

r0
distpx,Γq

¯α
ą rζn if distpx,Γq ă r

rζn
. We claim that

for a.e. x P Ω

(51) min

"

1`

ˆ

r0

distpx,Γq

˙α

, rζn

*

ď 2α min

"

1`

ˆ

r0

distpTnpxq,Γq

˙α

, rζn

*

Namely if dpx,Γq ď r
rζn

then dpTn,Γq ď |Tnpxq ´ x| ` r
rζn
ď 2r

rζn
for a.e. such x. Thus

1`

ˆ

r0

distpTnpxq,Γq

˙α

ě 1`
1

2α

˜

r0

r
rζn

¸α

ě
1

2α
rζn

If dpx,Γq ą r
rζn

then dpx,Γq ě 1
2dpTnpxq,Γq for a.e. such x. Thus

´

r0
distpTnpxq,Γq

¯α
ě

1
2α

´

r0
distpx,Γq

¯α
.

Using (51) we conclude

E
rεn,rζn

pun ˝ Tn; rηq

“
1

rε2
n

ĳ

min

"

1`

ˆ

r0

distpx,Γq

˙α

, rζn

*

rη
rεnpx´ yq|unpTnpxqq ´ unpTnpyqq|

2dµpxqdµpyq

ď 2α
εdn
rεd`2
n

ĳ

min

"

1`

ˆ

r0

distpTnpxq,Γq

˙α

, ζn

*

ηεnp|Tnpxq ´ Tnpyq|q|unpTnpxqq ´ unpTnpzqq|
2dµpxqdµpyq

“ 2α
εd`2
n

rεd`2
n

GEn,εn,ζnpun; ηq.

�

In the next lemma we show that boundedness of non-local energies implies regularity at
scales greater than ε with weight γ

rζ
. This allows us to relate non-local bounds to local

bounds after mollification using a mollifier J P C8c pRd, r0,8qq, with
ş

Rd Jpxq dx “ 1, and
Jεpxq “

1
εd
Jpx{εq.

Lemma 3.10 (nonlocal to weak local control). There exists a constant C ě 1 and a radially
symmetric mollifier J with supppJq Ď Bp0, 1q such that for all ε ą 0, u P L2pΩq, and any
Ω1 ĂĂ Ω (i.e. for every Ω1 that is compactly contained in Ω) with distpΩ1, BΩq ą ε it holds that

(52) Epu ˚ Jε; γ
rζ
,Ω1q ď CE

ε,rζ
pu; Ωq

where for both functionals we explicitly denote the dependence of the domain.
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Proof. Let J be a radially symmetric mollifier whose support is contained in Bp0, 1q. There
exists β ą 0 such that J ď βηp| ¨ |q and |∇J | ď βηp| ¨ |q. Let uε “ Jε ˚ u. For arbitrary x P Ω
with distpx, BΩq ą ε we have

|∇uεpxq| “
ˇ

ˇ

ˇ

ˇ

ż

Ω
∇Jεpx´ zqupzq dz

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω
∇Jεpx´ zqpupzq ´ upxqq dz ´

ż

RdzΩ
∇Jεpx´ zqupxq dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď
β

εd`1

ż

Ω
η

ˆ

|x´ z|

ε

˙

|upzq ´ upxq| dz `
1

εd`1

ż

RdzΩ

ˇ

ˇ

ˇ

ˇ

∇J
ˆ

x´ z

ε

˙ˇ

ˇ

ˇ

ˇ

|upxq| dz.

where the second line follows from
ş

Rd ∇Jpwq dw “ 0. For the second term we have

1

εd`1

ż

RdzΩ

ˇ

ˇ

ˇ

ˇ

∇J
ˆ

x´ z

ε

˙ˇ

ˇ

ˇ

ˇ

|upxq| dz “ 0

since for all z P RdzΩ and x P Ω with distpx, BΩq ą ε it follows that |x ´ z| ą ε and thus
∇J

`

x´z
ε

˘

“ 0. Therefore, for θη “
ş

Rd ηp|w|q dw,

|∇uεpxq|2 ď β2

ˆ
ż

Ω

1

ε
ηεp|x´ z|q|upzq ´ upxq| dz

˙2

“
θ2
ηβ

2

ε2

ˆ
ż

Ω

ηεp|x´ z|q

θη
|upzq ´ upxq| dz

˙2

ď θηβ
2

ż

Ω
ηεp|x´ z|q

|upzq ´ upxq|2

ε2
dz

by Jensen’s inequality (since 1
θη

ş

Rd ηεp|x´ z|q dz “ 1). Hence,

ż

Ω1
|∇uεpxq|2γ

rζ
pxqρ2pxq dx ď θηβ

2

ż

Ω

ż

Ω
ηεp|x´ z|q

ˇ

ˇ

ˇ

ˇ

upzq ´ upxq

ε

ˇ

ˇ

ˇ

ˇ

2

γ
rζ
pxqρ2pxq dz dx

ď
θηβ

2 supxPΩ ρpxq

infxPΩ ρpxq
E
ε,rζ
pu; Ωq

which completes the proof. �

We now show that controlling the local energy with cut-off near the singularity is sufficient
to be able to find a nearby (in H1

γ) function which has a similarly bounded energy without a
cut-off.

Lemma 3.11 (weak local to strong local control). Assume rζ ą 1 and r
rζ
ď 1

2 mint|x ´ y| :

x, y P Γ, x ‰ yu. Let r “ r
rζ
. Then there exists a constant C ą 0 such that for every u P H1pΩq

there exists v P H1
γpΩq such that

v|Bpz,r{2q ”
1

|Bp0, r{2q|

ż

Bpx,r{2q
upxqdx for all z P Γ,(53)

v “ u on ΩzΓr(54)
Epv; γq ď CEpu, γ

rζ
q.(55)
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Proof. Using the finiteness of Γ, from Lemma A.4 via translations and a rescaling follows that
there exists c ě 1, and v P H1pΩq satisfying (53) and (54) such that

ż

Γr

|∇vpxq|2dx ď c

ż

Γr

|∇upxq|2dx.

Using that ∇v “ 0 on Γ r
2
and 1`

`

r0
r

˘α
“ rζ we obtain

Epv; γq “

ż

Γr

γpxq|∇vpxq|2ρpxqdx`
ż

ΩzΓr

γpxq|∇upxq|2ρpxqdx

ď

ż

ΓrzΓ r
2

ˆ

1`

ˆ

2r0

r

˙α˙

|∇vpxq|2ρpxqdx`
ż

ΩzΓr

γ
rζ
|∇upxq|2ρpxqdx

ď 2α
ż

ΓrzΓ r
2

rζ |∇vpxq|2ρpxqdx`
ż

ΩzΓr

γ
rζ
|∇upxq|2ρpxqdx

ď 2αc

ż

Γr

rζ |∇upxq|2ρpxqdx`
ż

ΩzΓr

γ
rζ
|∇upxq|2ρpxqdx

ď 2αc

ż

Ω
γ
rζ
|∇upxq|2ρpxqdx

�

4. Regularity of minimizers of the graph properly-weighted Laplacian

4.1. Hölder estimate near labeled points. Our main result in this section is a type of
Hölder estimate near the labeled points, which shows that solutions of the graph-based learning
problem (14) attain their boundary values on Γ continuously, with high probability. The
proof is a graph-based version of the barrier argument from Theorem 2.10 that established
continuity at labels in the continuum PDE, given in Eq. (39). Barrier arguments for proving
Hölder regularity of solutions of PDEs are standard techniques for first order equations, such
as Hamilton-Jacobi equations [4]. Normally, barrier arguments do not work for second order
elliptic equations (since fundamental solutions are unbounded), though there are a handful
of exceptions, such as the p-Laplace equation for p ą d [11], level set equations for affine
curvature motion [12], and our continuum equation (21).

Our proof uses the barrier vpxq “ C|x´y|β , which is a supersolution of the continuum PDE
(21) for 0 ă β ă α` 2´ d, due to Proposition 2.9. For β ă 2, the barrier has a singularity at
x “ y, which has to be treated carefully in the translation to the graph setting. We show in
Lemma 4.6 that v is a supersolution on the graph with high probability away from a small ball
Bpy, Cεq. Due to the singularity in the barrier, we cannot prove the supersolution property
within the ball Bpy, Cεq. To fill in the gap within this ball, we require a local regularity result,
given in Lemma 4.8, that relies on the variational structure of the problem. At a high level,
the proof is similar to the proof of Hölder regularity of solutions to the graph-based game
theoretic p-Laplace equation, given in [11], though many of the ingredients are different. In
particular, in [11] there is no variational interpretation of the problem, and the local argument
utilizes another barrier construction.

We now proceed to present the main results in this section. Throughout we always assume
nεd ě 1. Our main result is the following Hölder-type estimate.

Theorem 4.1 (Hölder estimate). Assume 0 ă ε ď 1, α ą d ´ 2 and ζ ě 1 ` ε´α. Let
u P L2pXnq be the solution of (14) and fix any 0 ă β ă α` 2´ d. For each z P Γ the event
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that

(56) |upxiq ´ upzq| ď C|xi ´ z|
β ` Cn1{2ε1`α{2

holds for all xi P Xn occurs with probability at least 1´ C exp
`

´cnεd`4 ` logpnq
˘

.

The proof of Theorem 4.1, given at the end of the section, relies on some preliminary results
that we establish after a few remarks.

Remark 4.2. For the result in Theorem 4.1 to be useful, we must choose εn Ñ 0 so that
nεd`4

n " logpnq and nεα`2
n ! 1. Therefore, we must have α ą d` 2 and

(57)
ˆ

logpnq

n

˙1{pd`4q

! εn !

ˆ

1

n

˙1{pα`2q

.

Remark 4.3. If we replace γζ with γζ,Cε, as defined in Remark 1.3, then we can improve
Theorem 4.1 to read

(58) |upxiq ´ upzq| ď C|xi ´ z|
β ` Cζ´1{2n1{2ε,

under the same assumptions and with the same probability, except we also require ζ ě 1`Cε´α.
In this model, the restrictive upper bound in (57) is not required.

We now turn to the proof of Theorem 4.1. We first recall a useful lemma from [11].

Lemma 4.4 (Remark 7 from [11]). Let Y1, Y2, Y3, . . . , Yn be a sequence of i.i.d random variables
on Rd with Lebesgue density ρ : Rd Ñ R, let ψ : Rd Ñ R be bounded and Borel measurable with
compact support in a ball Bpx, hq for some h ą 0, and define

Y “
n
ÿ

i“1

ψpYiq.

Then for any 0 ď λ ď 1

(59) P
´

|Y ´ EpY q| ě C}ψ}L8pBpx,hqqnh
dλ
¯

ď 2 expp´cnhdλ2q,

for all 0 ă λ ď 1, where C, c ą 0 are constants depending only on }ρ}L8pBpx,hqq and d.

We can use Lemma 4.4 to prove pointwise consistency for our properly-weighted graph
Laplacian. It extends, in a refined form, the results of [11][Theorem 5]. It is related to well
known results on the pointwise consistency of the graph Laplacian [38].

For simplicity we set

(60) ∆ρϕ “ ρ´1 div
`

γρ2∇ϕ
˘

.

Theorem 4.5. For δ ą 0, let Dn,ε,δ be the event that

(61)
ˇ

ˇGLn,ε,8ϕpxiq ´ 1
2ση∆ρϕpxiq

ˇ

ˇ ď Cppεβ1 ` ε
2β2qM

´pα`2q ` εβ2M
´pα`1q ` δβ3M

´αq

holds for all xi with 2ε ă distpxi,Γq ď R{4 and all ϕ P C3pBpxi, 2εqq, where βk “ }ϕ}CkpBpxi,2εqq
and M “ distpxi,Γq ´ 2ε. Then for ε ď δ ď 1 we have

(62) PpDn,ε,δq ě 1´ C exp
´

´cδ2nεd`2 ` logpnq
¯

Proof. Let us write GL in place of GLn,ε,8 for simplicity. We also define

wpx, yq “
1

2nε2
pγpxq ` γpyqqηεpx´ yq.
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Then
GLupxq “

ÿ

yPXn

wpx, yqpupyq ´ upxqq.

By conditioning on the location of x P Xn, we can assume without loss of generality that
x P Ω is a fixed (non-random) point, Bpx, 2εq Ă Ω and distpx,Γq ą 2ε. Let ϕ P C3pBpx, 2εqq,
p “ Dϕpxq and A “ D2ϕpxq. Note that

GLϕpxq “
d
ÿ

i“1

pi
ÿ

yPXn

wpx, yqpyi ´ xiq `
1

2

d
ÿ

i,j“1

aij
ÿ

yPXn

wpx, yqpyi ´ xiqpyj ´ xjq

`O
`

ε3β3degpxq
˘

,(63)

where degpxq is the degree given by

degpxq “
ÿ

yPXn

wpx, yq.

Since distpy,Γq ě distpx,Γq ´ 2ε we have

wpx, yq ď
C

2nεd`2

ˆ

1

distpx,Γqα
`

1

distpy,Γqα

˙

ď
C

nεd`2pdistpx,Γq ´ 2εqα
.

By Lemma 4.4
ˇ

ˇ

ˇ

ˇ

ˇ

degpxq ´ n
ż

Bpx,2εq
wpx, yqρpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cε´2pdistpx,Γq ´ 2εq´α,

holds with probability at least 1´ 2 exp
`

´cnεd
˘

. This implies

degpxq ď Cε´2pdistpx,Γq ´ 2εq´α.

By another application of Lemma 4.4, both
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPXn

wpx, yqpyi ´ xiq ´ n

ż

Bpx,2εq
wpx, yqpyi ´ xiqρpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ě Cδpdistpx,Γq ´ 2εq´α,

and
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPXn

wpx, yqpyi ´ xiqpyj ´ xjq ´ n

ż

Bpx,2εq
wpx, yqpyi ´ xiqpyj ´ xjqρpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ě Cδεpdistpx,Γq ´ 2εq´α,

occur with probability at most 2 exp
`

´cδ2nεd`2
˘

provided 0 ă δε ď 1. Thus, if ε ď δ ď ε´1

we have

GLϕpxq “ 1

2

ż

Bp0,2q
pγpxq ` γpx` zεqqρpx` zεqηp|z|q

ˆ

1

ε
p ¨ z `

1

2
z ¨Az

˙

dz(64)

`O
`

δβ3pdistpx,Γq ´ 2εq´α
˘
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holds for all ϕ P C3pRdq with probability at least 1´ C exp
`

´cδ2nεd`2
˘

. Note that

1

2
pγpxq ` γpx` zεqqρpx` zεq “ γpxqρpxq ` γpxq∇ρpxq ¨ zε` 1

2
ρpxq∇γpxq ¨ zε

`Opε2}γ}C2pBpx,2εqq ` ε
3}γ}C1pBpx,2εqqq.

We now have
ż

Bp0,2q
γpxqρpxqηp|z|q

ˆ

1

ε
p ¨ z `

1

2
z ¨Az

˙

dz “
1

2
γpxqρpxq

d
ÿ

i,j“1

aij

ż

Bp0,2q
ηp|z|qzizj dz

“
1

2
γpxqρpxq

d
ÿ

i“1

aii

ż

Bp0,2q
ηp|z|qz2

i dz

“
ση
2
γpxqρpxqTracepAq,

ż

Bp0,2q
γpxqp∇ρpxq ¨ zεqηp|z|q

ˆ

1

ε
p ¨ z `

1

2
z ¨Az

˙

dz

“ γpxq∇ρpxq ¨
ż

Bp0,2q
ηp|z|qpp ¨ zqz dz `Opεβ2 distpx,Γq´αq

“ γpxq∇ρpxq ¨
d
ÿ

i“1

pi

ż

Bp0,2q
ηp|z|qziz dz `Opεβ2 distpx,Γq´αq

“ σηγpxq∇ρpxq ¨ p`Opεβ2 distpx,Γq´αq,

and
1

2

ż

Bp0,2q
ρpxqp∇γpxq ¨ zεqηp|z|q

ˆ

1

ε
p ¨ z `

1

2
z ¨Az

˙

dz

“
ση
2
ρpxq∇γpxq ¨ p`Opεβ2}γ}C1pBpx,2εqqq.

Assembling these together with (64) we have that

GLϕpxq “ ση
2ρpxq

div
`

γρ2∇ϕ
˘

`O
´

εβ1}γ}C2pBpx,2εqq ` εβ2}γ}C1pBpx,2εqq

` ε2β2}γ}C2pBpx,2εqq ` δβ3pdistpx,Γq ´ 2εq´α
¯

holds for all ϕ P C3pBpx, 2εqq with probability at least 1´ C exp
`

´cδ2nεd`2
˘

. The proof is
completed by computing

}γ}CkpBpx,2εqq ď Cpdistpx,Γq ´ 2εq´α´k,

and applying a union bound over x1, . . . , xn. �

We now establish that the function |x|β for 0 ă β ă α` 2´ d serves as a barrier (e.g., is a
supersolution) on the graph with high probability.

Lemma 4.6 (Barrier lemma). Let α ą d´ 2 and fix any 0 ă β ă α` 2´ d. For y P Γ define
ϕpxq “ |x´ y|β. Then the event that

(65) GLn,ε,8ϕpxiq ď ´c|xi ´ y|´pα`2´βq

for all xi with Cε ă |xi ´ y| ď c occurs with probability at least 1´ C exp
`

´cnεd`4 ` logpnq
˘

.
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Proof. Let us write GL in place of GLn,ε,8 for simplicity. We use Theorem 4.5 and Proposition
2.9. Note in Theorem 4.5 that if we restrict 3 ď ε|xi ´ y| ď R{4 then

M “ distpxi,Γq ´ 2ε “ |xi ´ y| ´ 2ε ě
1

3
|xi ´ y|.

Also, for βk “ }ϕ}CkpBpxi,2εqq we compute

βk ď Cβ|xi ´ y|
β´k.

Hence, setting δ “ ε in Theorem 4.5 we obtain that

(66)
ˇ

ˇGLϕpxiq ´ 1
2ση∆ρϕpxiq

ˇ

ˇ ď Cε|xi ´ y|
β´α´3p1` ε|xi ´ y|

´1q

holds for all xi with 3ε ď |xi ´ y| ď r with probability at least

1´ C exp
´

´cnεd`4 ` logpnq
¯

.

For the rest of the proof we restrict to the event that (66) holds.
Note that since β ´ α´ 3 ă 0 and |xi ´ y| ě 3ε, it follows from (66) that

(67) GLϕpxiq ď 1
2ση∆ρϕpxiq ` Cε|xi ´ y|

β´α´3.

Combining this with Proposition 2.9 we have

GLϕpxiq ď ´c|xi ´ y|β´α´2 ` Cε|xi ´ y|
β´α´3 “ ´c|xi ´ y|

β´α´2p1´ Cε|xi ´ y|
´1q,

provided 3ε ď |xi ´ y| ď c. The proof is completed by restricting |xi ´ y| ě 2Cε. �

The barrier lemma (Lemma 4.6) establishes the barrier property away from the local
neighborhood Bpx,Cεq. The singularity in the barrier (for α ă d) and the singularity in γ
prevent us from pushing the barrier lemma inside this local neighborhood. Hence, the barrier
can only be used to establish the following macroscopic continuity result.

Proposition 4.7 (Macroscopic Hölder estimate). Let u P L2pXnq be the solution of (14), let
α ą d´ 2, and fix any 0 ă β ă α` 2´ d. For each y P Γ the event that

(68) upxiq ´ upyq ď C|xi ´ y|
β ` sup

xPXnXBpy,δε,ζq
pupxq ´ upyqq

holds for all xi P Xn occurs with probability at least 1 ´ C exp
`

´cnεd`4 ` logpnq
˘

, where
δε,ζ “ maxtCε, rζ ` 2εu.

Proof. We note the graph is connected with probability at least 1´ C expp´cnεd ` logpnqq.
The proof uses the barrier function

(69) ϕpxq “ sup
Bpy,δε,ζq

u`K|x´ y|β

constructed in Lemma 4.6 for a sufficiently large K, and the maximum principle on a connected
graph. By Lemma 4.6 we have

(70) GLn,ε,ζϕpxiq ď ´cK|xi ´ y|´pα`2´βq

for all xi with δε,ζ ď |xi ´ y| ď c. By the maximum principle we have

min
Γ
g ď u ď max

Γ
g.

Therefore, we can choose K large enough so that ϕpxiq ą upxiq for |xi ´ y| ě c. We trivially
have upxiq ă ϕpxiq for |xi ´ y| ď δε,ζ . Since GLn,ε,ζpu ´ ϕq ď 0 for δε,ζ ď |xi ´ y| ď c, the
maximum principle on a graph yields u ď ϕ on Xn, which completes the proof. �
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We now establish a local regularity result that allows us to fill in the gap within the ball
Bpx,Cεq. The local result depends only on the variational structure of the problem, and does
not use a barrier argument.

Proposition 4.8 (Local Hölder estimate). Let u P L2pXnq. For each z P Γ the event that

(71) |upxq ´ upyq|2 ď
Cnε2

mintγζpxq, γζpyqu
GEn,ε,ζpuq,

holds for all x, y P Xn X Bpz, rq with |x ´ y| ď ε occurs with probability at least 1 ´
C exp

`

´cnεd ` logpnq
˘

.

Proof. Let z P Γ, and fix r ą 0. Partition the cube K :“
śd
i“1rzi ´ r, zi ` rs into hypercubes

K1, . . . ,Km of side length h ą 0, where m “ p2r{hqd. Let Zi denote the number of random
variables falling in cube Ki. By Lemma 4.4 we have

(72) PpZi ď ErZis ´ Cnhdλq ď exp
´

´cnhdλ2
¯

for any 0 ă λ ď 1. Since ErZis “ nhd we have

(73) P
ˆ

min
1ďiďm

Zi ď
1
2nh

d

˙

ď m exp
´

´cnhd
¯

.

Let x, y P Xn XBpz, rq such that |x´ y| ď ε, and let x “ px` yq{2 P Bpz, rq. Let Ki denote
the cube to which x belongs. Then for all w P Ki we have |x ´ w| ď

?
dh. Therefore, if?

dh ď ε{2 then
|x´ w| ď |x´ x| ` |x´ w| ď

ε

2
`
?
dh ď ε,

and |y ´ w| ď ε for all w P Ki. It follows that

Ki Ă Bpx, εq XBpy, εq.

For the remainder of the proof, we set h “ ε{p2
?
dq and restrict ourselves to the event that

(74) min
1ďiďm

Zi ě cnεd

Let
K “ Xn XBpx, εq XBpy, εq.

Note that for any z P K we have

mint|upxq ´ upzq|, |upyq ´ upzq|u ě
1

2
|upxq ´ upyq|.

Now we have

GEn,ε,ζpuq “
1

2n2ε2

ÿ

x,yPXn

pγζpxq ` γζpyqqηεpx´ yq|upxq ´ upyq|
2

ě
1

2n2ε2

«

ÿ

zPXn

γζpxqηεpx´ zq|upxq ´ upzq|
2 ` γζpyqηεpy ´ zq|upyq ´ upzq|

2

ff

ě
cmintγζpxq, γζpyqu|K|

n2εd`2
|upxq ´ upyq|2.

Since Ki X Xn Ă K, we have |K| ě cnεd, and hence

(75) |upxq ´ upyq|2 ď
Cnε2

mintγζpxq, γζpyqu
GEn,ε,ζpuq,
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which completes the proof. �

We are now equipped to give the proof of Theorem 4.1.

Proof of Theorem 4.1. The proof combines the macroscopic Hölder estimate (Proposition 4.7),
and the local Hölder estimate (Proposition 4.8), and is split into two steps.

1. We note that

(76) rζ “
r0

pζ ´ 1q1{α
ď Cε,

as ζ ě 1` ε´α. By (76) and Theorem 4.7, the event that

(77) |upxq ´ upzq| ď C|x´ z|β ` sup
xPXnXBpz,Cεq

|upxq ´ upyq|,

holds for all x P Xn occurs with probability at least 1´ C expp´cnεd`4 ` logpnqq.
2. We note that with probability at least 1´C exp

`

´cnεd ` logpnq
˘

we have GEnε,ζpuq ď C
for a constant C. Therefore, by Proposition 4.8 we have that

(78) |upxq ´ upyq|2 ď
Cnε2

minBpz,Cεq γζ

holds for all x, y P XnXBpz, Cεq with |x´y| ď ε with probability at least 1´C exp
`

´cnεd ` logpnq
˘

.
As in the proof of Proposition 4.8, we partition the cube K :“

śd
i“1rzi ´ Cε, zi ` Cεs into

hypercubes of side length h ă ε, and find that all cubes have at least one point from Xn with
probability at least 1´C expp´cnεd` logpnqq. Thus, by traversing neighboring cubes, we can
construct a path from z P Γ to any x P Bpz, Cεq consisting of at most a constant number of
points from Xn XBpz, Cεq, with each step in the path smaller than ε. Applying (78) along
the path yields

|upxq ´ upzq|2 ď
Cnε2

mintpCεq´α, ζu

for all x P Xn XBpz, Cεq with probability at least 1´ C exp
`

´cnεd ` logpnq
˘

. Since ζ ě ε´α

we deduce

sup
xPXnXBpz,Cεq

|upxq ´ upzq|2 ď Cnε2`α,

which completes the proof. �

5. Numerical experiments

We present the results of several numerical experiments illustrating the properly-weighted
Laplacian and comparing it with the nonlocal [36] and standard graph Laplacian on real and
synthetic data. All experiments were performed in Matlab and use Matlab backslash to solve
the graph Laplacian system. We mention there are indirect solvers that may be faster in certain
applications, such as preconditioned conjugate gradient [25], algebraic multigrid [8, 25,34], or
more recent fast Laplacian solvers [29, 40]. Thus, the CPU times reported below have the
potential to be improved substantially.
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(a) α “ 0 (b) α “ 0.5, ζ “ 50nε2 (c) α “ 1, ζ “ 50nε2

(d) α “ 2, ζ “ 50nε2 (e) α “ 5, ζ “ 103nε2 (f) α “ 10, ζ “ 105nε2

Figure 2. Comparison of (A) the standard graph Laplacian, and (B)–(F)
our weighted graph Laplacian with various values of α and ζ. The graph is a
random geometric graph (described in the text) on r0, 1s2, and the labels are
gp0, 0.5q “ 0 and gp1, 0.5q “ 1.

(a) Graph Laplacian (b) Weighted Lap. [36] (c) PW Laplacian (α “ 2)

Figure 3. Comparison of (a) the standard graph Laplacian, (b) the nonlocal
graph Laplacian [36], and (c) our properly-weighted Laplacian. The graph is
a random geometric graph (described in the text) on r0, 1s3, and the surfaces
plotted are a slice of the learned function u near x3 “ 0.5. The labels are
gp0, 0.5, 0.5q “ 0 and gp1, 0.5, 0.5q “ 1.

5.0.1. Comparison of the profiles obtained. First, we perform an experiment with two labels
on the box r0, 1sd to illustrate our method and the differences with the nonlocal graph
Laplacian [36]. The graph is a sequence of n i.i.d. random variables uniformly distributed on the
unit box r0, 1sd in Rd, and two labels are given gp0, 0.5, . . . , 0.5q “ 0 and gp1, 0.5, . . . , 0.5q “ 1.
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(a) Graph Laplacian (b) Weighted Lap. [36] (c) PW Laplacian (α “ 5)

Figure 4. Comparison of decision boundaries plotted over 25 random trials
for a synthetic classification problem for (A) the standard graph Laplacian,
(B) the nonlocal graph Laplacian [36], and (C) our properly-weighted graph
Laplacian. Two labels are given, gp0, 0q “ 0 (red point) and gp1, 1q “ 1 (blue
point), and the graph is a uniform random geometric graph (described in the
text).

We set ε “ 2{n1{d and r0 “ 1. The weights follow a Gaussian distribution with σ “ ε{2. In
Figure 2 we show plots of the triangulated surface representing the learned function u on
the graph for various values of α and ζ. Here, n “ 105 and d “ 2, and each simulation took
approximately 1.5 seconds of CPU time. We notice that as α is increased, the learned functions
are smoother in a vicinity of each label. The case of α “ 0 corresponds to the standard
graph Laplacian, and returns an approximately constant label u “ 0.5, which illustrates the
degeneracy of the standard Laplacian with few labels. We note that as α is increased, we must
increase ζ as well (recall (11)), otherwise the ball Bpx, rζq on which γ is truncated to value ζ
becomes very large, and the method reduces to the standard graph Laplacian. This simply
illustrates that the implicit rate in the condition ζ " nε2 in Theorem 3.1 depends on α.

In Figure 3, we use the same model, but with n “ 2ˆ 105 points in dimension d “ 3, and
set ζ “ 50nε2. For visualization, we show the learned function restricted to a neighborhood of
the slice x3 “ 0.5. Figure 3b illustrates the degeneracy of the nonlocal graph Laplacian [36],
which returns a nearly constant label function. In contrast, our method, show in in Figure 3c,
smoothly interpolates between the two labels. Each simulation in Figure 3 took approximately
25 seconds to compute.

5.0.2. Comparison of decision boundaries in 2D. We now give a synthetic classification example.
The graph consists of n “ 105 i.i.d uniform random variables on r0, 1s2, and the weights are
chosen to be Gaussian with σ “ ε{2. We chose α “ 5, ζ “ 106nε2, r0 “ 1, and ε “ 3{

?
n.

Two labels, gp0, 0q “ 0 and gp1, 1q “ 1 are provided. Figure 4 shows the decision boundaries
(i.e., the level-set tu “ 0.5u) over 25 trials for the standard graph Laplacian, the nonlocal
Laplacian, and our method. Each trial took roughly 1.5 seconds to compute. We see that the
nonlocal and standard Laplacian are highly sensitive to small variations in the graph, giving a
wide variety of results over the 25 trials. This is a reflection of the degeneracy, or ill-posedness,
in the small label regime, and suggests the methods are very sensitive to perturbations in the
data. In contrast, our method very consistently divides the square along the diagonal.

5.0.3. Comparison of classes obtained in 3D. We consider samples of the measure supported
on domain is r0, 1s3 and with density 1 except for the strip r0.45, 0.55sˆr0, 1sˆr0, 1s where the
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(a) Graph Laplacian (b) Weighted Lap. [36] (c) Our method (α “ 5)

Figure 5. Comparison of results for a synthetic classification problem for (A)
the standard graph Laplacian, (B) the nonlocal graph Laplacian [36], and (C)
our weighted graph Laplacian. The domain is r0, 1s3 and the density is 1 except
for the strip r0.45, 0.55sˆ r0, 1sˆ r0, 1s where it is 0.6. The given labeled points
are gp0, 0.2, 0.2q “ 0 and gp1, 0.2, 0.2q “ 1. There are n “ 50, 000 points in the
domain. Connectivity distance for the graph construction is 3{n

1
3 and for our

method α “ 5.

density is 0.6. We considered 20 runs with n “ 50, 000 points in the domain. The given labeled
points are gp0, 0.2, 0.2q “ 0 and gp1, 0.2, 0.2q “ 1. Due to the symmetry, the correct decision
boundary is the plane x1 “ 0.5. We used a connectivity distance for the graph construction of
ε “ 3{n

1
3 , which yielded a typical vertex degree of about 116. We consider Gaussian weights

with σ “ ε{2. We chose α “ 5, ζ “ 106nε2, r0 “ 1 for our method. A typical result for one
run is illustrated on Figure 5. The standard graph Laplacian produced very unstable results
with the average of 49.8% misclassified points. The nonlocal Laplacian of [36] was also rather
unstable with sometimes almost perfect decision boundary and sometimes large sections of
misclassified points. On average it misclassified 11% of points. Our method was stable and in
all experiments identified the correct boundary, with average classification error of 0.25%. We
observed similar outcomes for a variety of sets of parameters.

5.0.4. Comparison on the MNIST dataset. Our last experiment considers classification of
handwritten digits from the MNIST dataset, which consists of 70,000 grayscale 28x28 pixel
images of handwritten digits 0–9 [30]. Figure 6 shows examples of some of the images in
the MNIST dataset. MNIST is estimated to have intrinsic dimension between d “ 12 and
d “ 14 [14, 28], which suggests a larger value for α is appropriate. We used all 70, 000 MNIST
images to construct the graph. Our construction is the same as in [36]; we connect each data
point to its nearest 50 neighbors (in Euclidean distance), and assign Gaussian weights taking
σ to be the distance to the 20th nearest neighbor. We symmetrize the graph by replacing the
weight matrix W with 1

2pW
T `W q, which is done automatically by the variational formulation

(recall (18)). We then take L randomly chosen images from each class (digit) as labels, where
L “ 1, 3, 5, 7, 10, and provide the true labels for these digits. The semi-supervised learning
algorithm performs 10 binary classifications, for each digit versus the rest, which generates
functions u0, u1, u2, . . . , u9 on the graph. The label for each image x in the dataset is chosen as
the index i for which uipxq is maximal. The algorithm is standard in semi-supervised learning,
and identical to the one used in [36].
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Figure 6. Example of some of the handwritten digits from the MNIST
dataset [30].

# Labels 10 30 50 70 100
Method Mean Std Mean Std Mean Std Mean Std Mean Std

Graph Laplacian 14.2% 6.3 24.3% 11.9 53% 10.9 68% 6.4 76.1% 7.6
Weighted Lap. [36] 67.9% 8.7 84.8% 2.7 88.8% 1.1 89.6% 1.3 90.9% 1.1
PW-Laplacian 68% 8.6 84.9% 2.7 88.8% 1.1 89.6% 1.3 90.9% 1.1

Table 1. Accuracy for classification of MNIST handwritten digits with
10, 30, 50, 70 and 100 labels via the standard graph Laplacian, the nonlocal
weighted Laplacian [36], and our properly-weighted Laplacian. The results are
averaged over 10 trials, and the mean and standard deviation of accuracy are
reported.

For each value of L P t1, 3, 5, 7, 10u, we ran the experiment described above 10 times,
choosing the labels randomly (in the same way for each algorithm) every time. Each of the
500 trials took approximately 15 minutes to compute in Matlab. The mean and standard
deviation of accuracy are shown in Table 1. Our method performs very similarly to the
nonlocal Laplacian [36], and both significantly outperform the standard graph Laplacian. We
ran our method for α “ 2, 5, 10, producing nearly identical results in all cases. We used
ζ “ 107 and r0 “ 0.1. We found the results for our method were largely insensitive to many
of the parameters in our algorithm; the accuracy begins to decrease when α ă 1 and when
r0 ą 1. We note that the accuracy scores reported in Table 1 are much higher than those
reported in [36]; we believe this is because the authors in [36] subsampled MNIST to 16,000
images. This observation speaks favorably to the semi-supervised paradigm that learning can
be improved by access to additional unlabeled data. We note that the accuracy scores for our
method and the nonlocal weighted Laplacian [36] are identical (to one significant digit) for
30, 50, 70, and 100 labels. Most data points in MNIST are relatively far from their nearest
neighbors, and so our nonlocal weights have less effect, compared to the low dimensional
examples presented above. For this reason, the weight matrix for our method is very similar
to the nonlocal Laplacian [36]. We expect to see more of a difference in applications to larger
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datasets. For example, it would be interesting (and challenging) to apply these techniques to
a dataset like ImageNet [16], which consists of over 14 million natural images belonging to
over 20,000 categories.

Appendix A. Background Material

Here we recall some of the notions our work depends on and establish an auxiliary technical
result.

A.1. Γ–Convergence. Γ-convergence was introduced by De Giorgi in 1970’s to study limits
of variational problems. We refer to [7, 15] for comprehensive introduction to Γ-convergence.
We now recall the notion of Γ-convergence is in a random setting.

Definition A.1 (Γ-convergence). Let pZ, dq be a metric space, L0pZ;RY t˘8uq be the set
of measurable functions from Z to RYt˘8u, and pX ,Pq be a probability space. The function
X Q ω ÞÑ Epωqn P L0pZ;RY t˘8uq is a random variable. We say Epωqn Γ-converge almost surely
on the domain Z to E8 : Z Ñ RY t˘8u with respect to d, and write E8 “ Γ- limnÑ8 Epωqn , if
there exists a set X 1 Ă X with PpX 1q “ 1, such that for all ω P X 1 and all f P Z:

(i) (liminf inequality) for every sequence tunun“1,... in Z converging to f

E8pfq ď lim inf
nÑ8

Epωqn punq, and

(ii) (recovery sequence) there exists a sequence tunun“1,2,... in Z converging to f such that

E8pfq ě lim sup
nÑ8

Epωqn punq.

For simplicity we suppress the dependence of ω in writing our functionals. The almost sure
nature of the convergence in our claims in ensured by considering the set of realizations of
txiui“1,... such that the conclusions of Theorem A.3 hold (which they do almost surely).

An important result concerning Γ-convergence is that, together with accompanying compact-
ness property it implies the convergence of minimizers. The proof can be found in [7, Theorem
1.21] or [15, Theorem 7.23].

Theorem A.2 (Convergence of Minimizers). Let pZ, dq be a metric space and En : Z Ñ r0,8s
be a sequence of functionals. Let un be a minimizing sequence for En. If the set tunun“1,2,... is
precompact and E8 “ Γ- limn En where E8 : Z Ñ r0,8s is not identically 8 then

min
Z

E8 “ lim
nÑ8

inf
Z

En.

Furthermore any cluster point of tunun“1,2,... is a minimizer of E8.

The theorem is also true if we replace minimizers with approximate minimizers.

We note that Γ-convergence is defined for functionals on a common metric space. Section A.3
overviews the metric space we use to analyze the asymptotics of our semi-supervised learning
models, in particular it allows us to go from discrete to continuum.

A.2. Optimal Transportation and Approximation of Measures. Here we recall the
notion of optimal transportation between measures and the metric it introduces. Comprehensive
treatment of the topic can be found in books of Villani [43] and Santambrogio [35].

Given Ω Ă Rd is open and bounded, and probability measures µ and ν in PpΩq we define the
set Πpµ, νq of transportation plans, or couplings, between µ and ν to be the set of probability
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measures on the product space π P PpΩˆΩq whose first marginal is µ and second marginal is
ν. We then define the p-optimal transportation distance (a.k.a. p-Wasserstein distance) by

dppµ, νq “

$

’

’

&

’

’

%

inf
πPΠpµ,νq

ˆ
ż

ΩˆΩ
|x´ y|p dπpx, yq

˙
1
p

if 1 ď p ă 8

inf
πPΠpµ,νq

π- esssuppx,yq |x´ y| if p “ 8.

If µ has a density with respect to Lebesgue measure on Ω, then the distance can be rewritten
using transportation maps, T : Ω Ñ Ω, instead of transportation plans,

dppµ, νq “

$

’

’

&

’

’

%

inf
T#µ“ν

ˆ
ż

Ω
|x´ T pxq|p dµpxq

˙
1
p

if 1 ď p ă 8

inf
T#µ“ν

µ- esssupx |x´ T pxq| if p “ 8.

where T#µ “ ν means that the push forward of the measure µ by T is the measure ν, namely
that T is Borel measurable and such that for all U Ă Ω, open, µpT´1pUqq “ νpUq.

When p ă 8 the metric dp metrizes the weak˚ convergence of measures.
Optimal transportation plays an important role in comparing the discrete and continuum

objects we study. In particular, we use sharp estimates on the 8-optimal transportation
distance between a measure and the empirical measure of its sample. In the form below, for
d ě 2, they were established in [20], which extended the related results in [1, 31, 37,41].

Theorem A.3. For d ě 2, let Ω Ă Rd be open, connected and bounded with Lipschitz boundary.
Let µ be a probability measure on Ω with density (with respect to Lebesgue) ρ which is bounded
above and below by positive constants. Let x1, x2, . . . be a sequence of independent random
variables with distribution µ and let µn be the empirical measure. Then, there exists constants
C ě c ą 0 such that almost surely there exists a sequence of transportation maps tTnu8n“1 from
µ to µn with the property

c ď lim inf
nÑ8

}Tn ´ Id}L8pΩq

`n
ď lim sup

nÑ8

}Tn ´ Id}L8pΩq

`n
ď C

where

(79) `n “

$

’

&

’

%

plnnq
3
4

?
n

if d “ 2

plnnq
1
d

n
1
d

if d ě 3.

A.3. The TLp Space. The discrete functionals we consider (e.g. En,εn,ζn) are defined for
functions un : Xn Ñ R, while the limit functional E acts on functions f : Ω Ñ R, where Ω
is an open set. We can view un as elements of Lppµnq where µn is the empirical measure of
the sample µn “ 1

n

řn
i“1 δxi . Likewise f P L

ppµq where µ is the measure with density ρ from
which the data points are sampled. In order to compare f and un in a way that is consistent
with the Lp topology we use the TLp space that was introduced in [21], where it was used to
study the continuum limit of the graph total variation. Subsequent development of the TLp
space has been carried out in [22,42].

To compare the functions un and f above we need to take into account their domains, or
more precisely to account for µ and µn. For that purpose the space of configurations is defined
to be

TLppΩq “
 

pµ, fq : µ P PpΩq, f P Lppµq
(

.
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The metric on the space is

dpTLpppµ, fq, pν, gqq “ inf

"
ż

ΩˆΩ
|x´ y|p ` |fpxq ´ gpyq|p dπpx, yq : π P Πpµ, νq

*

where Πpµ, νq the set of transportation plans defined in Section A.2. We note that the
minimizing π exists and that TLp space is a metric space, [21].

As shown in [21], when µ has a density with respect to Lebesgue measure on Ω, then the
distance can be rewritten using transportation maps T , instead of transportation plans,

dpTLpppµ, fq, pν, gqq “ inf

"
ż

Ω
|x´ T pxq|p ` |fpxq ´ gpT pxqq|p dµpxq : T#µ “ ν

*

where the push forward of the measure T#µ is defined in Section A.2. This formula provides
an interpretation of the distance in our setting. Namely, to compare functions un : Xn Ñ R
we define a mapping Tn : Ω Ñ Xn and compare the functions rfn “ un ˝ Tn and f in Lppµq,
while also accounting for the transport, namely the |x´ Tnpxq|p term.

We remark that the TLppΩq space is not complete, and that its completion was discussed
in [21]. In the setting of this paper, since the corresponding measure is clear from context, we
often say that un converges in TLp to f as a short way to say that pµn, unq converges in TLp
to pµ, fq.

A.4. Local estimates for weighted Laplacian.

Lemma A.4. There exists C ą 0 such that for each ru P H1pBp0, 1qq there exists rv P
H1pBp0, 1qq such that

rv|Bp0, 1
2
q ”

1

|Bp0, 1
2q|

ż

Bp0, 1
2
q

rupxqdx

rv|BBp0,1q “ ru|BBp0,1q

}∇rv}L2pBp0,1qq ď C}∇ru}L2pBp0,1qq

where the value on the boundary is considered in sense of the L2pBBp0, 1qq trace.

Proof. In the proof we use u and v instead of ru and rv. We first consider such modification
of u when u is smooth. The conclusion for general u follows by density. Let J be a mollifier
supported in Bp0, 1q. For x P Bp0, 1q let

vpxq “

$

&

%

u ˚ J 1
4
p0q if |x| ď 1

2

u ˚ J 1´|x|
2

´

2x´ x
|x|

¯

if 1
2 ă |x| ă 1.

Note that v is a continuous function and that for 1
2 ă |x| ă 1

vpxq “

ˆ

2

1´ |x|

˙d ż

Bp0,1q
J

˜

2p2x´ x
|x| ´ zq

1´ |x|

¸

upzqdz

“

ż

Bp0,1q
Jpyqu

ˆ

1´ |x|

2
y ´ 2x`

x

|x|

˙

dy.

Consequently

∇vpxq “ ´
ż

Bp0,1q
Jpyq

ˆ

x

2|x|
b y ` 2I ´

1

|x|
I `

xb x

|x|3

˙

∇u
ˆ

1´ |x|

2
y ´ 2x`

x

|x|

˙

dy
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and thus

|∇vpxq| ď 3

ż

Bp0,1q
Jpyq

ˇ

ˇ

ˇ

ˇ

∇u
ˆ

1´ |x|

2
y ´ 2x`

x

|x|

˙
ˇ

ˇ

ˇ

ˇ

dy.

By integrating and using Jensen’s inequality we obtain that
ż

Bp0,1q
|∇vpxq|2dx ď 9

ż

Bp0,1qzBp0, 1
2
q

ż

Bp0,1q
Jpyq

ˇ

ˇ

ˇ

ˇ

∇u
ˆ

1´ |x|

2
y ´ 2x`

x

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

dydx

We split the integral into two subregions:
ż

Bp0, 3
4
qzBp0, 1

2
q

ż

Bp0,1q
Jpyq

ˇ

ˇ

ˇ

ˇ

∇u
ˆ

1´ |x|

2
y ´ 2x`

x

|x|

˙ˇ

ˇ

ˇ

ˇ

2

dydx ď c1}∇u}2L2pBp0,1qq

by substituting spyq “ 1´|x|
2 y´2x` x

|x| and using that the Jacobian
ˇ

ˇ

ˇ
det

´

Bs
By

¯ˇ

ˇ

ˇ
“

´

1´|x|
2

¯d
ě 1

8d
.

On the other region we interchange the integrals and use the substitution spxq “ 1´|x|
2 y ´

2x` x
|x| :

ż

Bp0,1q
Jpyq

ż

Bp0,1qzBp0, 3
4
q

ˇ

ˇ

ˇ

ˇ

∇u
ˆ

1´ |x|

2
y ´ 2x`

x

|x|

˙ˇ

ˇ

ˇ

ˇ

2

dxdy

ď

ż

Bp0,1q
Jpyq

ż

Bp0,1q
|∇upsq|2

ˇ

ˇ

ˇ

ˇ

det

ˆ

Bx

Bs

˙ˇ

ˇ

ˇ

ˇ

dsdy ď c2}∇u}2L2pBp0,1qq

where we estimates the Jacobian as follows. Let M :“ ´ Bs
Bx “

ybx
2|x| ` 2

´

I ´ 1
|x|

¯

` xbx
|x|3

. Thus

MMT “

ˆ

2´
1

|x|

˙2

` 2p

ˆ

I ´
xb x

|x|3

˙

`

ˆ

x

|x|2
`
y

2

˙

b

ˆ

x

|x|2
`
y

2

˙

ě

ˆ

2´
1

|x|

˙2

I ě
1

4
I.

Hence
ˇ

ˇdet
`

Bx
Bs

˘ˇ

ˇ ď 1?
detpMMT q

ď 2d.

Combining the estimates gives
ş

Bp0,1q |∇vpxq|
2dx ď C

ş

Bp0,1q |∇upxq|
2dx. �
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