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Abstract

The convergence of schemes for propagation of fronts in a bounded domain moving with
normal velocities is studied. The velocities considered depend on the principal curvatures, the
normal direction, the location, as well as some nonlocal properties of the front. Most of the
schemes considered are in essence threshold dynamics type approximation schemes, modi1ed for
Neumann boundary conditions and nonlocal terms. The existence and uniqueness of appropriately
de1ned viscosity solutions of the level-set equations describing the nonlocal motions is also
shown.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the present paper we study the motion of fronts by normal velocities in bounded
domains. At the boundary of the domain fronts are orthogonal to it. The velocities
considered can depend on nonlocal terms, in addition to the curvature, the normal
direction and the location of the front. For example, they can depend on the size of
the set that the front encloses.

The general form of velocities that we study is:

v = v(x; t; n; Dn; �t);
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where n is the unit outward normal vector to the front, Dn is the derivative of (an
arbitrary, unit length, smooth extension of) n, and the front at time t is the boundary
of the set �t . We also require that v is nonincreasing in Dn and nondecreasing in �t

(with respect to set inclusion).
The main focus of the paper is on threshold dynamics type approximations schemes

for the given velocities. To that end, we modify and generalize the threshold dynamics
schemes studied by Ishii et al. [17]. We refer to that paper for a more thorough
introduction on threshold dynamics type schemes.

Motion of fronts (interfaces, hypersurfaces) by a normal velocity depending on the
(local) geometry of the fronts has been extensively studied in the past decade. One of
the main mathematical diEculties is that fronts can develop singularities. Fortunately,
for a large class of velocities, there is a weak formulation, based on the level set ap-
proach, that provides de1nition of fronts past the singularities. The level set approach
was introduced by Osher and Sethian [19] for numerical computations. Viscosity so-
lutions of equations of the level-set approach were used by Evans and Spruck [11]
(for motion by mean curvature), and Chen et al. [5] (for a large class of motions) to
rigorously de1ne generalized (weak) front propagation.

Fronts propagating in generalized sense have been shown to govern asymptotic be-
havior of solutions to a number of reaction-diHusion equations. The 1rst result in this
direction was obtained for the Allen–Cahn equation by Evans et al. (see [10]), and a
large number of results followed; see for example [21] and [3] (where a more geo-
metric, but equivalent de1nition of generalized front propagation was given) and the
references therein for more details.

In a diHerent development, Chen et al. [6] have studied the limiting behaviour of an
Allen–Cahn equation with a nonlocal term. The equation was obtained as a limit of a
system of reaction-diHusion equations often referred to as the Belousov–Zhabotinskii
model. It was shown that the interfaces (as long as they are smooth hypersurfaces) that
appear in the solutions to the Allen–Cahn equation move (in the limit) by a normal
velocity that in addition the curvature of the front, depends on the size on the set
bounded by the front (‘interior of the front’). Recently, Kim showed that the result of
[6] holds even if the fronts develops singularities. She used viscosity solutions (whose
de1nition was extended to handle equations with nonlocal terms) to de1ne generalized
propagation of fronts by velocities depending nonlocally on the front.

In this paper we continue studying front propagation with nonlocal velocities. We use
slightly diHerent level-set equations than ones in [18]. The ones studied here are truly
geometric, meaning that every level set moves with the given normal velocity. The
appropriate de1nition of viscosity solutions is given and existence and uniqueness of
viscosity solutions are proven in the second section. The de1nition of front propagation
with nonlocal terms given in Section 3 is equivalent to the one given in [18]. This can
be shown using the arguments given in [3] and [18] to prove the appropriate analogue
of Theorem 2.2 in [18].

Beginning with Section 4 we turn our attention to approximation schemes. In [17],
Ishii et al., studied threshold dynamics type approximation schemes for front prop-
agation of fronts in RN . They adapted threshold dynamics models used in cellular
automata modeling growth processes and excitable media introduced by Gravner and
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GriHeath [14] and generalized and extended the scheme introduced by Bence et al. [4]
for motion by mean curvature.

In the present paper we employ the same strategy as Ishii, Pires and Souganidis, to
prove the convergence of the schemes for both local and nonlocal motions in bounded
domain U . Most of the schemes we study are threshold dynamics type, although the
convergence of a particular (nonthreshold) adaptation of the scheme introduced by
Bence et al., in [4], is also proven.

The strategy is the following: at any time fronts moving within the set OU are given as
boundaries of subsets of OU . The algorithms considered are given as mappings Mh :B →
B where B is the set of measurable subsets of OU . For a front given as the boundary
of A ⊂ RN the approximate position after time h is the boundary of MhA. To each
of these schemes for front propagation we associate an approximation scheme, Sh, for
the level set equation of the given motion as follows: for ’ a bounded function on OU
we de1ne

Sh’(x) :=sup{�∈R: x∈Mh{y∈ OU : ’(y)¿ �}}:
Using general results on convergence of monotone approximation schemes for viscosity
solutions of parabolic equations we establish the convergence of the scheme Sh which
implies convergence of scheme Mh.

The general criteria for convergence of monotone approximation schemes for nonlo-
cal parabolic equations are given in Section 4. The basic idea for the proof comes from
[2], although the presence of nonlocal terms forces us to introduce auxiliary schemes
that are used in formulating the conditions and in the proofs.

In Section 5 we extend the threshold schemes of [17] to handle the boundary con-
ditions, and also to handle a slightly larger class of motions. The convergence results
are analogous to those of [17]. We also prove the convergence of an adaptation to
Neumann boundary conditions of the scheme for mean curvature motion given in [4].

In Section 6 we construct threshold type schemes (in which there is an additional
scaling of the test measures depending on the set that is being updated) for nonlocal
motions which do not depend on the curvature of the front. Although the velocities con-
sidered are monotone in the appropriate arguments, the simplest approximation schemes
are not monotone with respect to the set inclusion. Their convergence is proven by con-
structing two, more complicated, approximation schemes (that bound the approximation
scheme of interest from above and below) whose convergence we show directly. At
the end we consider schemes for curvature dependent nonlocal motions.
Note: After this paper was completed we have learned of new research by Ishii and

Ishii [16] on threshold type approximation schemes for motion by mean curvature on
bounded domains with Neumann boundary data. The schemes studied by Ishii and Ishii
are similar to some of the schemes we studied in Section 5.2. However, they are not
immediately extendable to anisotropic motions.

2. Existence and uniqueness

Let U be a bounded domain in RN with C1 boundary that satis1es the outside sphere
condition. Let m be the Lebesgue measure on U . For two measurable subsets A; B of
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U we say that A ∼ B if m(A M B) = 0. Let B be the set of equivalence classes of
measurable subsets of U with respect to relation ∼. We consider B with topology that
comes from the metric d(A; B) = m(A M B). Let F be a function

F : OU × [0;∞) × RN \ {0} × SN ×B → R

that satis1es:

(F1) F is degenerate elliptic:

F(x; t; p; X; K)¿F(x; t; p; Y; K) if X 6Y

(F2) F is nonincreasing in its set argument:

F(x; t; p; X; K)¿F(x; t; p; X; L) if K ⊆ L

(F3) F is geometric:

F(x; t; �p; �X + �p⊗ p;K) = �F(x; t; p; X; K)

(F4) F is continuous (on its domain).
(F5) −∞¡F∗(x; t; 0; O; K) = F∗(x; t; 0; O; L)¡∞.

Here F∗ denotes the upper semicontinuous envelope of F , while F∗ is the lower
semicontinuous envelope of F .

Let us consider the following equation:

ut(x; t) + F(x; t; Du(x; t); D2u(x; t); {y: u(y; t)¿ u(x; t)}) = 0 in U × (0; T ); (1a)

@u
@"

= 0 on @U × (0; T ); (1b)

u(x; 0) = u0(x) in U: (1c)

Here " is the outward unit normal.

De�nition 2.1. An upper semicontinuous function u : OU × [0; T ) → R ∪ {−∞} is a
viscosity subsolution of Eq. (1) if for all x∈ OU , u(x; 0)6 u∗0 (x) and for all (x; t)∈ OU ×
(0; T ) and all functions ’∈C∞( OU × (0; T )) such that u−’ has maximum at (x; t), if
x∈U or x∈ @U and @’=@"(x; t)¿ 0 then

’t(x; t) + F∗(x; t; D’(x; t); D2’(x; t); {y: u(y; t)¿ u(x; t)})6 0: (2)

A lower semicontinuous function v : OU × [0; T ) → R∪{∞} is a viscosity supersolution
of Eq. (1) if for all x∈ OU; v(x; 0)¿ u0∗(x) and for all (x; t)∈ OU×(0; T ) and all functions
’∈C∞( OU × (0; T )) such that v − ’ has minimum at (x; t); if x∈U or x∈ @U and
@’=@"(x; t)¡ 0 then

’t(x; t) + F∗(x; t; D’(x; t); D2’(x; t); {y: u(y; t)¿u(x; t)})¿ 0: (3)

Note the diHerence in the choice of the ‘test sets’ in the de1nitions of a subsolution
and a supersolution. That is an essential ingredient in extending the viscosity solu-
tions to nonlocal, geometric parabolic equations. (If the supersolutions were de1ned
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with ¿ instead of ¿ in the de1nition of the test set, the existence of solutions, among
other things, would not hold.) A function u : OU × [0; T ) → R is a viscosity solution of
(1) if u∗ is a viscosity subsolution and u∗ is a viscosity subsolution of (1). Since all
the solutions in this paper are in viscosity sense, in the rest of the paper we are not
using the term viscosity solution. Instead we just say solution.

Let us list some of the properties of subsolutions and supersolutions.

(P1) If u is a subsolution (resp. supersolution) of (1a) and % :R → R nondecreasing
then (% ◦ u)∗ is also a subsolution (resp. (% ◦ u)∗ is a supersolution).

(P2) Stability: If {un}n=1;2; ::: is a sequence of subsolutions (resp. supersolutions) of
(1a) bounded from above (resp. below) then u=lim sup∗ un is also a subsolution
(resp. u = lim inf ∗ un is a supersolution).

Here lim sup∗n→∞ un(x; t):=sup{lim supn→∞ un(xn; tn) : (xm; tm) → (x; t) as m → ∞}.
Note that lim sup∗ of a sequence of functions is an upper semicontinuous function.

For smooth strictly increasing functions property (P1) can be checked directly, using
the de1nition of a subsolution. For general % (P1) then follows by approximating and
using property (P2). Note that property (P1) implies that if u is a subsolution than so
is sign∗(u). Let us verify property (P2):

Proof (of P2). Let (x0; t0)∈ OU × (0; T ). Let ’∈C∞( OU × (0; T )) such that u − ’ has
maximum at (x0; t0). We can assume that the maximum is strict and that u(x0; t0) = 0.
Then from the de1nition of u follows that there is a subsequence of {un}n=1;2; ::: that
we also denote by {un}n=1;2; ::: such that un − ’ has maximum at (xn; tn) and

(xn; tn) → (x0; t0) and un(xn; tn) → u(x0; t0) as n → ∞:

Let us 1rst consider the case x0 ∈U . By starting from a large enough index if necessary
we can assume than xn ∈U for all n. So since un are subsolutions

’t(xn; tn) + F∗(xn; tn; D’(xn; tn); D2’(xn; tn); {un¿ un(xn; tn)})6 0: (4)

To continue the proof we need the following fact: Let fn be a sequence of measurable
functions on U and f¿ lim sup∗ fn and an a sequence converging to 0. Then

m({fn¿ an} \ {f¿ 0}) → 0 as n → ∞: (5)

To show this 1rst note that

∞⋂
n=1

∞⋃
i=n

{fi¿ ai} ⊆ {f¿ 0}:

Let )¿ 0 then there exists n0 such that for all n¿ n0

m

( ∞⋃
i=n

{fi¿ ai}
∖ ∞⋂

m=1

∞⋃
i=m

{fi¿ ai}
)

¡) :
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So for n¿ n0

m({fn¿ an} \ \{f¿ 0})6m

( ∞⋃
i=n

{fi¿ ai}
∖ ∞⋂

m=1

∞⋃
i=m

{fi¿ ai}
)

¡) :

Note that (5) would not hold if ¿ was replaced by ¿.
A consequence of (5), applied to fn:=un and an:=un(xn; tn) is that the sets {un¿ an}

∪ {u¿ 0} converge to {u¿ 0} as n goes to in1nity. From inequalities (4) we obtain

0¿ lim sup
n→∞

(’t(xn; tn) + F∗(xn; tn; D’;D2’; {un¿ an}))

¿ lim sup
n→∞

(’t(xn; tn) + F∗(xn; tn; D’;D2’; {un¿ an} ∪ {u¿ 0}))

¿’t(x0; t0) + F∗(x0; t0; D’(x0; t0); D2’(x0; t0); {u¿ 0}):
If x0 ∈ @U we need to consider only the functions ’ for which @’=@"(x0; t0)¿ 0. But
then @’=@"¿ 0 in some neighborhood of (x0; t0) which makes the rest of the proof
same as above.

The following lemma is an analogue (for nonlocal equations) of Proposition 2.2 in
[1]. It gives a criterion for a function to be a subsolution. The requirements are weaker
than the ones in the de1nition, which make the lemma useful when verifying that a
certain function is a subsolution. Its proof is a straightforward adaptation of the proof
given in [1].

Lemma 2.2. An upper semicontinuous function u : OU×[0; T ) → R∪{−∞} is a viscos-
ity subsolution of Eq. (1) if for all x∈ OU; u(x; 0)6 u∗0 (x) and for all (x; t)∈ OU×(0; T )
and all functions ’∈C∞( OU × (0; T )) such that u − ’ has maximum at (x; t); if
x∈U and D’(x; t) �= 0 or D2’(x; t)=0; or if x∈ @U and @’=@"(x; t)¿ 0 the following
inequality holds:

’t(x; t) + F∗(x; t; D’(x; t); D2’(x; t); {y: u(y; t)¿ u(x; t)})6 0: (6)

An analogous statement is true for supersolutions.
To show the comparison we also need to assume:

(F6) There exist positive constant c such that for all X; Y ∈ SN and nonnegative num-
bers "; �; + for which the inequality

〈Xl; l〉 + 〈−Ym;m〉6 "|l− m|2 + �(|l|2 + |m|2) + +|l− m|(|l| + |m|)
holds for every l; m∈RN \ {0}, the inequality

F(x; t; p; X; K) − F(x; t; q; Y; K)¿− c("|p̂− q̂|2 + � + +|p̂− q̂| + |p− q|)
holds for all p; q∈RN \ {0} and all (x; t; K)∈ OU × (0; T ) ×B. Here p̂ = p=|p|.

(F7) For given constant C ¿ 0, there exists a function ! : [0;∞] → [0;∞] such that
!(0+) = 0 and, if |p|6 /|x − y| and ‖X ‖6C/, then, for all K ∈B

F(x; t; p; X; K) − F(y; t; p; X; K)6!(/|x − y|2 + |x − y|):
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Remark. We need the conditions (F6) and (F7) instead of the usual condition (‘F8’)
in order to handle the special test function used in proving comparison for equations
with Neumann boundary conditions.

(‘F8’) There exists a function ! : [0;∞] → [0;∞] that satis1es !(0+) = 0 and if

−3/

(
I 0

0 I

)
6

(
X 0

0 −Y

)
6 3/

(
I −I

−I I

)
;

then

F(y; t; /(x − y); Y; K) − F(x; t; /(x − y); X; K)6!(/|x − y|2 + |x − y|)
for all x; y∈ OU , t ∈ (0; T ), X; Y ∈ SN and K ∈B.

Note that (F7) implies (‘F8’). Although the conditions (F6) and (F7) are more
restrictive than (‘F8’) many equations satisfy them; for example equations in which

F(p; X; K) = −trace(A(p̂)X ) + B(p̂)m(K);

where p̂ = p=|p|, A(·) are symmetric matrix, A(·)¿ 0 and
√

A(·) is a Lipschitz con-
tinuous function on SN−1 and B(·)6 0.

Now we are ready to show the comparison for Eq. (1).

Theorem 2.3. Let F be a function satisfying (F1)–(F7). Let u be a subsolution and
v a supersolution of (1a) and (1b). If u(x; 0)6 v(x; 0) in OU then u(x; t)6 v(x; t) on
OU × [0; T ).

Proof. To prove the comparison for equations with Neumann boundary conditions we
follow the approach taken by Giga and Sato in [13]. To handle the Neumann boundary
conditions they proved a special version of Crandall–Ishii lemma and designed a special
test function. Here we do not go through all details of their argument; as they can be
found in [14]; rather we use a simpli1ed problem to point out what needs to be added
because of the presence of nonlocal terms.

For that reason let us assume that u(x; t)6 v(x; t) for (x; t)∈ @U × [0; T ). To show
comparison we can now use the usual test function |x − y|4.

Let us assume that the comparison does not hold. Then there exist time Ot ¡T and
Ox∈U such that u( Ox; Ot)¿v( Ox; Ot). Let 1 be a time such that Ot ¡ 1¡T . Then for 2¿ 0
small enough the function u(x; t) − v(x; t) − 2=(1 − t) has a positive maximum on
OU × [0; 1), which by assumptions we made has to be in U × (0; 1). Let

w)(x; y; t) = u(x; t) − v(y; t) − |x − y|4
4)

− 2
1− t

:

Let (x); y); t)) be a maximum of w). It follows (see [7]) that (x); y); t)) converge (along
a sequence of )’s converging to 0) to (x0; x0; t0) where (x0; t0) is a maximum of u(x; t)−
v(x; t) − 2=(1− t) and furthermore |x) − y)|4=) approaches 0 as ) goes to 0.

Let us consider 1rst the case that there exists ) such that x) = y). Then x) = x0 and
t = t0. By the parabolic Crandall–Ishii lemma [CIL, Lemma 8.3] there are constants
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a; b such that

(a; 0; O)∈ OP
2;+

u(x0; t0) and (b; 0; O)∈ OP
2;−

v(x0; t0)

and a− b = (2=(1− t0)2)¿ 0. Since u is a subsolution and v a supersolution,

a + F∗(t0; x0; 0; O; {u¿ u(x0; t0)})6 0 and

b + F∗(t0; x0; 0; O; {v¿v(x0; t0)})¿ 0:

Assumption (F5) now implies that a− b6 0 which is in contradiction with a− b¿ 0.
Now let us consider the general case that is that x) �=y) for all )¿ 0. Let / = |x) −

y)|2=). From Crandall–Ishii lemma follows that there exist numbers a; b, symmetric
matrices X; Y such that

−30/

(
I 0

0 I

)
6

(
X 0

0 −Y

)
6 30/

(
I −I

−I I

)

(a; /(x) − y)); X )∈ OP
2;+

u(x); t))

(b; /(x) − y)); Y )∈ OP
2;−

v(y); t))

and

a− b =
2

(1− t))2 :

Hence

a + F(x); t); /(x) − y)); X; {u¿ u(x); t))})6 0

b + F(y); t); /(x) − y)); Y; {v¿v(y); t))})¿ 0:

From (x); y); t)) being a maximum of w) now follows that for all x∈U

u(x; t)) − v(x; t))6 u(x); t)) − v(y); t)) − |x) − y)|4
4)

u(x; t)) − u(x); t))¡v(x; t)) − v(y); t))

{u¿ u(x); t))} ⊆ {v¿v(y); t))}:
Property (F2) now leads to

a− b6 F(y); t); /(x) − y)); Y; {u¿ u(x); t))})
−F(x); t); /(x) − y)); X; {u¿ u(x); t))})

which using property (F7) implies

a− b¡!
( |x) − y)|4

)
+ |x) − y)|

)
:

Since we know that |x)−y)|4=) converges to 0 as ) goes to 0 the last inequality implies
that a− b6 0 which leads to contradiction.
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We can now use property (P2) to, via Perron’s method (see [8]), establish existence
of solutions.

Theorem 2.4. Let F be a function satisfying (F1)–(F7) and u0 a continuous function
on OU . Then there exist a unique continuous solution of (1).

Existence of continuous solutions is obtained using the Perron’s method while the
uniqueness follows from the comparison. If the function u0 is not continuous, Perron’s
method can still be used to obtain existence, but the solution may not be unique.

3. Generalized front propagation with nonlocal velocities

Let us 1rst recall the de1nition of the motion of a smooth front by a given normal
velocity. Let {�t}t¿0 be a family of open subsets of OU . Let 5t :=@�t . Assume that
{5t}t¿0 is a smooth family of N −1 dimensional submanifolds of OU such that 5t⊥@U
on @U ∩ 5t . For a general velocity v, that depends on the properties of the front,
v : OU ×B → R we say that the family {(�t; 5t)}t¿0 propagates with velocity v if for
all smooth curves 2 : [a; b] → U such that for all t ∈ [a; b] 2(t)∈5t the following holds:〈

d2
dt

(t); n(2(t))
〉

= v(2(t); �t)

for all t ∈ [a; b]. Here n is the outward (with respect to �t) normal vector to 5t at the
given point.

To de1ne motion for fronts that may not be smooth for all times, we use the level
set approach. For it to work it is necessary restrict the class of velocities that are
considered. To be able to put appropriate restrictions on the velocities, let us consider
the velocities written as v(x; n(x); Dn(x); �t) where Dn is the gradient of (arbitrary
smooth extension of) n. Let

F(x; p; X; A) := − |p| v
(
x;−p̂;− 1

|p| (I − p̂⊗ p̂)X (I − p̂⊗ p̂); A
)

:

Consider the equation

ut + F(x; Du; D2u; {u(·; t)¿ u(x; t)}) = 0 in U × (0; T );

@u
@"

= 0 on @U × (0; T );

u(·; 0) = g(·) in U:

(7)

Here g is a continuous function on OU . Suppose that the equation has a smooth solution
u. Let

�t :={x∈ OU : u(x; t)¿ 0} and 5t :={x∈ OU : u(x; t) = 0}: (8)

Suppose also that Du �= 0 on 5t for all t ∈ (0; T ). It is elementary to check that (�t; 5t)
propagates with velocity v.
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To be able to de1ne the generalized propagation using the level sets of viscos-
ity solutions of the Eq. (7) we need to impose conditions that guarantee existence
and uniqueness of such solutions. Hence, let us assume that F satis1es
conditions (F1)–(F7).

De�nition 3.1. Let �0 be an open subset of OU and 50 its boundary. Let g be a
continuous function on OU such that �0={x∈ OU : g(x)¿ 0} and 50={x∈ OU : g(x)=0}.
Let u be the unique viscosity solution of the level set Eq. (7) and �t; 5t given by
(8). We then say that the family {(�t; 5t)}t∈[0;T ); is the generalized propagation of
(�0; 50) by velocity v.

For this to be a valid de1nition it must not depend on the choice of the initial data,
g. Proof of that can be found, for example, in [21]. Note that all the level sets of the
solution u propagate with given velocity.

This de1nition allows us to study fronts when they are not smooth, develop singu-
larities or change topological type. However, there are some diEculties. In particular
although 50=@�0 it may happen that the set 5t is not equal to @�t and that m(5t)¿ 0.
If that happens we say that the front fattens. Fattening is related to nonuniqueness of
front propagation. Possibility of front fattening forces us to de1ne the following map-
pings, which are used later in statements of convergence results.

For given velocity v, and time t let Xt :F → F and Nt :O → O (here F are the
closed and O the open subsets of OU ) be de1ned in the following way: for a closed
set A ⊆ OU let �0 = int(A) and 50 = A \�0 (respectively for an open set B let �0 = B
and 50 = @B). Let (�t; 5t) be the generalized propagation of (�0; 50) at time t. Then
Xt(A) :=�t ∪ 5t and Nt(B) :=�t .

4. Convergence of monotone schemes

We consider approximation schemes to problem (1). To construct them we use an
auxiliary scheme

S :B× R+ × R+
0 × B( OU ) → B( OU );

where B( OU ) is the set of bounded measurable functions on OU . We write S(A; h; t)u for
S(A; h; t; u). The actual approximation scheme

Ŝ : R+ × R+
0 × B( OU ) → B( OU )

is then de1ned by

Ŝ(t; h; u)(x) :=sup{�: S({u¿ �}; t; h; u)(x)¿ �}
for all x∈ OU . If only equations with no nonlocal terms are considered then S does not
depend on the set argument, and hence S and Ŝ are essentially the same. For a partition
P :=(0 = t0 ¡t1 ¡ · · ·¡tm = T ) of [0; T ] let us de1ne the approximate solution for
problem (1) recursively by

uP(·; t) :=

{
u0(x) if t = 0;

Ŝ(t − ti; ti)uh(·; ti) if t ∈ (ti; ti+1]:
(9)
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The scheme S is assumed to satisfy the following conditions:

(S1) Monotonicity: For all A; B∈B, all h¿ 0 and t¿ 0, and u; v∈B( OU )

If u6 v and A ⊆ B then S(A; h; t)u6 S(B; h; t)v:

(S2) For any c∈R and A∈B

S(A; h; t)(u + c) = S(A; h; t)u + c and S(A; h; t)0 = 0:

(S3) Consistency: For all A∈B, all t¿ 0, all smooth functions ’∈C∞( OU ) and all
points x∈U for which either D’(x) �= 0 or D’(x) = 0 and D2’(x) = 0, and all
points x∈ @U for which @’=@"(x)¿ 0

∗
lim sup

h→0

S(A; h; t)’− ’
h

(x)6− F∗(x; t; D’;D2’; A)

and for all points x∈U for which either D’(x) �= 0 or D’(x)=0 and D2’(x)=0,
and all points x∈ @U for which @’=@"(x)¡ 0

lim inf ∗
h→0

S(A; h; t)’− ’
h

(x)¿− F∗(x; t; D’;D2’; A):

(S4) Continuity at t=0: For every function g∈C( OU ) there exists a function � : [0;∞)
→ [0;∞] such that �(0+) = 0 and for all t ∈ [0; T ) and P

sup
x∈U

|uP(x; t) − g(x)|6 �(t):

From the property (S1) and the de1nition of Ŝ follows that for u; v∈B( OU )

if u6 v then Ŝ(h; t)u6 Ŝ(h; t)v:

Theorem 4.1. Let F be a function satisfying (F1)–(F5) and S an approximation
scheme satisfying (S1)–(S4). Assume that the comparison holds for Eq. (1) and that
u0 is continuous. Then uP converges uniformly to the unique continuous solution of
Eq. (1) as ‖P‖ → 0.

Here ‖P‖, the mesh of P, is de1ned to be maxi=1:::m(ti+1 − ti).
Note that if F also satis1es (F6) and (F7) then by Theorem 2.3 comparison for

Eq. (1) does hold.

Remark. The theorem is also true if condition in (S4) is replaced by the following;
weaker condition:

sup
x∈U

|uP(x; t) − g(x)|d(x; @U )6 �(t):

The proof is the same as the one below.

Proof. To simplify the notation through the proof we assume that in partition P is
regular; that is; that ti = ih. We also write uh instead of uP . Let Ou :=lim sup∗h→0 uh and
Ou :=lim inf ∗h→0 uh. The goal is to show that Ou is a subsolution and u is a superso-
lution of (1). The comparison then implies that Ou6 u. Since by de1nition u6 Ou; we
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conclude that u = Ou. Therefore; u := Ou is the unique continuous solution of (1). Since
u = lim inf ∗h→0 uh = lim sup∗h→0 uh and OU is compact the convergence is uniform.

Showing that u is a supersolution is analogous to showing that Ou is a subsolution,
so we only show the latter claim.

Note that Ou is bounded. Let us also show that Ou(x; 0) = u0(x) for all x∈ OU . Let xn

be a sequence in OU converging to x and hn; tn sequences converging to 0, such that
limn→∞ uhn(xn; tn) = Ou(x; 0). Then

|u(x; 0) − u0(x)| = lim
n→∞ |uhn(xn; tn) − u0(x)|

6 lim
n→∞ |uhn(xn; tn) − u0(xn)| + |u0(xn) − u0(x)|

6 lim
n→∞�(tn) + |u0(xn) − u0(x)| = 0:

Let v; w∈B( OU ). Then for any x∈ OU , any h¿ 0; t¿ 0

v(x) − ‖w − v‖6w(x)6 v(x) + ‖w − v‖
by (S1), (S2)

S(h; t)v(x) − ‖w − v‖6 S(h; t)w6 S(h; t)v(x) + ‖w − v‖
‖S(h; t)w − S(h; t)v‖6 ‖w − v‖: (10)

Let x0 ∈ OU and t0 ∈ (0; T ) and ’∈C∞( OU × (0; T )) such that Ou − ’ has maximum at
(x0; t0) and that if x0 ∈ @U then @’=@"(x0) ¿ 0. If D’(x0; t0) = 0, by Lemma 2.2, we
can assume that D2’(x0; t0)=0. We can also assume that ’(x0; t0)=0 and Ou(x0; t0)=0.
Then, for appropriate smooth functions h, g, constant a and vector p:

’(x; t) = 〈p; x − x0〉 + a(t − t0) + 1
2 〈X (x − x0); x − x0〉 + h(x) + g(x; t):

And h(x)=O(|x− x0|3) and g(x; t)=o(|t− t0|+ |x− x0|3). Let )¿ 0. Then there exists
r ∈ (0; 1) such that )(|t− t0|+ |x− x0|3)¿ g(x; t) in Br(x0; t0). Let M =‖’‖C( OU×[0;T )) +
‖h=|x − x0|3‖C( OU ) + ‖g‖C( OU×[0;T )) + ‖u0‖ and c = 6

r3 M . Let

%(x) = 〈p; x − x0〉 + 1
2 〈X (x − x0); x − x0〉 + c|x − x0|3;

1(t) = a(t − t0) + )|t − t0| + c|t − t0|3;
 (x; t) = %(x) + 1(t):

Note that  (x0; t0)=’(x0; t0)=0, D (x0; t0)=D’(x0; t0)=p, D2 (x0; t0)=D’(x0; t0)=X
and that  (x; t)¿’(x; t) on OU × [0; T ) \ {(x0; t0)}. Therefore Ou −  has strict max-
imum at (x0; t0). Also M was chosen so that for any t ∈ [0; T ) and x∈ OU \ Br(x0)
 (x; t)¿ 2‖u0‖ = 2 suph¿0; t∈[0;T ) ‖uh(·; t)‖. Then, by compactness, there exists a
sequence

(xn; tn; hn) → (x0; t0; 0) as n → ∞:

Such that uhn −  has maximum at (xn; tn) and uhn(xn; tn) → Ou(x0; t0) as n → ∞. To
simplify notation, let us write in the rest of the proof un instead of uhn . Let in be the
greatest integer less than tn=hn and Ttn :=tn − inhn. Note that Ttn ¿ 0.
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For all z ∈ OU

un(z; inhn) − un(xn; tn)6  (z; inhn) −  (xn; tn):

By the de1nition of un:

0 = Ŝ(Ttn; inhn)[un(·; inhn)](xn) − un(xn; tn):

Let an :=u(xn; tn) − (Ttn)2. By the de1nition of S and monotonicity:

06 S({u(·; inhn)¿ an};Ttn; inhn)[un(·; inhn)](xn) − un(xn; tn) + (Ttn)2

6 S

( ⋃
m¿n

{u(·; imhm)¿ am};Ttn; inhn

)
[ (·; inhn)](xn) −  (xn; tn) + (Ttn)2:

Let A :=
⋂

n¿1

⋃
m¿n{u(·; imhm)¿ am}. Note that A ⊆ { Ou(·; t0)¿ 0}. Using properties

(S2) and (S3) one gets:

06 lim sup
n→∞

1
Ttn

(
S

( ⋃
m¿n

{u(·; imhm)¿ am};Ttn; inhn

)
[ (·; inhn)](xn)

−  (xn; inhn) +  (xn; inhn) −  (xn; tn) + Ttn)

6 lim sup
n→∞

1
Ttn

S

( ⋃
m¿n

{u(·; imhm)¿ am};Ttn; inhn

)
[%(·) − %(xn)](xn)

+ lim sup
n→∞

1(inhn) − 1(tn)
inhn − tn

6
∗

lim sup
h→0

1
h
(S(A; h; t0)[%(·)](x0) − %(x0))

+ lim sup
n→∞

a(inhn − tn) + )(|inhn − t0| − |tn − t0|) + c(|inhn − t0|4 − |tn − t0|4)
inhn − tn

6−F∗(x0; t0; p; X + 2)I; A) − a

+ lim sup
n→∞

)(|inhn − tn|) + c|inhn − tn|(|inhn − t0| + |tn − t0|)3

|inhn − tn|
6−F∗(x0; t0; p; X + 2)I; A) − a + ):

Letting ) → 0 yields

06− F∗(x0; t0; p; X; {u(·; t0)¿ 0}) − a:

In some applications that follow we de1ne the approximate solution of be piece-wise
constant using an operator

Qh
t :=Ŝ((j − 1)h; h) ◦ · · · Ŝ(h; h) ◦ Ŝ(0; h):
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Where t¿ 0, h¿ 0 and j = �t=h�. Using the property (S4) the following corollary is
easily obtained.

Corollary 4.2. If the assumptions of the Theorem 4.1 are satis7ed then Qh
t u0 con-

verges uniformly to the unique continuous solution of Eq. (1).

The following lemma is used in proof of convergence of some schemes for nonlocal
front propagation.

Lemma 4.3. Let F be a function satisfying (F1)–(F5) and assume that comparison
holds for the Eq. (1). Let S1; S2; S :R+ × R+

0 × B( OU ) → B( OU ) be approximation
schemes for the Eq. (1). Assume that for all A∈B; all h¿ 0; all t¿ 0 and all
u∈B( OU )

S1(A; h; t)u6 S(A; h; t)u6 S2(A; h; t)u

and that S1 and S2 are convergent. Then S is convergent too.

5. Schemes for front propagation with Neumann boundary conditions

Let U be a closed domain in RN with C1 boundary that satis1es the outside sphere
condition. To construct threshold type numerical schemes for motions with Neumann
boundary condition we need map 1 that “mirrors” regions next to @U inside and outside
of U . Since @U is a C1 manifold in Rn it has a partial tubular neighborhood (see [15])
and therefore there exists )¿ 0 such that on neighborhood W :={x: dist(x; @U )¡)}
of @U on there exists a C1 function " :W → @U de1ned as follows: "(x)=y if y is the
closest point to x on @U . Let 1(x) :=2"(x)− x. Note that 1 : W → W . Also note that 1
has the following properties: 1◦1=id, 1|@U =id, and 1(U∩W )

⋂
U=∅. For a measurable

set A ⊂ RN (having subsets of OU in mind) let T (A) :=(A ∩ OU ) ∪ 1(A ∩W ∩ U ).

5.1. Motions not depending on curvature

Let � be a measure on RN such that �(RN ) = 1. Although not necessary, this
assumption simpli1es the presentation, and does not restrict the class of motions that
can be obtained. Let ?∈ (0; 1) be the threshold.

For p∈ SN−1 let us de1ne the outward normal velocity

v(p) :=sup{v: �({x: 〈−p; x〉¿ v})¿ ?}: (11)

We also need the following assumption on �:
(�1) Measure � is either compactly supported or for every p∈ SN−1; v(p) is the unique

number for which �({x | 〈−p; x〉¿ v}) = ?.

Example. Let N =2; and � determined by �({(−1; 0)})=�({(1; 0)})= 1
2 . Then v(p)=

|〈p; (1; 0)〉|. We remark that this motion cannot be obtained if only measures that are
absolutely continuous with respect to Lebesgue measure are considered (see [20]).
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It is not hard to prove now that v is a continuous function of p. We also de1ne
function F :RN → R as follows:

F(p) :=

{−|p| v(−p̂) if p �= 0

0 otherwise:
(12)

Where p̂ = p=|p|. Note that F is continuous and satis1es the conditions (F1)–(F7).
For h¿ 0 let �h(·) :=�(h−1·). De1ne an update scheme Mh :B → B by

MhA :={x∈ OU : �h(T (A) − x)¿ ?}: (13)

@MhA is the approximate position of the front started from @A moving with normal
velocity v after time h. Note that Mh is monotone in the sense that if A ⊆ B ⊆ OU then
Mh(A) ⊆ Mh(B). Let Mk

h be the kth iterate of Mh. To make the scheme de1ned for all
times let us de1ne

Ch
t :=Mj

h where j = �t=h�:
Following the procedure from [17] (and the references within) we construct an ap-

proximation scheme for the level set Eq. (7) using the (set valued) updates of the
threshold scheme for approximating propagating fronts. We de1ne mapping Sh :B( OU ) →
B( OU ) by

Sh’(x) :=sup{�∈R: x∈Mh{’¿ �}}:
Note that the S used here is same as the S in Section 4, only simpler, and since it has
no set valued parameter is also equal to Ŝ. We use Qh

t to de1ne approximate solutions.
Recall that

Qh
t = Sj

h where j =
⌊ t
h

⌋
:

Let us prove that for all x∈ OU

x∈Mh{’¿ Sh’(x)}: (14)

By de1nition of Sh and monotonicity of Mh yields that for any )¿ 0

x∈Mh{’¿ Sh’(x) − )}:
and de1nition of Mh implies

lim
)→0

�h(T ({’¿ Sh’(x) − )}) − x)¿ ?:

Therefore

�h(T ({’¿ Sh’(x)}) − x) = �h

(⋂
)¿0

T ({’¿ Sh’(x) − )}) − x

)
¿ ?

which implies the claim.
The de1nition of Sh and (14) now imply that:

Sh’(x)¿ � if and only if x∈Mh({’¿ �}): (15)
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Using the results of Section 4 we 1rst establish convergence of approximate solu-
tions of the level set equation. That convergence is then used to establish convergence
of approximate fronts towards the front moving by given normal velocity. The conver-
gence results that we prove are analogous to ones proven in [17], only that here we
are proving them for problem satisfying Neumann boundary conditions on U , while in
[17] results were proven for problem on RN . If there is no fattening that convergence
is in HausdorH metric, but possibility of fronts fattening forces us to formulate the
result in more complicated manner.

Theorem 5.1. Let g be a continuous function on OU and let u be the unique continuous
solution of (7) with F given by (12). Then as h → 0; for all T ∈ [0;∞);

Qh
t g(x) → u(x; t) uniformly on OU × [0; T ]:

For a set A∈B and )¿ 0 let

A) :={x∈ OU : dist(x; OU \ A)¿)} and A) :={x∈ OU : dist(x; A)¡)}:

Theorem 5.2. For all )¿ 0 and T ¿ 0 and A∈B there exists a A¿ 0 such that; for
all h∈ (0; A) and t ∈ [0; T ]:

NtA) ⊂ Ch
t A ⊂ NtA) and XtA) ⊂ Ch

t A ⊂ XtA):

Theorem 5.3. For every )¿ 0 and every closed set A ⊆ OU and open set A′ ⊂ U there
exists A¿ 0 such that for all h∈ (0; A)⋃

t¿0

Ch
t (A) × {t} ⊂

⋃
t¿0

Xt(A) × {t} + B(0; ));

⋃
t¿0

Nt(A′) × {t} + B(0; )) ⊂
⋃
t¿0

Ch
t (A

′) × {t}:

The last two theorems follow in a general way from the convergence obtained in
Theorem 5.1. The proofs can be found in [17].

Proof of Theorem 5.1. We only need to check if conditions of Theorem 4.1 are satis-
1ed. It is easy to see that F satis1es the conditions given; so let us check if Sh does
too.

Since Mh is monotone and Sh is de1ned “level set by level set” for any nondecreasing
function %∈C(R) the following holds for all ’;  ∈B( OU )

Sh(% ◦ ’) = % ◦ (Sh’)

and

if ’6  then Sh’6 Sh :
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The latter of the properties and the de1nition of Sh now yield that for any ’∈B( OU )
and c∈R

Sh(’ + c) = Sh’ + c and Sh0 = 0:

What is left to be proven are properties (S3) and (S4). We do that in the following
two lemmas. Property (S3) is immediate consequence of Lemma 5.4. A proof that
Lemma 5.5 implies (S4) is given for an analogous claim in the section on motions
depending on curvature after Lemma 5.8, and can also be found (for a similar claim)
in [17].

Lemma 5.4. Let ’∈C1(RN ). For all z ∈U and all z ∈ @U for which @’=@"(z)¿ 0;
and all )¿ 0; there exists A¿ 0; such that for all x∈B(z; A) ∩ OU and h∈ (0; A);

Sh’(x)6’(x) + (−F(D’(z)) + ))h

and analogously for all z ∈U and all z ∈ @U for which @’=@"(z)¡ 0; and all )¿ 0;
there exists A¿ 0; such that for all x∈B(z; A) ∩ OU and h∈ (0; A);

Sh’(x)¿’(x) + (−F(D’(z)) − ))h:

Proof. Since the proof of the latter statement is analogous to the proof of the former
so we only prove the former one.

Let ’; z satisfy the assumptions of the lemma. Let p :=D’(z) and E :={y: 〈p; y〉¿
−F(p)+ )=2}. Then by de1nition of F and v; �(E)¡?. There exists R¿ 0 such that

�(RN \ B(0; R))¡?− �(E): (16)

Since ’ is continuously diHerentiable there exists A¿ 0 such that the following hold:
For all h∈ (0; A), all x∈B(z; A), and y∈B(0; R)

’(x + hy)6’(x) + 〈p; y〉h +
)h
2

(17)

and if z ∈U then B(z; RA+A) ⊂ U and if z ∈ @U then B(z; RA+A) ⊂ T ( OU ) and for all
y∈B(z; RA + A), 〈D’(y); n("(y))〉¿ 0. Note that in the case that z ∈ @U this implies
that, for y∈B(z; RA + A) \ U , ’(y)¿’("(y)) = ’("(1(y)))¿’(1(y)).

Let h∈ (0; A) and x∈B(z; A). Let

L :={’¿’(x) + (−F(p) + ))h} and A :=L ∩ OU:

In the case that z ∈ @U the inequality ’¿’ ◦ 1 on B(x; RA) \ U implies

T (A) ∩ B(x; RA) ⊂ L ∩ B(x; RA):

This is the key fact used in dealing with the boundary condition (see inequalities in
(18)), that makes considering the case z ∈ @U analogous to z ∈U . And furthermore,
since showing this inclusion depended only on properties of test function ’ and prop-
erties of T , the same argument can be used in a variety of schemes. In particular we
refer to it when proving convergence of schemes in the following sections.

See also Fig. 1.
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Fig. 1. Generic con1guration in z∈ @U case.

By (15) it is enough to show that

x �∈ MhA

which is by de1nition of Mh equivalent to

�h(T (A) − x)¡?:

We claim that L∩B(x; Rh) ⊂ x+hE. Let x+hy be an arbitrary element of L∩B(x; Rh).
Using the de1nition of L and (17) we get:

’(x + hy)¿’(x) + (−F(p) + ))h;

h〈p; y〉 +
)h
2
¿− F(p)h + )h;

〈p; y〉¿− F(p) +
)
2
:

So x + hy∈ x + hE. Therefore,

�h(L ∩ B(x; Rh) − x)6 �h(hE) = �(E):

But if z ∈U then T (A)∩B(x; Rh) = L∩B(x; Rh) and if z ∈ @U then T (A)∩B(x; Rh) ⊂
L ∩ B(x; Rh). So in both cases, by using (16), we obtain

�h(T (A) − x)6 �h(L ∩ B(x; Rh) − x) + �h(RN \ B(0; Rh))

6 �(E) + �(RN \ B(0; R))¡?: (18)

Lemma 5.5. There exist constants A¿ 0; R¿ 0 such that for all y∈ OU for the func-
tion ’(x) :=|x−y| (respectively ’(x) :=− |x−y|) the following inequalities hold, for
all x∈ OU and h∈ (0; A)

Sh’(x) − ’(x)6Rh (respectively Sh’(x) − ’(x)¿− Rh):
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Proof. Let R be such that �(B(0; R=3))¿ 1 − ?. Let A be such that U + B(0; 3RA) ⊂
T ( OU ). We claim that for any 2∈ (0; RA) and all x∈ OU

B(x; 2) \ U ⊂ T (B(x; 32) ∩ OU ):

Let z be an arbitrary element of B(x; 2) \ U . Then dist(x; z)6 2 and hence dist
(z; "(z))6 2. Hence, dist(z; 1(z))6 22, which implies that dist(x; 1(z))6 32. Therefore
1(z)∈B(x; 32) ∩ OU , which yields that z ∈T (B(x; 32) ∩ OU ).

Let y∈ OU . By translating the domain we can assume that y = 0. Let h∈ (0; A). Let
us show that

Sh’(x) − ’(x)6Rh:

We only need to show that x �∈ Mh{’¿ |x| + Rh} which is equivalent to

�h(T ({’¿ |x| + Rh}) − x)¡?:

But using the above we get

�h(T ({’¿ |x| + Rh}) − x)6 �h(RN \ T (B(x; Rh)) − x)

6 �h(RN \ B(0; Rh=3)) = 1 − �(B(0; R=3))

¡?:

The proof that for ’(x) = −|x − y|, Sh’(x) − ’(x)6Rh is analogous.

5.2. Motions depending on curvature

Let � be a measure on RN that has the form d� = f dm where f is a function and
m is the Lebesgue measure. As before, we require that �(RN ) = 1. We also need the
following assumptions on �:

(�2) f(x) = f(−x).
(�3) 0¡

∫
p⊥ f(x) dHN−1.

(�4) The functions p �→ ∫
p⊥ f(x) dHN−1 and p �→ ∫

p⊥ xixjf(x) dHN−1 are continu-
ous for all i; j∈{1; 2; : : : ; N}.

(�5)
∫
RN |x|2 d�¡∞.

Here p⊥ is the orthogonal complement of vector p in RN . Let R : (0; 1) → (0;∞) such
that

R(%) → ∞ and
√
%R(%) → 0 as % → 0:

For U ∈O(N ) (O(N ) is the group of N × N orthogonal matrices) let us de1ne
fU :RN → R by fU (x) :=f(U ∗x). Here U ∗ is the transpose of U .
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(�6) For all functions g :RN−1 → R of the form g(·) = a + 〈A·; ·〉 where a∈R and
A∈ SN−1

sup
U∈O(N )

sup
0¡r¡%

∣∣∣∣
∫
B(0;R(%))

g(+)fU (+; rg(+)) d+−
∫
RN−1

g(+)fU (+; 0) d+
∣∣∣∣→ 0

as % → 0.

Note that if f is continuous with compact support then conditions (�2)–(�5) are
satis1ed.

For c∈R we construct scheme for fronts propagating with velocity v : SN−1 ×
SN → R

v(p; X ) =
(∫

p⊥
f(x) dHN−1(x)

)−1(
− 1

2

∫
p⊥

〈Xx; x〉f(x) dHN−1(x) + c
)

:

Let us now de1ne F :RN \ {0} ×SN → R by

F(p; X ) := − |p|v
(
p̂;

X
|p|
)

:

An update of the set valued scheme Mh :B → B for h¿ 0 is de1ned by

MhA :={x∈ OU : �√
h(T (A) − x)¿ 1

2 − c
√
h}:

Ch
t ; Sh and Qh

t are de1ned as before. The analogues of the Theorems 5.1, 5.2 and
5.3 hold. To show that we just need to verify conditions (S3) and (S4), that is the
consistency and the continuity at t = 0. They follow from the following three lemmas:

Lemma 5.6. Let ’∈C∞(RN ). For all z ∈U for which D’(z) �= 0 and all z ∈ @U for
which @’=@"(z)¿ 0, and for all )¿ 0, there exists A¿ 0, such that for all x∈B(z; A)∩
OU and h∈ (0; A),

Sh’(x)6’(x) + (−F(D2’(z); D’(z)) + ))h

and analogously for all z ∈U for which D’(z) �= 0 and all z ∈ @U for which @’=@"(z)
¡ 0, and for all )¿ 0, there exists A¿ 0, such that for all x∈B(z; A) ∩ OU and h∈
(0; A),

Sh’(x)¿’(x) + (−F(D2’(z); D’(z)) − ))h:

This lemma establishes the consistency of the scheme (condition (S3)) when D’(z)
�= 0. Its proof is analogous to the proof of Lemma 3.1 in [17], while the boundary
of U is handled in the same way as in Lemma 4.4. The consistency of the scheme
for D’(z) = 0 is a consequence of the following lemma.

Lemma 5.7. Let z ∈U and ’∈C∞(RN ) such that D’(z) = 0 and D2’(z) = 0. Then
for any )¿ 0 there exists A¿ 0 such that for all h∈ (0; A) and all x∈B(z;

√
h)

−2)6
Sh’(x) − ’(x)

h
6 2):
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Proof. Let z, ’ and ) satisfy the above conditions. We can assume that z=0 and that
’(0)=0. Let C ¿ 1 be such that �(B(0; C))¿ 3

4 . Choose A¿ 0 so that it satis1es the
following conditions: B(z; 2C

√
A) ⊂ U , 4c

√
A¡ 1 (where c was given in the de1nition

of the scheme), and if |y|¡ 2C
√
A then |’(y)|¡ ()=C2)|y|2. This can be done since

’(y) = o(|y|2). Let h∈ (0; A) and x∈B(0;
√
h). Note that |’(x)|¡)h.

Therefore, to prove the lemma it suEces to show that −)h6 Sh’(x)6 )h. As the
proofs of the two inequalities are analogous let us just show that Sh’(x)6 )h. Using
the de1nition of Sh and monotonicity of Mh, it is enough to show that x �∈ Mh{’¿ )h}.
Since c

√
h¡ 1

4 , by de1nition of Mh it suEces to show that �√
h(T ({’¿ )h})−x)6 1

4 .
Note that if |y|¡ 2C

√
h then |’(y)|¡ ()=C2)C2h = )h. Therefore {’¿ )h} ⊆

Rn \ B(x; C
√
h). Since B(x; C

√
h) ⊂ U this implies T ({’¿ )h}) ⊆ Rn \ B(x; C

√
h).

Consequently

�
(
T ({’¿ )h}) − x√

h

)
6 �

(
Rn \ B(0; C

√
h)√

h

)
= �(Rn \ B(0; C))¡

1
4
:

Lemma 5.8. There exist constants A¿ 0; R¿ 0 such that for all M ¿ 0 and y∈U
for any C ¿ 2M=d(y; @U ) for the function ’(x) :=min{C√|x − y|2 + 1; M} (respec-
tively ’(x) :=max{−C

√|x − y|2 + 1;−M}) the following inequality:
Sh’(x) − ’(x)6RCh (respectively Sh’(x) − ’(x)¿− RCh)

holds for all x∈ OU and all h∈ (0; A).

This lemma can be proven by making minor modi1cations of the proof of the Lemma
3.2 in [17].

Let us show now that Lemma 5.8 implies the weak form of the continuity at t = 0
(condition S4) of the scheme Sh. Let g∈C( OU ). Let M :=2‖g‖C + diam(U ) + 1. For
simplicity let us assume that partition P=(0; h; 2h; : : : ; T ). For every )¿ 0 there exists
C) ¿ 1 such that for all x; y∈ OU

−)− C)(
√
|x − y|2 + 1 − 1)6 g(x) − g(y)6 ) + C)(

√
|x − y|2 + 1 − 1):

For 1xed y∈U let Ĉ) :=max{M=d(y; @U ); C)}. Then

g(x) − g(y)6 ) + min{Ĉ)(
√
|x − y|2 + 1 − 1); M}:

Applying a step of the scheme Sh and using the Lemma 5.5 we obtain:

Shg(x) − g(y)6 ) + min{Ĉ)(
√
|x − y|2 + 1 − 1); M} + RĈ)h:

By induction

uP(x; t) − g(y)6 ) + min{Ĉ)(
√
|x − y|2 + 1 − 1); M} + RĈ)t:

The last inequality evaluated for x = y yields:

uP(y; t) − g(y)6 ) + RĈ)t6 ) + RC)
M

d(y; @U )
t:
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Let �(t) :=inf )¿0 diam(U ))+RC)t. Note that limt→0+ �(t)=0. The last inequality now
reads:

uP(y; t) − g(y)6
�(t)

d(y; @U )
:

In the same fashion estimate from below is obtained and so for all y∈U

|uP(y; t) − g(y)|d(y; @U )6 �(t):

5.2.1. An adaptation of BMO scheme for mean curvature motion
The scheme for mean curvature motions of fronts in RN developed by Bence, Mer-

riman and Osher, BMO in [4] has been extensively studied. DiHerent proofs of its
convergence were given in [9], [1] and [17]. One way to adapt the BMO scheme to
motion of subsets of U has already been presented in this section. It is suEcient to
take f to be the heat kernel and apply the threshold scheme given above.

In this section we will study another, nonthreshold, adaptation of the BMO scheme
for mean curvature motion. This scheme can be modi1ed further (with present tech-
niques) to study other motions, but, for simplicity, we will only present the mean
curvature case.

So, for motion by mean curvature F :RN \ {0} ×SN → R is de1ned by

F(p; X ) := − trace
((

I − p⊗ p
|p|2

)
X
)

:

To simplify the presentation let us assume that @U is a C∞ manifold in RN . Let C be
the set of closed subsets of OU . For A∈C let us consider the function uA : OU ×R→ R
the solution of the following initial-boundary value problem:

@uA

@t
− TuA = 0 in OU × (0; T ];

uA(x; 0) = )A in OU;

@uA

@"
(x; t) = 0 on @U × (0; T ]:

The approximation scheme Mh :C → C is now de1ned by

MhA :={x∈ OU : uA(x; h)¿ 1
2}: (19)

Ch
t ; Sh and Qh

t are de1ned as before. We claim that the statements in the Theorems
5.1, 5.2 and 5.3 hold for this scheme. The main step is to prove the convergence of the
scheme. To prove it we compare the updates of given scheme (carried out on subsets
of OU with the updates of the original BMO. scheme that are carried out on appropriate
subsets of RN . An update of the BMO scheme is constructed in the following way:
For given closed set A let vA(x; t) be the solution of the following Cauchy problem

@vA
@t

− TvA = 0 in RN × (0;∞);

vA(x; 0) = )A in RN :
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The update of the scheme itself is de1ned by

M̃ hA :={x∈RN : vA(x; h)¿ 1
2}:

S̃h is de1ned in the usual way.
Note that BMO scheme is nothing else than threshold dynamics type scheme on RN

with f(x) being,

f(x) =
1

(2
√
D)N

e
−|x|2

4

and � the measure with d� = f dm.
Those schemes were studied in [17]. The next lemma, that help us compare the

two schemes, follows from the proof of consistency of the scheme (Lemma 3.1) given
in [17].

Lemma 5.9. Let ’∈C2(RN ). For all z ∈RN for which D’(z) �= 0 and all )¿ 0 there
exists A¿ 0 and )1 ¿ 0 such that for all x∈B(z; A) and all h∈ (0; A)

�√
h(A1 − x)6 1

2 − )1
√
h;

and

�√
h(A2 − x)¿ 1

2 + )1
√
h;

where A1 :={y∈RN : ’(y)¿ (−F(D2’(z); D’(z)) + ))h} and A2 :={y∈RN : ’(y)¿
(−F(D2’(z); D’(z)) − ))h}.

We also need the following two lemmas that establish some properties of solutions
to heat equation. The 1rst is used for localizing the arguments and the second is used
in comparing the schemes at boundary points of U . Elementary proofs of the lemmas
are given in Appendix A.

Lemma 5.10. Let z ∈ OU and r ¿ 0. Let g be a smooth function on @U × [0; T ] sup-
ported outside of B(z; 2r) and  a bounded measurable function on OU supported
outside of B(z; 2r). Let u be the solution of the following initial-boundary value
problem:

ut − Tu = 0 in U × (0; T ];

u(x; 0) =  (x) in OU;

@u
@"

(x; t) = g(x; t) on @U × (0; T ]:

Then for given )¿ 0 there exists A¿ 0 depending on  only through ‖ ‖L∞( OU ) such
that for all h∈ [0; A]

‖u‖L∞(B(z; r)×(0; h])6 )h:
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Lemma 5.11. Let z ∈RN and ’ and  smooth functions on RN such that ’(z)= (z)
= 0; D’(z) �= 0 and D (z) �= 0 and 〈D’(z); D (z)〉¿ 0. Let V be a neighborhood of
z and let; for 7xed constant ); u(x; t) be the solution of the Cauchy problem:

ut − Tu = 0 in RN × (0; T ];

u(x; 0) = g(x) in RN ;

where g is such function that g|V = ){’¿)} and ‖g‖L∞ = 1. Then there exist )0 ¿ 0;
A¿ 0 and W; an open neighborhood of z; such that for all )∈ (−)0; )0); x∈W for
which  (x) = 0 and all t ∈ (0; A)

〈Du(x; t); D (x)〉¿ 0: (20)

Now we are ready to prove consistency of the scheme, that is the Lemma 4.6 for
the scheme de1ned by (19).

Proof. As the proofs of two claims are analogous; we only prove the 1rst one. Let
’∈C2(RN ).

First, let us consider the case z ∈U and D’(z) �= 0. Let )¿ 0. By Lemma 5.9
there exists A1 ¿ 0 and )1 ¿ 0 such that B(z; 2A1) ⊂ U and for all x∈B(z; A1) and all
h∈ (0; A1)

vA(x; h) = �√
h(A− x)6 1

2 − )1
√
h:

Here A :={y∈RN : ’(y)¿’(x) + (−F(D2’(z); D’(z)) + ))h} and A′ :=A ∩ OU . Let
uA′(x; t) be de1ned as before and let w : OU × [0; T ] → R be w :=uA′ − vA. Then w
satis1es the heat equation with zero initial data and is less than 2 on @U . Let F be a
smooth cut-oH function equal to zero in B(z; A1) and equal to 2 on @U . Let Ow be the
solution of the heat equation on U × (0; T ] with F being the initial data and equal to 2
on @U × (0; T ]. By interior regularity there exists A2 ∈ (0; 1) such that for all h∈ [0; A2]
and all x∈B(z; A2), | Ow(x; h)|6 )1h. Note that, by comparison w6 Ow. This implies that
for all h∈ [0; A2] and all x∈B(z; A2)

uA′(x; h)6 vA(x; h) + )1h:

Let A :=min{A1; A2}. Let x∈B(z; A). As before (by 15) it is enough to show that
x �∈ MhA′ for all h∈ [0; A) which is equivalent to uA′(x; h)¡ 1

2 . And that, follows from
the inequalities above:

uA′(x; h)6 vA(x; h) + )1h6 1
2 − )1

√
h + )1h¡ 1

2 :

Now let us consider the case z ∈ @U . Let ’ be a smooth function such that @’=@"(z)
¿ 0 and let )¿ 0. Let uA′ and vA be as above. We again compare them, but to localize
argument we 1rst modify vA. Let  be a smooth function de1ned in a neighborhood
of z such that its zero set is the boundary of U (near z) and D (z) is the outside
normal vector, ". Lemma 5.11 then implies that there is a neighborhood of z, which
we can assume to be a ball of radius 2a, such that for all h∈ (0; a), x∈ @U ∩ B(z; 2a)
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and t ∈ (0; a), @vA=@"(x; t)¿ 0. Let F be a smooth cut-oH function supported in B(z; 2a)
and equal to 1 in B(z; a). Let ṽA be the solution of the following Cauchy problem

@ṽA
@t

− TṽA = 0 in RN × (0;∞);

ṽA(x; 0) = F)A in RN :

It is not hard to show that there exists a negative constant c2, independent of h∈ (0; a)
and x∈B(z; 2a) (recall that A depends on h and x), such that

@ṽA
@"

¿c2 on @U × (0; r):

Applying the Lemma 5.11 once more, we obtain that there exists A1 ¿ 0, smaller
that a, such that for all h∈ [0; A1), x∈ @U ∩B(z; A1) and t ∈ (0; A1), @ṽA=@"(x; t)¿ 0. Let
% be a smooth cut-oH function on @U × [0; T ] such %=0 on (B(z; A1=2)∩ @U )× [0; T ]
and % = c2 on (@U \ B(z; A1)) × [0; T ]. Note that %6 @ṽA=@" on @U × (0; T ).

Let ˜̃vA′ be the solution of

@ ˜̃vA′

@t
− T˜̃vA′ = 0 in U × (0; T );

˜̃vA(x; 0) = F)A in U;

@ ˜̃vA′(x; t)
@"

= %(x; t) on @U × (0; T ):

As before we need to prove that for A small enough, for all x∈B(z; A) and all
h∈ [0; A) the inequality uA′(x; h)¡ 1

2 holds. Recall that Lemma 5.9 there exists A,
which we can assume to be smaller than A1, and )1 ¿ 0 such that for all x∈B(z; A)
and all h∈ [0; A)

vA(x; h)¡ 1
2 − )1

√
h:

Let w = ˜̃vA′ − uA′ . Note that w satis1es the conditions of Lemma 5.10. Therefore, by
making A even smaller (if necessary), we get that for all h∈ [0; A), x∈ OU ∩ B(z; A)

˜̃vA′(x; h) − uA′(x; h)¿− )1
√
h:

Combining the two inequalities, along with the fact that, by comparison, ˜̃vA′ 6 ṽA6 vA,
yields

uA′(x; h)¡ 1
2 :

To complete the proof of convergence of the scheme we need to verify that the
Lemmas 5.7 and 5.8 hold for this scheme as well. Note that in both lemmas the
arguments are about points in the interior of U , and the boundary conditions play
a minor role. Consequently Lemma 5.8 can again be proven by making only minor
modi1cations to the proof of Lemma 3.2 in [17], while the Lemma 5.7 can be proven
along the same lines as before.
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6. Schemes for front propagation for velocities having nonlocal terms

Let domain U and mapping T be as in Section 5.

6.1. Motions not depending on curvature

Let measure �, threshold ? and velocity v be as in Section 5.1. We here construct
schemes for the following nonlocal velocity:

w(x; p; A) :=v(p)b(x; A); (21)

where A∈B and b : OU → R×B is continuous. Let us now de1ne F : OU×RN ×B → R
as follows:

F(x; p; A) :=

{−|p|w(x;−p̂; A) if p �= 0;

0 otherwise:
(22)

For F to be nonincreasing in its set argument we assume the following condition:
(w1) v(p)¿ 0 for all p∈ SN−1 and b is nondecreasing in its set argument.
Note that the conditions (F1)–(F7) are now satis1ed. Recall that for h �= 0 �h(·) =

�(h−1·). Let �0(·) be the measure de1ned by �0({0}) = 1, �0(RN \ {0}) = 0.
The approximation scheme we consider is de1ned by

MhA := {x∈ OU : b(x; A)¿ 0 and �hb(x;A)(T (A) − x)¿ ?} ∪
{x∈A: b(x; A)¡ 0 and �hb(x;A)(T (A) − x)¿ 1 − ?}: (23)

Let us brieXy explain, what lies behind the apparent diHerent treatment of points where
b¿ 0 and points where b¡ 0. If b¡ 0 the front is shrinking so to get points that lie
inside the updated front, only the points that are already inside the front need to be
considered.

Remark. For nonnegative velocities; that is the velocities for which b¿ 0; the scheme
(as well as many constructions and proofs to follow) become much simpler. Then

MhA :={x∈ OU : �hb(A;x)(T (A) − x)¿ ?}: (24)

The approximation scheme Ŝh is de1ned by

Ŝh’(x) = sup{�: x∈Mh{’¿ �}}:
It is important to note that this scheme is not monotone in its set argument as can be
seen from the following example.

Example. Let � = D−1)B(0;1); ? = 0:4; and b(A) = m(A). Although exact computations
are easy to obtain we hope that explaining the Fig. 2 will be more insightful. The
rectangles A; B∈B have areas m(A) = 2; m(B) = 1. The circles represent the supports
of �hb(A) and �hb(B). Note that the proportion of the bigger circle in A is less than 0.4
while the proportion of the smaller circle in B is bigger than 0.4. Therefore x �∈ MhA
but x∈MhB.
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B

A

x
h

2h

Fig. 2. Example of nonmonotonicity of the scheme Mh.

Our strategy for proving convergence of the scheme Ŝ is following: We construct
two more complicated monotone schemes that bound it from above and below and
show their convergence. By Lemma 4.3 that implies the convergence of the scheme Ŝ.

Let

OMhA :=

{
x∈ OU : b(x; A)¿ 0 and sup

06l6hb(x;A)
�l(T (A) − x)¿ ?

}
∪

{
x∈A: b(x; A)¡ 0 and sup

hb(x;∅)6l6hb(x;A)
�l(T (A) − x)¿ 1 − ?

}
: (25)

For the proof of the convergence we need the auxiliary scheme

OM
B
hA :=

{
x∈ OU : b(x; B)¿ 0 and sup

06l6hb(x;B)
�l(T (A) − x)¿ ?

}
∪

{
x∈A: b(x; B)¡ 0 and sup

hb(x;∅)6l6hb(x;B)
�l(T (A) − x)¿ 1 − ?

}
: (26)

These schemes are monotone in their set arguments, that is: For all A; B; C ∈B and all
h¿ 0

If A ⊆ B then OMhA ⊆ OMhB; OM
C
h A ⊆ OM

C
h B and OM

A
hC ⊆ OM

B
hC: (27)

The proofs of monotonicity are straightforward. Let us just illustrate that on one case.
Let A ⊂ B, x∈ OMhA and b(x; A)¡ 0¡b(x; B). Then x∈A and hence x∈B, which
implies �0(B− x) = 1. Therefore x∈ OMhB.

We now de1ne mapping OSh :B× B( OU ) → B( OU ) by
OSh(B)’(x) :=sup{�∈R: x∈ OM

B
h{’¿ �}}:

Approximation scheme ÔSh, de1ned as in Section 4, is then given by
ÔSh’(x) = sup{�: OSh({’¿ �})’(x)¿ �}:
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It is straightforward to check that

ÔSh’(x) = sup{�: x∈ OMh{’¿ �}}: (28)

We also use the scheme Mh, de1ned by

MhA :=
{
x∈ OU : b(x; A)¿ 0 and inf

hb(x;A)6l6hb(x; OU )
�l(T (A) − x)¿ ?

}
∪

{
x∈A: b(x; A)¡ 0 and inf

hb(x;A)6l60
�l(T (A) − x)¿ 1 − ?

}
: (29)

Analogously to the scheme OMh we de1ne the auxiliary schemes MB
h , Sh and the scheme

Ŝh. Note that the analogue of the monotonicity (27) holds for Mh and that the analogue
of (28) holds for Ŝh.

To de1ne approximate solutions for h¿ 0 and t¿ 0 we de1ne Qh
t , OQ

h
t and Qh

t
by

Qh
t :=Ŝ

j
h; OQ

h
t := ÔS

j

h and Qh
t
:=Ŝ

j
h where j =

⌊ t
h

⌋
:

The following properties, that follow immediately from the de1nitions, are used in the
proofs of consistency of the schemes.

If x �∈ OM
B
h{’¿ �} then OSh(B)’(x)6 �;

and if x∈MB
h{’¿ �} then Sh(B)’(x)¿ �: (30)

Also note that from the de1nitions follows that for all h¿ 0, A; B∈B and ’∈B( OU )

MB
hA ⊆ MB

h A ⊆ OM
B
hA;

Sh(A)’6 Sh(A)’ ⊆ OSh(A)’: (31)

Now we are ready to prove the convergence of the schemes.

Lemma 6.1. Let g be a continuous function on OU and let u be the unique continuous
solution of (7) with F given by (22). Then as h → 0; for all T ∈ [0;∞);

OQ
h
t g(x) → u(x; t) and Qh

t
g(x) → u(x; t) uniformly on OU × [0; T ]:

Proof. We proceed as in the proof of the Theorem 5.1. Monotonicity of OM
B
h and MB

h
and the de1nition of OSh and Sh imply that they satisfy properties (S1) and (S2). So
we only need to show that properties (S3); (S4) are satis1ed. As before we do that in
two lemmas.

Lemma 6.2. Let ’∈C1(RN ) and A∈B. For all z ∈U and all z ∈ @U for which
@’=@"(z)¿ 0; for all )¿ 0; there exists A¿ 0; such that for all x∈B(z; A) ∩ OU and
h∈ (0; A);

OSh(A)’(x)6’(x) + (−F(z; D’(z); A) + ))h; (32)

Sh(A)’(x)6’(x) + (−F(z; D’(z); A) + ))h; (33)
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and analogously for all z ∈U and all z ∈ @U for which @’=@"(z)¡ 0; there exists
A¿ 0; such that for all x∈B(z; A) ∩ OU and h∈ (0; A);

OSh(A)’(x)¿’(x) + (−F(z; D’(z); A) − ))h; (34)

Sh(A)’(x)¿’(x) + (−F(z; D’(z); A) − ))h: (35)

Proof. From the property (31) follows that it is suEcient to prove (32) and (35).
So let us prove (32) 1rst. Let z ∈U . (The modi1cations needed in considering the
case z ∈ @U are the same as in the proof of Lemma 5.4 and hence we omit that
case.) Let A∈B; ’∈C1(RN ) and )¿ 0. Let Ob :=max{b(x; OK): x∈ OU;K ∈B} and Ov=
max{v(p): p∈ SN−1}. Let p = D’(z).

We split the rest of the proof of (32) into three cases:
Case 1o: b(z; A)¿ 0.
Let E :={y: 〈p; y〉¿ |p|v(−p)+)=2 Ob}. By de1nition of v; �(E)¡?. Note that, since

v¿ 0, E is a half-plane not containing the origin, which implies that for c¿ 1 cE ⊂ E.
There exists R¿ 0 such that

�(RN \ B(0; R))¡?− �(E): (36)

Since ’ is continuously diHerentiable and b(·; A) is continuous there exists A¿ 0 such
that the following holds: B(z; RA Ob+ A) ⊂ U , b(z; A)=b(x; A)¿ 1−min{)=4 Ob|p| Ov; 1} for
all x∈B(z; A), and for all h∈ (0; A), all x∈B(z; A), and y∈B(0; R)

’(x + hb(x; A)y)6’(x) + 〈p; y〉hb(x; A) +
)h
4
: (37)

Let h∈ (0; A) and x∈B(z; A). Let

L :={’¿’(x) + (−F(z; p; A) + ))h} ∩ OU:

Note that x �∈ L. By the property (30) it is enough to show that

x �∈ OM
A
hL

which is, since b(x; A)¿ 0, equivalent to showing that

sup
06l6hb(x;A)

�l(T (L) − x)¡?:

Let us show that L∩B(x; Rhb(x; A)) ⊂ x + hb(x; A)E. Let x + hb(x; A)y be an arbitrary
element of L ∩ B(x; Rhb(x; A)). Using the de1nition of L and (37) we get:

’(x + hb(x; A)y)¿’(x) + (−F(z; p; A) + ))h

hb(x; A)〈p; y〉 +
)h
4
¿ |p|v(−p)b(z; A)h + )h

〈p; y〉¿ |p|v(−p)
b(z; A)
b(x; A)

+
3)

4 Ob
¿ |p|v(−p) +

)

2 Ob
:
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So x + hb(x; A)y∈ x + hb(x; A)E. Therefore for every l∈ (0; hb(x; A)]

�l(T (L) − x)6 �l(L ∩ B(x; Rhb(x; A)) − x) + �l(RN \ B(0; Rhb(x; A)))

6 �
(
hb(x; A)

l
E
)

+ �
(
hb(x; A)

l
(RN \ B(0; R))

)

6 �(E) + �(RN \ B(0; R))¡?:

Since x �∈ L we also have that �0(T (L) − x) = 0. Therefore sup06l6hb(x;A) �l(T (L) −
x)¡?, which by de1nition of OM

A
h implies that x �∈ OM

A
hL.

Case 2o: b(z; A) = 0.
Let E, R be as in the 1rst case. Since ’ is continuously diHerentiable there ex-

ists A¿ 0 such that the following holds: B(z; RA Ob + A) ⊂ U , for all x∈B(z; A),
b(x; A)¡min{)=4 Ob|p| Ov; 1} and for all h∈ (0; A), all x∈B(z; A) such that b(x; A)¿ 0,
and y∈B(0; R)

’(x + hb(x; A)y)6’(x) + 〈p; y〉hb(x; A) +
)h
4
: (38)

Let h∈ (0; A) and x∈B(z; A). Let L :={’¿’(x)+(−F(z; p; A)+))h}∩ OU ={’¿’(x)
+ )h} ∩ OU .

As in the 1rst case it is enough to show that x �∈ OM
A
hL. If b(x; A)6 0 than this is

satis1ed since x �∈ L. So we can assume b(x; A)¿ 0. We need to show that

sup
06l6hb(x;A)

�l(T (L) − x)¡?:

As before, let us show that L ∩ B(x; Rhb(x; A)) ⊂ x + hb(x; A)E. Let x + hb(x; A)y be
an arbitrary element of L∩ B(x; Rhb(x; A)). Using the de1nition of L and (38) we get:

’(x + hb(x; A)y)¿’(x) + )h;

hb(x; A)〈p; y〉 +
)h
4
¿ )h;

〈p; y〉¿ )
4b(x; A)

+
)

2 Ob
¿ |p|v(−p) +

)

2 Ob
:

The remainder of the argument is identical to one given in Case 1o.
Case 3o: b(z; A)¡ 0.
If p = 0 or v(−p) = 0 then x �∈ L and, as above, that implies the claim. So we

can assume that p �= 0 and v(−p) �= 0. We can now assume that |p|v(−p)¿)= Ob. Let
E :={y: 〈p; y〉¿ − |p|v(−p) + )=2 Ob}. By de1nition of v, �(−E)6 1 − ?. Note that,
E is a half-plain containing the origin, which implies that for 0¡c¡ 1, −cE ⊂ −E.

If � is not compactly supported, by assumption (�1) there exists R¿ 0 such that

�(RN \ B(0; R))¡ 1 − ?− �(−E): (39)

If � is compactly supported then let R be the diameter of the support of �. Since
’ is continuously diHerentiable and b(·; A) is continuous there exists A¿ 0 such that
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the following holds: B(z; RA Ob + A) ⊂ U , b(z; A)=b(x; A)¡ 1 + min{)=4 Ob|p| Ov; 1} for all
x∈B(z; A), and for all h∈ (0; A), all x∈B(z; A), and y∈B(0; R)

’(x + h|b(x; A)|y)6’(x) + 〈p; y〉h|b(x; A)| + )h
4
: (40)

Let h∈ (0; A) and x∈B(z; A). Let L :={’¿’(x) + (−F(z; p; A) + ))h} ∩ OU . Again,
we need to show that x �∈ OM

A
hL, which is, since b(x; A)¡ 0, equivalent to showing that

sup
hb(x;∅)6l6hb(x;A)

�l(T (L) − x)6 1 − ?:

Arguing as in Case 1o one obtains that L ∩ B(x; Rh|b(x; A)|) ⊂ x + h|b(x; A)|E.
Therefore for every l∈ [hb(x; ∅); hb(x; A)]

�l(T (L) − x)6 �l(L ∩ B(x; Rh|b(x; A)|) − x) + �l(RN \ B(0; Rh|b(x; A)|))

6 �
(
−hb(x; A)

l
E
)

+ �
(
−hb(x; A)

l
(RN \ B(0; R))

)

6 �(−E) + �(−RN \ B(0; R))6 1 − ?:

Therefore suphb(x;∅)6l6hb(x;A) �l(T (L) − x)6 1 − ?, which by de1nition of OM
A
h implies

that x �∈ OM
A
hL.

The proof of (35) is dual to the one above and we leave it to the reader.

Lemma 6.3. There exist constants A¿ 0; R¿ 0 such that for all y∈ OU for the func-
tion ’(x) = −|x − y| (respectively ’(x) = |x − y|) the following inequalities hold

Ŝh’(x) − ’(x)6Rh (respectively Ŝh’(x) − ’(x)¿− Rh); (41)

ÔSh’(x) − ’(x)6Rh (respectively ÔSh’(x) − ’(x)¿− Rh): (42)

Proof of this lemma is analogous to the proof of Lemma 5.5; only that R in this
case is chosen so that �(B(0; R=3 Ob))¿max{?; 1 − ?}.

Theorem 6.4. Let g be a continuous function on OU and let u be the unique continuous
solution of (7) with F given by (22). Then as h → 0; for all T ∈ [0;∞);

Qh
t g(x) → u(x; t) uniformly on OU × [0; T ]:

This theorem follows directly from Lemmas 6.1 and 6.3 and property (31).
Analogues of the Theorems 5.2 and 5.3 follow as before.

6.2. Motions depending on the curvature

In this section we construct an extension of schemes studied in Section 5.2 to
some nonlocal motions. So, let � be a measure such that �(RN ) = 1 and that also
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satis1es conditions (�2) − (�6). Let b :B → R be a nondecreasing (wrt. set inclu-
sion) continuous function. We construct a scheme for front propagation with velocity
v : SN−1 ×SN ×B → R

v(p; X; A) =
(∫

p⊥
f(x) dHN−1(x)

)−1

(
−1

2

∫
p⊥

〈Xx; x〉f(x) dHN−1(x) + b(A)
)

:

We de1ne F :RN \ {0} ×SN ×B → R by

F(p; X; A) := − |p|v
(

p
|p| ;

X
|p| ; A

)
:

An update of the set valued scheme Mh :B → B for h¿ 0 is de1ned by

MhA :={x∈ OU : �√
h(T (A) − x)¿ 1

2 − b(A)
√
h}:

The auxiliary scheme is de1ned by

MB
h A :={x∈ OU : �√

h(T (A) − x)¿ 1
2 − b(B)

√
h}:

Ch
t ; Sh; Ŝh and Qh

t are de1ned as before. We claim that the appropriate analogues of
the Theorems 5.1, 5.2 and 5.3 hold. The proof relies on the analogues of the Lemmas
5.6, 5.7 and 5.8. These are proven in the same way as the analogous results for local,
curvature dependent motions.
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Appendix A

Proof of Lemma 5.10. Using the normal bundle to @U and a cut-oH function it is
easy to construct a smooth function G supported outside of B(z; 2r) × [0; T ] such that
@G=@"= g on @U × (0; T ]. Let us de1ne functions f :=− Gt + TG and w = u− G. The
function w is then the solution of the problem:

wt − Tw = f in U × (0; T ];

w(x; 0) =  (x) − G(x; 0) in OU;

@w
@"

(x; t) = 0 on @U × (0; T ]:
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From the theory of linear parabolic partial diHerential equations (see [12]) we know
an explicit formula for the solution of the given initial-boundary value problem:

w(x; t) =
∫
U
N (x; t; +; 0)( (+) − G(+)) d+ +

∫ t

0

∫
U
N (x; t; +; 1)f(+; 1) d+ d1: (A.1)

Where N; the Neumann’s function for the homogeneous version of the problem above
is constructed in the following way: N (x; t; +; 1) = 5(x; t; +; 1) + V (x; t; +; 1) where

5(x; t; +; 1) =
1

(2
√
D)N

(t − 1)−N=2 exp
(
− |x − +|2

4(t − 1)

)
is the fundamental solution for the heat equation and for +∈U and 1∈ [0; T ); V (·; ·; +; 1)
is the solution of the following problem:

Vt − HxV = 0 in U × (1; T ];

V (·; 1; +; 1) = 0 in OU;

@V
@"

(x; t; +; 1) = −@5
@"

(x; t; +; 1) on @U × (1; T ]:

Note that D5 for x; +∈ OU satis1es

|D5(x; t; +; 1)|6 diam(U )(t − 1)−(N+1)=2 exp
(
− |x − +|2

4(t − 1)

)
:

That; using the estimate given in Lemma 5.3.2 in [12]; yields the following estimate
for some constant c2:

|V (x; t; +; 1)|6 c2(t − 1)−(N+1)=2 exp
(
− |x − +|2

4(t − 1)

)
:

Therefore for t ∈ (0; T ] and 1∈ [0; t) and all x �= + in U

|N (x; t; +; 1)|6 c(t − 1)−(N+1)=2 exp
(
− |x − +|2

4(t − 1)

)
for some constant c. The remainder of the proof is straightforward from this estimate
and (A.1).

Proof of Lemma 5.11. Let c :=(〈D’(z); D (z)〉=2|D’(z)‖D (z)|). Since ’ and  are
smooth functions there exists V1 ⊂ V ; an open neighborhood of z such that for all
(x; y)∈V1 × V1

〈D’(x); D (y)〉¿c|D’(x)| |D (y)|: (A.2)

Let b :=1 + maxx∈V
∑

16i; j6N |@2’=@xi@xj|. Let a∈ (0; 1=b) such that B(z; 3a) ⊂ V1.
The following estimate is useful later: Let m¿ 0 be an integer and /¿ 1 then∫ ∞

/
w2m+1 e−w2

dw =
1
2

∫ ∞

/2
sm e−s ds

= −1
2


 m∑

j=0

m!
j!

sj


 e−s|∞/2
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6 (m + 1)!/2m e−/2
: (A.3)

Note also that if m¡l then
∫∞
/ wm e−w2

dw¡
∫∞
/ wl e−w2

dw. The estimate (A.3) im-
plies, after an elementary calculation, that there exists A1 ¿ 0 such that for all t ∈ (0; A1)

1√
t

∫ ∞

a
2
√

t

wN−1 e−w2
dw¡

c
32N2N exp

(−a2

8t

)
: (A.4)

Let C :=maxj=0;1;2
∫∞

0 wN+j e−w2
dw. Let

A :=min
{
A1;

a2

32(ln 8N − ln c)
;
( c

256NCb3N

)2
; 1
}

and

c1 :=min
{
a
8
;
b
4
;

c
256NbC3N

}
: (A.5)

Let W :=B(z; c1) and let )0 :=min{maxx∈W∩{ =0} ’(x); −minx∈W∩{ =0} ’(x)}.
Let )∈ (−)0; )0), t ∈ (0; A), x∈W such that  (x) = 0. Let y be a point from the set

{’ = )} closest to x. Note that d(z; y)¡a=4. Without the loss of generality we can
assume that y=0 and that D’(0) is a negative multiple of eN . Then x=(0; : : : ; 0; xN ).
For a vector q∈RN let Zq :=(q1; : : : ; qN−1). To obtain needed estimates we use the
following regions of RN

H :={q: qN ¡ 0};
A1 :={q: qN ¡− a};
A2 :={q: qN ∈ [ − a; a] and | Zq|¿a};
A3 :={q: | Zq|6 a and |qN |¡b| Zq|2};
A4 :={q: qN ¿a}:

For i = 1; 2; 3; 4 let gi :=(g − )H ))Ai . Let g0 :=)H . Our assumptions on a and our
choice of b yields that g=g0 +g1 +g2 +g3 +g4. Let KN (x; t) :=(4Dt)−N=2 exp(−|x|2=4t)
be the heat kernel. For i = 0; 1; 2; 3; 4 let ui(x; t) :=

∫
RN gi(+)KN (x − +; t) d+. Note that

u = u0 + u1 + u2 + u3 + u4 and Du = Du0 + Du1 + Du2 + Du3 + Du4.
Elementary calculation shows that:

Du0(x; t) :=
(

0; : : : ; 0;− 1
2
√
Dt

exp
(
−x2

N

4t

))
:

Elementary calculations and use of (A.5) show that∣∣∣∣ @u1

@xN
(x; t)

∣∣∣∣¡ 1
2
√
Dt

exp
(
−x2

N

4t

)
exp
(
−a2

8t

)
¡

c
8N

|Du0(x; t)|:

For j = 1; : : : ; N − 1∣∣∣∣@u1

@xj
(x; t)

∣∣∣∣¡ 2
2
√
Dt

exp
(
−x2

N

4t

)
exp
(
−a2

8t

)
¡

c
8N

|Du0(x; t)|:
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To get the bounds for the gradient of u2 we use cylindrical coordinates and (A.4)∣∣∣∣ @u2

@xN
(x; t)

∣∣∣∣¡
∫ a

−a

∫ ∞

a

∫ D

0
· · ·
∫ D

0

∫ 2D

0
(4Dt)−N=2 |xN − +N |

2t
rN−2

exp
(
−|r|2 + (xN − +N )2

4t

)
d?n−2 : : : d?1 dr d+N

¡ 2N+1 1
2
√
Dt

∫ ∞

a
2
√

t

wN−2 e−w2
dw¡

c
8N

|Du0(x; t)|:

Similarly, for j = 1; : : : ; N − 1∣∣∣∣@u2

@xj
(x; t)

∣∣∣∣¡
∫ a

−a

∫ ∞

a

∫ D

0
· · ·
∫ D

0

∫ 2D

0
(4Dt)−N=2 1

2t
rN−1

exp
(
−|r|2 + (xN − +N )2

4t

)
d?N−2 : : : d?1 dr d+N

¡ 2N+2 1
2
√
Dt

∫ ∞

a
2
√

t

wN−1 e−w2
dw¡

c
8N

|Du0(x; t)|:

Since xN ¡ (1=4b) then for all +∈A3

|+− x|2¿ x2
N + | Z+|2=2:

Using this fact and (A.5) we get∣∣∣∣ @u3

@xN
(x; t)

∣∣∣∣¡
∫ a

0

∫ D

0
· · ·
∫ D

0

∫ 2D

0

∫ br2

−br2
(4Dt)−N=2 |xN − +N |

2t
rN−2

exp
(
−x2

N

4t
− r2

8t

)
d+N d?N−2 : : : d?1 dr

¡ 4b exp
(
−x2

N

4t

)∫ a

0
t−(N+2)=2rN (|xN | + br2) exp

(
− r2

8t

)
dr

¡
8b√
Dt

exp
(
−x2

N

4t

)(
xN3N+1

∫ ∞

0
wN e−w2

dw

+ 3N+3t3=2
∫ ∞

0
wN+2 e−w2

dw
)

¡
c

8N
|Du0(x; t)|

and for j = 1; : : : ; N − 1∣∣∣∣@u3

@xj
(x; t)

∣∣∣∣¡
∫ a

0

∫ D

0
· · ·
∫ D

0

∫ 2D

0

∫ br2

−br2
(4Dt)−N=2 1

2t
rN−1
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exp
(
−x2

N

4t
− r2

8t

)
d+N d?N−2 : : : d?1 dr

¡ 2b exp
(
−x2

N

4t

)∫ a

0
t−(N+2)=2rN+1 exp

(
− r2

8t

)
dr

¡ 3N+2b exp
(
−x2

N

4t

)∫ ∞

0
wN+1 e−w2

dw¡
c

8N
|Du0(x; t)|:

Estimates for |Du4| are obtained in the same way as the ones for |Du1|.
It follows that for j = 1; 2; 3; 4

|Duj(x; t)|¡ c
4
|Du0|:

Using these inequalities, the fact that Du0(x; t) is a positive multiple of D’(0) and
(A.2) we get what was claimed:

〈Du(x; t); D (x)〉 = 〈Du0(x; t); D (x)〉 +

〈
4∑

j=1

Duj(x; t); D (x)

〉

¿ c|Du0(x; t)‖D (x)| − 4
c
8
|Du0(x; t)‖D (x)|¿ 0:
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