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Abstract. A configuration of near-equilibrium liquid droplets sitting
on a precursor film which wets the entire substrate can coarsen in time by
two different mechanisms: collapse or collision of droplets. The collapse
mechanism, i.e., a larger droplet grows at the expense of a smaller one
by mass exchange through the precursor film, is also known as Ostwald
ripening.

As was shown by Glasner and Witelski [8] in case of a one-dimensional
substrate, the migration of droplets may interfere with Ostwald ripening:
The configuration can coarsen by collision rather than by collapse. We
study the role of migration in case of a two-dimensional substrate for a
whole range of mobilities.

We characterize the velocity of a single droplet immersed into an
environment with constant flux field far away. This allows us to describe
the dynamics of a droplet configuration on a two-dimensional substrate
by a system of ODEs. In particular, we find by heuristic arguments that
collision can be a relevant coarsening mechanism.

1. Introduction

We are interested in the coarsening dynamics of a configuration of near-
equilibrium liquid droplets sitting on a flat precursor film which wets the
entire substrate, see Figure 1. By coarsening we mean in particular the
decrease of the number of droplets in time. The dynamics of the coarsening
process is driven by the reduction of total energy.

The coarsening process can be mediated by two mechanisms: collapse and
collision of droplets. Collapse relies on the mass exchange between droplets
through the precursor layer, see Figure 2. This process is also known as
Ostwald ripening. Collisions of droplets can happen due to the motion of
droplets on the precursor layer, see 3. (For a more detailed discussion of the
underlying physics we refer to the introduction of [13].)

Traditional Ostwald ripening in binary mixtures, as described by the
Cahn–Hilliard equation, is well-understood. A sparse configuration of spher-
ically symmetric particles of the minority phase immersed into a matrix of
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Figure 1. A typical configuration of droplets connected by
a uniform precursor layer on a two-dimensional substrate at
two different times.

shrinking

growing

mass transfer

Figure 2. Collapse mechanism: A pressure gradient is re-
sponsible for the mass transfer through the connecting film.
Eventually, the smaller droplet vanishes.

Figure 3. Collision mechanism: Droplets migrate on the
film which can lead to coarsening. (The illustration is in the
reference frame with fixed center of mass.)

the majority phase will age over time: The large particles grow at the ex-
pense of smaller ones which eventually disappear; the configuration coarsens
over time. A flux across the matrix allows for the mass exchange between
the particles. Migration of the particles opposite to the dominant direction
of the ambient flux is a much slower process, and does not affect Ostwald
ripening in the low volume-fraction regime. In the sharp-interface-limit, the
Mullins–Sekerka free boundary problem, the ripening dynamics of particles
were studied analytically in [2] and [3].

Our physical system differs from binary mixtures in two respects. The
first, obvious, difference lies in a “mixed dimensionality”: Kinetics (the mass
exchange between the droplets) is governed by flux through the precursor
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film on the d-dimensional substrate (d = 1 and d = 2 being physically rel-
evant) as in binary mixtures. Energetics however is (d + 1)-dimensional in
the sense that the surface tension corresponds to the surface of a (d + 1)-
dimensional droplet (while the surface energy in binary mixtures corresponds
to the surface of a d-dimensional droplets). The second, more subtle, dif-
ference comes from the variable mobility in the thin-film equation: Since
the mobility strongly increases with height (see (1.3)), large droplets are,
relatively speaking, much more mobile than large particles.

The role of migration of droplets on a one-dimensional substrate in the
long-time dynamics is studied by Glasner and Witelski in [8]. They identify
regimes in terms of the precursor height and the average film height where
each of the coarsening mechanism is dominant. In [15], Pismen and Pomeau
derive, assuming quasi-stationarity of the system, an equation for the droplet
motion in an interacting system. We obtain qualitatively different results.
These differences are discussed at length in Appendix C, and analytical
justification for the noted disparities are highlighted.

In [13], we studied the statistical behavior of the dynamics characterized
by a single coarsening exponent and established an upper bound on the
coarsening rate. Let us state that our rigorous result was independent of the
question whether migration or Ostwald ripening is the dominant mechanism.

The purpose of this paper is to study the role of migration for the coars-
ening process in terms of the variable mobility in the thin-film equation. We
gain the following insights:

• A single droplet in an ambient flux field migrates in the direction of
the flux source, i.e. the migration velocity is antiparallel to the flux
field, see Figure 6.

• The interplay between Ostwald ripening and migration in a many-
droplet system is as follows: The ripening generates an ambient
flux field which affects the droplet migration as in the single-droplet
case. Vice versa, migration changes the locations of the droplets
from which the flux stems.

• The migration velocity and the volume change can be quantified in
terms of scaling in the droplet size and distance which yield heuris-
tically the typical time scales for migration and Ostwald ripening.
The scaling laws depend on the mobility and the average film height.

• Collision of migrating droplets generically occurs for a configura-
tion of two relatively small droplets submerged into a matrix of
larger droplets. Therefore, the time scales for migration and Ost-
wald ripening heuristically yield the relative importance of collisions
for the coarsening process. In particular, we find that for q ≥ 3
and large average film height the coarsening process of a droplet
configuration is collision-dominated.
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The outline of this paper is as follows: The remainder of this section is
devoted to the derivation of the thin-film equation. In Section 2, we review
the derivation of the equilibrium droplet profile. The “model problem”, that
is, a single near-equilibrium droplet in an ambient flux field, is studied in
Section 3 where we characterize the migration velocity (formula (3.24)). For
readability, we have left the detailed analysis of auxiliary functions related
to this section to Appendices A and B. The interaction of droplets in a
reduced configuration space is analyzed in Section 4 by means of the Rayleigh
principle. The evolution of the system is described by the system of ODEs
(4.13), whose coefficients are investigated in Subsection 4.2. In the case of
two interacting droplets the system is also presented in an explicit form in
(4.25) and (4.26). Time scales of the dynamics are investigated in Subsection
4.2.2. In Appendix C we present the analysis of a related problem of a single
droplet sliding due to external potential (for example due to gravitation an
inclined substrate). For comparison with sections 3 and 4, in Appendix
D we present the analysis in one-dimensional setting. In Appendix E we
present numerical experiments which confirm some of our findings, but also
help visualize the dynamics. In Appendix F we compare the approach of
this paper to a more standard approach via matched asymptotic expansion.

The results of Section 3 rely on the assumption that the system is quasi-
stationarity. The results of Section 4 are carried out on the level of the model
problem, which encodes the quasi-stationary nature of the system. Proving
the results rigorously remains an open problem. Let us note that while the
system is similar to the Cahn-Hilliard equation the approach to deriving
the equations for the motion of droplets is somewhat different. Namely,
for Cahn–Hilliard equation one first considers an intermediate system: the
sharp-interface dynamics given by the Mullins–Sekerka equation. Then the
equations for evolution of “droplets” are derived from the Mullins–Sekerka
equation. In the case of Cahn–Hilliard equation there are rigorous results
in this direction, for the first step by Alikakos, Bates and Chen [1], and for
the derivation of approximating ODE system by Alikakos and Fusco [2], and
Alikakos Fusco and Karali [4].

1.1. Kinematics, kinetics and energetics.

1.1.1. Kinematics. In the thin-film approximation, the state of the system
at time t is described by the film height h = h(x, t) > 0 over a point x ∈ R

d

on the substrate. Conservation of mass assumes the form of a continuity
equation for h:

∂th+ ∇ · J = 0, (1.1)

where the volume flux J = J(x, t) ∈ R
d is a vector field of the substrate

dimension d.
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1.1.2. Kinetics. In the thin-film approximation, the flux is generated by the
gradient of the pressure µ

J = −m(h)∇µ, (1.2)

where the mobility m is a function of h. The form of the mobility-height
relation depends on the underlying (d + 1)-dimensional fluid model which
specifies in particular the boundary condition for the fluid velocity at the
substrate. For the Stokes equation with no-slip boundary condition, one
obtains in the thin-film approximation after suitable nondimensionalization
[12]

m(h) = h3.

For the Stokes equation with a Navier slip-condition [10], the mobility is less
degenerate:

m(h) = h2 as long as h ≪ slippage length.

In case of Darcy’s equation [5] with no-flux boundary conditions, one ends
up with

m(h) = h.

In order to capture the effect of different kinetics, it is convenient to study
all homogeneous mobility functions at once:

m(h) = hq for some fixed q ≥ 0. (1.3)

1.1.3. Energetics. We envision a thermodynamically driven situation, where
the pressure comes in form of the functional derivative of a free energy E in
the film height:

µ =
δE

δh
. (1.4)

In our case, the energy is the sum of the surface energy between liquid and
vapor and a short-range interaction potential between substrate, liquid film
and vapor (which is only effective where h is sufficiently small):

E(h) =

∫
1

2
|∇h|2 + U(h) dx, (1.5)

where a typical model (see [17] for example) for the short-range potential is

U(h) = β
α−βh

−α − α
α−βh

−β + 1 for some 0 < β < α; (1.6)

see Figure 4. The potential is normalized by

lim
h↑∞

U = 1.

Moreover, we have nondimensionalized horizontal length x and height h such
that

min
h
U = U(h = 1) = 0. (1.7)

Note that in case of (1.5),

µ = −∆h+ U ′(h), (1.8)
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Figure 4. Short-range interaction potential.

where the prime stands for the ordinary derivative w. r. t. the variable h.

1.2. Gradient flow structure and Rayleigh principle. Combining (1.1),
(1.2), (1.4), and (1.8), one obtains a nonlinear fourth-order parabolic equa-
tion for h:

∂th−∇ ·
(
m(h)∇(−∆h+ U ′(h))

)
= 0. (1.9)

Mathematically speaking, (1.9) is a variant of the Cahn–Hilliard equation
if one interprets h as the conserved order parameter. The difference from
the standard Cahn–Hilliard equation is both in energetics and kinetics. The
difference in energetics is that the nonconvex potential U is not a “double-
well potential” of the universal Ginzburg–Landau type: It only has a single
finite minimum (even when shifted by a linear function). However, the other
minimum can be thought of as h = +∞. The difference in kinetics lies in the
fact that the mobilitym strongly depends on the order parameter. Of course,
solution-dependent and even degenerate mobilities have been considered in
the context of the Cahn–Hilliard, see [6] for a mathematical treatment. But
the power-law dependence (1.3) together with the fact that the range of
h-values is infinite gives rise to new phenomena.

Not surprisingly in view of its derivation, the evolution defined through
(1.9) has the mathematical structure of a gradient flow – irrespective of the
particular form (1.3) of the mobility function or the energy (1.5). From a
more traditional point of view this means that there is a Rayleigh principle
(see [11] and references therein): At any time the flux J minimizes

1

2
× dissipation rate D + infinitesimal change in energy Ė.

We note that the viscous dissipation rate is given by

D =

∫
1

m(h)
|J |2 dx

and according to (1.1) and (1.4), a flux J entails the infinitesimal change in
energy

Ė =

∫
δE

δh
∂thdx =

∫

µ (−∇ · J) dx =

∫

∇µ · J dx.
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Thus at any time, the flux is determined as the minimizer of the Rayleigh
functional

1

2

∫
1

m(h)
|J |2 dx+

∫

J · ∇µdx

=
1

2

∫
1

m(h)
|J |2 dx+

∫

J · ∇(−∆h+ U ′(h)) dx.

One advantage of this formulation is that it separates kinetics (as highlighted
by the mobility function m(h)) from energetics (as exemplified by the short-
range potential U(h)). It uncovers the competition between driving ther-
modynamics and limiting viscous friction. An immediate consequence of
this variational principle is that the minimizer adjusts itself so that energy
balance holds:

Ė +D = 0.

Furthermore the formulation based on Rayleigh principle enables us to
effortlessly incorporate the systems with prescribed ”far field” flux (needed
in Section 3) which do not conserve mass.

2. Equilibrium droplet

An equilibrium droplet is a stationary point of the energy functional (1.5)
subject to the constraint of constant volume

∫
hdx. In view of (1.4) and

(1.8), this means that the pressure is constant:

µ = −∆h+ U ′(h) = const =: P.

droplet center
0

1

precursor capfoot

Figure 5. Cross-section of an equilibrium droplet.

We are interested in radially symmetric equilibrium droplets h̄ of asymp-
totically constant height h̄∞ for r = |x−X| ↑ ∞. We focus on the case of a
two-dimensional substrate – the one-dimensional substrate is easier. In this
case, equilibrium droplets are characterized as solutions of the ODE

−∂2
r h̄− r−1∂rh̄+ U ′(h̄) = P,

∂rh̄(r = 0) = 0 and limr↑∞ h̄ = h̄∞.
(2.1)

Then necessarily U ′(h̄∞) = P .
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We are interested in the regime where 0 < P ≪ 1 and h̄∞ ≈ 1. We note
that to leading order,

h̄∞ − 1 ≈ 1

U ′′(1)
P ≪ 1 (2.2)

and thus in particular

U ′′(h̄∞) ≈ U ′′(1) > 0. (2.3)

We now argue that the droplet profile satisfies

h̄ > h̄∞ and ∂rh̄ < 0 for r > 0. (2.4)

Indeed, the ODE (2.1) can be interpreted as describing the “position” h̄ as
function of “time” r of a particle in the potential V (h) := −(U(h) − Ph)
with inertia and friction:

∂2
r h̄+ V ′(h̄) = −r−1∂rh̄.

Initially, the particle is at rest: ∂rh̄(r = 0) = 0. Asymptotically, it reaches
h̄∞, which is a local maximum of the potential V , cf. (2.3). In view of (1.6),
the potential satisfies:

h̄∞ is the only local maximum of V ,

limh↓0 V = −∞, and limh↑∞ V = +∞.

Hence the height must stay above its asymptotic position, which proves the
first item in (2.4). Furthermore, the particle can only come to rest in finite
time on an uphill slope. But then it would be trapped below this V -value
and could not reach the local maximum h̄∞. This shows that the particle
moves monotonically. More precisely hr < 0 which establishes (2.4).

2.1. Precursor, foot and cap region of a droplet. For the convenience
of the reader, we present the asymptotic analysis of the solution to (2.1) in
the regime P ≪ 1. It is similar to one in [7]. This will also allow us to refer
to some of the arguments and intermediate results later on. In view of (2.4),
there exists a unique radius R > 0 such that

h̄(r = R) = 2, (2.5)

which we think of as the droplet radius.
Precursor region. We first consider the precursor region r ≥ R. Let us

neglect the first order term in (2.1):

−∂2
r h̄+ U ′(h̄) − U ′(h̄∞) = 0 for r ≥ R,

and check later that this is to leading order consistent. Because of the
boundary condition in (2.1), we conclude from the above

−1

2
(∂rh̄)

2 +W (h̄) = 0 for r ≥ R, (2.6)

where

W (h) := U(h) −
(
U(h̄∞) + U ′(h̄∞)(h− h̄∞)

)
. (2.7)
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From (2.4), (2.5) and (2.6) we obtain
∫ 2

h̄(r)

1
√

2W (h)
dh = r −R. (2.8)

Since

W (h) ≈ 1

2
U ′′(h̄∞)(h− h̄∞)2 ≈ 1

2
U ′′(1)(h − h̄∞)2, (2.9)

the integral in (2.8) diverges logarithmically near h = h̄∞. Hence we have
to leading order

ln(h̄(r) − h̄∞) =
√

U ′′(1) (R− r) for r −R≫ 1. (2.10)

Thus the droplet height converges exponentially (at order-one rate) to its
limiting value as the distance to the droplet perimeter increases.

The first order term 1
r∂rh̄ is indeed negligible with respect to U ′(h̄) −

U ′(h̄∞) = W ′(h̄). In view of (2.6), this follows from

1

R

√

2W (h) ≪ W ′(h) for all h̄∞ ≤ h ≤ 2. (2.11)

For h close to h̄∞, both terms scale as h − h̄∞, cf. (2.9). Thus (2.11) is
satisfied provided R ≫ 1. In the end, we shall see that R ∼ P−1 so that
this is satisfied.

Foot region. It is convenient to introduce the change of variable

r

R
= exp

( s

R

)

(2.12)

for which (2.1) turns into

−∂2
s h̄+ exp(2

s

R
)(U ′(h̄) − U ′(h̄∞)) = 0 for s ∈ R.

For

| s
R
| ≪ 1 ⇐⇒ | r

R
− 1| ≪ 1, (2.13)

this equation is to leading order approximated by the autonomous equation

−∂2
s h̄+ (U ′(h̄) − U ′(h̄∞)) = 0 for | s

R
| ≪ 1.

This implies in original variables to leading order

−1

2
(∂rh̄)

2 +W (h̄) = const for | r
R

− 1| ≪ 1. (2.14)

Matching function and derivative of (2.6) and (2.14) in the overlap region
0 < r−R≪ R, we gather that to leading order, the constant in (2.14) must
vanish so that in view of (2.5) we have

∫ 2

h̄(r)

1
√

2W (h)
dh = r −R for | r

R
− 1| ≪ 1. (2.15)

From

W (h) ≈ 1 for 1 ≪ h≪ P−1,
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and (2.15) we deduce that to leading order

h̄(r) =
√

2(R− r) for 1 ≪ R− r ≪ min{R,P−1}. (2.16)

Cap region. We preliminarily define the cap region as the region where

h̄ ≫ 1 and U ′(h̄) ≪ P. (2.17)

Based on the form (1.6) of U , (2.17) is equivalent to

h̄ ≫ (P−1)
1

β+1 . (2.18)

Because of (2.17), (2.1) is well-approximated by

−∂2
r h̄− 1

r
∂rh̄ = P.

Taking into account the left boundary condition in (2.1), all solutions are of
the form

h̄ = h̄(r = 0) − P

4
r2. (2.19)

Matching function and derivative of (2.16) and (2.19) yields to leading order

P ≈ 2
√

2

R
and h̄(r = 0) =

R√
2
. (2.20)

Hence in view of (2.18) the cap region is characterized by

h̄ =
R√
2

(

1 −
( r

R

)2
)

for R− r ≫ (P−1)
1

β+1 . (2.21)

Notice that in the overlap region (P−1)
1

β+1 ≪ R − r ≪ P−1, which is
nontrivial because of β > 0, the functions (2.16) and (2.21) including their
derivatives indeed agree to leading order.

Mesoscopic droplet profile. From the above analysis, we learn that
there exists an R such that to leading order

R ≈ 2
√

2P−1, (2.22)

h̄ =
R√
2

(

1 −
( r

R

)2
)

for R− r ≫ 1, (2.23)

h̄ = 1 for r −R≫ 1. (2.24)

Indeed, (2.22) is a reformulation of the first item in (2.20), (2.23) follows
from the combination of (2.16) and (2.21), whereas (2.24) is a weakening of
(2.10). Thus on a mesoscopic level, h̄ is well-described by what we call the
mesoscopic droplet profile

h̄meso =







R√
2

(

1 −
( r

R

)2
)

+ 1 for r ≤ R,

1 for r ≥ R






where R = 2

√
2P−1.

(2.25)
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This is not surprising, since h̄meso is the radially symmetric minimizer of
the mesoscopic energy functional

Emeso(h) =

∫
1

2
|∇h|2 + Umeso(h) dx (2.26)

where

Umeso(h) =

{

1 for h > 1,

0 for h ≤ 1.
(2.27)

In particular, the apparent contact angle corresponds to a slope of
√

2 in
our nondimensionalization (1.7).

3. Droplet migration

In this section, we analyze the migration of an equilibrium droplet “in
vitro”. That is, we characterize the migration of a single near-equilibrium
droplet in an ambient flux field; see Figure 6. Our analysis is motivated
by the findings of Glasner in Witelski [7, 8] for one-dimensional substrates.
Our goal is to characterize how the “response” of the droplet depends on its
radius R. Our main effort is targeted towards a two-dimensional substrate.
For comparison, we treat the much easier case of a one-dimensional substrate
in the Appendix. It turns out that, at least in terms of scaling in R, the
two-dimensional case does not differ from the one-dimensional case.

As we shall see, the scaling of the response in R depends on the exponent
q in the mobility function, cf. (1.3). The values of q = 3 (not surprisingly)
and q = 2 (more surprisingly) play a special role. For q < 2, the variable
mobility does not affect the propensity of the droplet to migrate. On the
other hand, starting from q > 3, the effect of variable mobility saturates.

We give now a summary of this section. In Subsection 3.1, we introduce
the setup of a near-equilibrium droplet immersed into an ambient flux field.
We implicitly characterize the migration velocity by the Rayleigh principle
and by a solvability condition. In Subsection 3.2, we derive a semi-explicit
formula for the migration velocity. It involves the solution of two auxiliary
problems for pressures ψ0 and ψ1. We also argue that the droplet always
migrates opposite to the flux imposed far away. In Subsection 3.3, we state
our results on the scaling of the migration speed in the droplet radius R≫ 1.
The detailed analysis is presented in Appendices A and B, where we char-
acterize the solutions ψ1 and ψ0, respectively, of the two auxiliary problem
introduced in Subsection 3.2. For ψ1, we use arguments which could be
made rigorous in the framework of Γ-convergence. For ψ0, we use conven-
tional asymptotic analysis.

In Appendix C, we compare the migration of a droplet in a flux field to
the sliding of a droplet in an external potential. The latter situation was
analyzed by Pismen and Pomeau [15], but we obtain different results.
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3.1. Set-up for migration. We want to characterize the migration speed
of a near-equilibrium droplet immersed into an environment with prescribed
constant flux J∞ far away from the droplet. We let X denote the center of
mass of the droplet and write

r = |x−X| and ν =
x−X

r
.

We claim that the migration speed Ẋ of the droplet, together with the flux
field J , is characterized by the following problem:

−Ẋ · ∇h̄−∇ · (m̄∇µ) = 0, (3.1)

J · ν → J∞ · ν as r ↑ ∞ where J := −m̄∇µ, (3.2)
∫

µ∇h̄ dx = 0. (3.3)

We think of (3.1) as an elliptic equation for the pressure µ with the flux
boundary conditions (3.2). Here and in the sequel, m̄ := m(h̄) denotes the
space-dependent mobility function for the equilibrium droplet shape h̄.

We shall give two arguments in favor of (3.1), (3.2) and (3.3). The first
is based on the Rayleigh principle, cf. Subsection 1.2, the second one on a
solvability argument. By the Rayleigh principle, the flux J and the migration
speed Ẋ minimize as a couple the total dissipation rate D

1

2
D =

1

2

∫
1

m̄
|J |2 dx, (3.4)

subject to the continuity equation

−Ẋ · ∇h̄+ ∇ · J = 0 (3.5)

with the boundary condition

J · ν → J∞ · ν as r ↑ ∞.

Hence the droplet migrates in order to minimize the overall dissipation rate
under the flux boundary condition, which is a purely kinetic effect.

The variation in J yields that J is of the form

J = −m̄∇µ, (3.6)

so that (3.5) turns into (3.1). Since (3.5) can be formulated as

∇ · (−Ẋ (h̄− h̄∞) + J) = 0, (3.7)

the variation of (3.4) w. r. t. Ẋ yields (3.3):

0 =

∫
1

m̄
(h̄− h̄∞)J dx

(3.6)
= −

∫

(h̄− h̄∞)∇µdx =

∫

µ∇h̄ dx. (3.8)

We now argue that (3.3) can also be interpreted in a more traditional
way as solvability condition. We are interested in a solution of the thin-film
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equation, which we rewrite as

∂th−∇ · (m(h)∇µ) = 0, (3.9)

µ = −∆h+ U ′(h), (3.10)

with the flux boundary conditions

J := −m(h)∇µ → J∞ as |x−X| ↑ ∞.

We seek a solution of the form

h = h̄(x−X(t)) + h1(t, x), (3.11)

where we think of h1 as a perturbation of the equilibrium droplet profile h̄.
The latter is characterized by

−∆h̄+ U ′(h̄) = U ′(h̄∞), (3.12)

cf. Section 2. Notice that (3.12) implies (a consequence of translational
invariance)

−∆∇h̄+ U ′′(h̄)∇h̄ = 0. (3.13)

In view of (3.12), up to the order of the perturbation (3.10) is

µ = U ′(h̄∞) − ∆h1 + U ′′(h̄)h1. (3.14)

Testing (3.14) with the exponentially decaying ∇h̄ yields (3.3):
∫

µ∇h̄ dx (3.14)
=

∫

(−∆h1 + U ′′(h̄)h1)∇h̄ dx

=

∫

h1 (−∆∇h̄+ U ′′(h̄)∇h̄) dx
(3.13)
= 0. (3.15)

On the other hand, (3.11) inserted into (3.9) yields (3.1) to leading order.
Indeed, we may replace m(h) by its leading order m(h̄) = m̄ since µ =
U ′(h̄∞) = const to leading order, cf. (3.14). A broader analogy to systematic
asymptotic expansions is described in the Appendix.

3.2. Characterization and sign of the migration velocity. The prob-
lem (3.1), (3.2) and (3.3) defines a linear relationship between the flux at

infinity, J∞, and the droplet migration speed Ẋ , which we want to charac-
terize more explicitly.

We consider the 1-d substrate in the Appendix D.1. For a 2-d substrate,
we introduce two auxiliary problems: Let ψ0 denote the solution of the
homogeneous equation with inhomogeneous boundary conditions, that is,

−∇ · (m̄∇ψ0) = 0,

J0 · ν →
(1
0

)
· ν as |x| ↑ ∞ where J0 := m̄∇ψ0

(3.16)

(note the change of sign in the definition of J0, which is convenient for
later purposes) and ψ1 the solution of the inhomogeneous equation with
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homogeneous boundary conditions, i. e.

−∂1h̄−∇ · (m̄∇ψ1) = 0,

J1 · ν → 0 as |x| ↑ ∞ where J1 := −m̄∇ψ1,
(3.17)

Notice that both auxiliary problems allow for a physical interpretation:
Problem (3.16) determines the pressure −ψ0 which arises from a nonzero
flux-boundary condition at infinity in a locally perturbed environment de-
scribed by a variable mobility m̄. Problem (3.17) determines the pressure
ψ1 which is necessary to make the equilibrium droplet migrate at unit speed.
From (3.1) and (3.2) we read off that µ must be of the form

µ = −J∞ ψ0 + Ẋ ψ1.

Here and in the sequel, we invoke isotropy to identify the vectors J∞ and

Ẋ with the scalars in
(J∞

0

)
and

(Ẋ
0

)
respectively. Hence (3.3) turns into

Ẋ =

∫
ψ0 ∂1h̄ dx

∫
ψ1 ∂1h̄ dx

J∞. (3.18)

Let us argue how the 2-d formula (3.18) relates to the 1-d formula (D.1).
Substituting ∂1h̄ in (3.18) according to (3.17) and formally integrating by
parts yields

Ẋ =

∫
m̄∇ψ0 · ∇ψ1 dx
∫
m̄∇ψ1 · ∇ψ1dx

J∞ = −
∫

1
m̄J0 · J1 dx
∫

1
m̄ |J1|2 dx

J∞. (3.19)

On a 1-d substrate, (3.19) coincides with (D.1) since then, the solution of
(3.16) is J0 ≡ 1 and that of (3.17) is J1 = h̄− h̄∞.

However, the integration by parts is only allowed in the denominator of
(3.19). Indeed, since h̄ depends only on r = |x − X|, it is convenient to
introduce polar coordinates

x−X =

(
r cosϕ

r sinϕ

)

.

In this notation, both ψ0 and ψ1 are of the form

ψi(x) = ψi(r) cosϕ, (3.20)

(it will always be clear from the context whether we mean ψi(x) or ψi(r))
where the functions ψi(r) are determined by

−∂r(m̄∂rψ0) − m̄
r ∂rψ0 + m̄

r2
ψ0 = 0,

ψ0(r = 0) = 0, limr↑∞ ∂rψ0 = 1,
(3.21)

and
−∂r(h̄− h̄∞) − ∂r(m̄∂rψ1) − m̄

r ∂rψ1 + m̄
r2
ψ1 = 0,

ψ1(r = 0) = 0, limr↑∞ ∂rψ1 = 0,
(3.22)
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respectively. We also recall that up to exponentially small terms, the film
height is constant in the precursor film:

h̄ = h̄∞ for r −R ≫ 1,

where R denotes the mesoscopic droplet radius, cf. Section 2. Hence in
particular the coefficient m̄ is constant there:

m̄∞ = const for r −R ≫ 1.

Since {r, r−1} is a fundamental system of solutions of the constant coefficient
ODE −∂2−r−1∂r+r

−2, we infer the following form of the solutions of (3.21)
and (3.22) in the precursor film

ψ0 = r + const

r

ψ1 = const

r

}

for r −R≫ 1. (3.23)

This asymptotic behavior justifies the integration by parts of the denomi-
nator in (3.18):

∫

ψ1 ∂1(h̄− h̄∞) dx = −
∫

ψ1 ∇ · (m̄∇ψ1) dx =

∫

m̄|∇ψ1|2 dx,

but shows that the numerator in (3.18) has to be kept as is:

Ẋ =

∫
ψ0 ∂1h̄ dx

∫
m̄ |∇ψ1|2 dx

J∞, (3.24)

or in polar coordinates

Ẋ =

∫∞
0 ψ0 ∂rh̄ r dr

∫∞
0 m̄ ((∂rψ1)2 + r−2ψ2

1) r dr
J∞.

The factor which relates Ẋ to J∞ has the same sign as for 1-d substrates:
∫∞
0 ψ0 ∂rh̄ r dr

∫∞
0 m̄ ((∂rψ1)2 + r−2ψ2

1) r dr
< 0.

In particular, the droplet in the ambient flux field J∞ migrates in opposite
direction; see Figure 6.

flux fluxẊ

Figure 6. The droplet migrates in opposite direction to the
ambient flux field J∞.
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Indeed, we have on the one hand

∂rh̄ ≤ 0 for r > 0,

and on the other hand

ψ0 > 0 for all r > 0. (3.25)

The latter can be obtained as follows: Notice that (3.23) yields in particular
that ψ0 ≥ 0 for sufficiently large r. Together with ψ0(r = 0) = 0 we infer
from the maximum principle for −∂rm̄∂r − r−1m̄∂r + r−2m̄ that

ψ0 ≥ 0 for all r ≥ 0. (3.26)

By uniqueness for the second order ODE (3.21), this improves to (3.25).
Indeed, by (3.26), a point r0 > 0 with ψ0(r0) = 0 would also satisfy
∂rψ0(r0) = 0 so that ψ0 ≡ 0.

3.3. Scaling of migration velocity. We now address the scaling of the
migration factor (3.24) in the droplet radius R for large radius R ≫ 1. We
treat the one-dimensional case (D.1) in the Appendix D.1.1 following the
analysis in [8, Appendix A].

In Appendices A and B we show that the migration factor on 2-d sub-
strates has the same scaling behavior in R ≫ 1. More precisely, we show
that

∫

m̄ |∇ψ1|2 dx ≈







π
12 R

4 for q = 0,

C1
q R

4−q for q ∈ (0, 3),
π√
2
R lnR for q = 3,

C1
q R for q > 3,

(3.27)

−
∫

ψ0 ∂1h̄ dx ≈







π
4
√

2
R3 for q = 0,

C0
q R

3−q for q ∈ (0, 2),√
2π R lnR for q = 2,

C0
q R for q > 2.

(3.28)

As in the one-dimensional case (Appendix D.1.1), the main contribution
to (3.27) for 0 < q < 3 and to (3.28) for 0 < q < 2 comes from the
cap region, whereas it comes from the foot region for q > 3 and q > 2
respectively. In particular, the constants for q > 3 and q > 2, respectively,
depend on the form of U . The most explicit expressions can be given at the
cross-over values of q, at which the linear slope in the foot dominates. Let
us also mention that when U(h) = Umeso(h) (defined in (2.27)) for q > 2,

C0
q =

√
2π

(q−2)(q−1) .
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Thus we obtain for the migration factor, cf. (3.24),

− Ẋ

J∞
≈







C R−1 for q ∈ [0, 2),

C (lnR)R−1 for q = 2,

C Rq−3 for q ∈ (2, 3),

C ln−1R for q = 3,

C for q > 3.

(3.29)

Hence larger droplets migrate slower. However, the stronger the monotonic-
ity of m(h) as parameterized by the exponent q, the less pronounced is this
effect; for q > 3, there is no R-dependence to leading order. There are two
cross-overs at q = 2 and q = 3: Up to q = 2, the scaling of the response is
independent of q, and starting from q = 3, the scaling exponent saturates.

The scaling R−1 of the migration factor (3.29), which holds for q < 2, is
easy to interpret: Consider a droplet moving under the effects of a prescribed
flux at infinity. For clarity, let us say that the prescribed flux has the east-
wards direction. In a small time interval δt, the amount of mass deposited
at the western foot region (which has size ∼ Rd−1) scales as δt |J∞|Rd−1;
the same amount is taken away from the eastern side. By this, the center
of mass X of the droplet moves westwards by δX ∼ δt |J∞|R−1, so that it
is natural that the new center of the equilibrium droplet moves westwards
by the same amount. One can visualize this by thinking that the mass de-
posited at the western foot moves up the droplet flank, see Figure 7. At

���
���
���

���
���
���

���
���
���

���
���
���gain

mass
loss

mass

h

Ẋ

xJ∞

Figure 7. The response Ẋ of the droplet on the flux J∞ for
mobility exponent q < 2. The deposited mass moves up the
western flank.

the eastern flank, the same amount of mass moves down to compensate the
mass loss at the foot.

When q > 2, as mobility of droplets increases, the picture is not as simple.
In a sense the disturbance to droplet shape caused by depositing mass at
the western foot region is alleviated by the westward motion of the entire
droplet. When q > 3, it is as if the mass deposited at the western foot does
not move up the flank, but that the droplet cap instead slides westwards to
cover the deposited mass, see Figure 8.
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����
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���

h

Ẋ

xJ∞

Figure 8. The response Ẋ on the flux J∞ for mobility ex-
ponent q > 3. The droplet cap slides on the mass deposited
at the western foot.

Let us finally remark that the quantity in (3.28) and the asymptotic
behavior of ψ1 are related: We claim that

lim
r→∞

rψ1(r) =
1

2π

∫

R2

ψ0 ∂1h̄ dx. (3.30)

To show that consider r ≫ L. Integrating by parts twice yields
∫

B(0,r)
∇ · (m̄∇ψ1)ψ0 dx−

∫

B(0,r)
ψ1 ∇ · (m̄∇ψ0) dx

=

∫

∂B(0,r)
m̄ ψ0 ∇ψ1 ·

x

|x| dx−
∫

∂B(0,r)
m̄ ψ1 ∇ψ0 ·

x

|x| dx.

Using (3.16) and (3.17) we obtain

−
∫

B(0,r)
∂1h̄ψ0 dx =

∫ 2π

0
ψ0(r)∂rψ1(r) cos2 θ r dθ −

∫ 2π

0
ψ1(r)∂rψ0(r) cos2 θ r dθ.

Using the asymptotic behavior of ψ0(r) and ψ1 obtained in (3.23)

ψ0(r) ≈ r, ∂rψ0(r) ≈ 1 ∂rψ1(r) ≈ −1

r
ψ1(r) as r → ∞.

by taking the limit r → ∞ we obtain

−
∫

R2

ψ0 ∂1h̄ dx = −2π lim
r→∞

rψ1(r). (3.31)

4. Interacting mesoscopic droplets

While in the previous section we considered how a single droplet interacts
with an ambient flux field, here we are interested how droplets interact with
each other. In particular we are interested in the regime of large, quasi-
stationary, well-separated droplets. That is,

1 ≪ R ∼ V
1

d+1 ≪ L, (4.1)

where R is the typical radius, V the typical volume of a droplet, and L is the
typical distance between droplets (defined as (number density of droplets)−1/d).

We impose the quasi-stationarity of the system by reducing the configura-
tion space to collections of stationary droplets. The stationary droplets have
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slightly different heights in the tail region; the discrepancy is comparable to
1/R. In the case that the excess mass in the precursor is small compared to
the droplet mass, that is when R2 ≫ L, the variation of the height in the
precursor layer does not have an effect on the leading order dynamics. In
our setup one could deal with discrepancies in the tail region by smoothly
replacing the tails by constant height 1 beyond some intermediate distance,
d̄, (R ≪ d̄≪ L).

However, we choose to deal with the tails by introducing a further reduc-
tion. That is, we study the system on the mesoscopic level. We reduce the
configuration space to the mesoscopic shape of the droplets (2.23), that is to
parabolic droplets of fixed contact angle on the precursor layer. Hence the
configuration is fully described by the centers and volumes of the droplets.

The dynamics of the interacting droplets is determined by the Rayleigh
principle, described in Subsection 1.2. That is, at any time the flux J
(subject to the continuity equation) minimizes

1
2D + Ė.

On the reduced configuration space we consider the mesoscopic energy (2.26)

E(h) = Emeso(h) =

∫

1
2 |∇h|

2 + Umeso(h) dx, (4.2)

for which the parabolic droplets are exact steady states, see (2.25). We
choose this reduction as it enables us to make the presentation simple and
transparent.

The analysis of the previous section and that of ψ0 and ψ1 in Appendices
A and B shows that for q ≤ 2 the interaction of large droplets with their
environment depends to leading order only on the mesoscopic profile, and
not on the details of the potential U . In particular, the asymptotic values
of the quantities in (3.27) and (3.28) rely only on the mesoscopic shape
of the droplet. For q > 2 the dependence on the particular form of U is
only through a U -dependent constant factor. Thus even though our reduced
system neglects the precise shape of the droplet, the reduced dynamics differs
from the actual limiting dynamics in the case of q > 2 only by a constant
factor in the migration terms; see (4.25) and (4.26).

We present the analysis only for the 2-d systems in detail. The analysis
is not fully rigorous as it depends on conclusions of asymptotic analysis of
Appendices A and B. We do however validate the smallness of the lower
order terms in the approximations we carry out. Results of the 1-d analysis
are given in Appendix D. They are in agreement with the conclusions of
Glasner and Witelski [7, 8], who already studied the 1-d case with (different)
asymptotic tools.
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4.1. Reduced structure. In the following, we will introduce the reduced
configuration space and the dynamical structure for both one and two di-
mensions.

Configuration space. The parabolic droplets, which are steady states of the
mesoscopic energy (4.2), are parameterized by their volume V (above the
precursor height) and center of mass X:

hV,X(x) := max
{

0,− 1√
2ω
V − 1

d+1 |x−X|2 + 1√
2
ω V

1

d+1

}

, (4.3)

where

ω :=







(
3

2
√

2

) 1

2

for d = 1,
√

2π−
1

3 for d = 2.

The constant ω is chosen such that the radius R and the volume V are
related by

R = ω V
1

d+1 .

A configuration of n droplets is fully described by the position vector (XT
1 , . . . ,X

T
n )T

with Xi ∈ R
d and the volume vector (V1, . . . , Vn)

T . We define

hi(x) := hVi,Xi
(x),

hΘ(x) := 1 +

n∑

i=1

hi(x), Θ := (V1, . . . , Vn,X
T
1 , . . . ,X

T
n )T

and the droplet distances Lij := |Xi −Xj |.
An infinitesimal change of a configuration Θ is described by the infinites-

imal change of the droplet volumes and their centers, denoted by Θ̇:

Θ̇ := (V̇1, . . . , V̇n, Ẋ
T
1 , . . . , Ẋ

T
n )T ∈ R

(d+1)n.

Due to the conservation of mass the change vector Θ̇ is admissible, if
∑n

i=1 V̇i =

0, or in other words, if Θ̇ is orthogonal to

p = 1√
n
(1n, 0dn)

T .

(Here we use the notation zk := (z, . . . , z) ∈ R
k, for z ∈ {0, 1}.) The infin-

itesimal change of the height profile hΘ of the configuration corresponding
to the change vector Θ̇ is given by

△hΘ̇ :=
d

ds

∣
∣
∣
∣
s=0

hΘ+sΘ̇ =
n∑

i=1

∂hi
∂Vi

V̇i −∇hi · Ẋi,

where

∂hi
∂Vi

:=
∂hV,Xi

∂V

∣
∣
∣
∣
V=Vi

= 1√
2(d+1)ω

V
− d+2

d+1

i |x−Xi|2 + 1√
2(d+1)

ω V
− d

d+1

i (4.4)

for x ∈ B(Xi, Ri).
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Energy. On the restricted configuration space the energy has a simple form:

E(hΘ) =
√

2(d+1)
ω

n∑

i=1

V
d

d+1

i . (4.5)

Note that we skip the subscript “meso” for convenience. The infinitesimal
change of energy generated by the infinitesimal change of the configuration
in the direction of Θ̇ is

Ė[Θ̇] = ∇E · Θ̇ =
√

2d
ω

n∑

i=1

V
− 1

d+1

i V̇i.

4.1.1. Reduced Rayleigh dynamics. Analogous to the simpler model problem
in the previous section, see equations (3.4) and (3.5) in 3.1, the trajectory

Θ(t) of the system is determined by the fact that the change vector Θ̇ along
with the flux J minimize as a pair the quantity

1
2D + ∇E · Θ̇

subject to

△hΘ̇ + ∇ · J = 0.

The viscous dissipation rate is, as before, quadratic in J : D =
∫

1
m |J |2 dx.

We already know that the minimizing flux is a gradient of a pressure, that
is

J = −m∇ϕΘ̇,

subject to

△hΘ̇ −∇ · (m∇ϕΘ̇) = 0.

Consequently to determine Θ̇ one needs to minimize

1
2

∫

m|∇ϕΘ̇|2dx+ ∇E · Θ̇. (4.6)

Approximately (at least in the sense, that the associated quadratic form
of minimal dissipation, i.e. D =

∫
m |∇ϕΘ̇|2 dx, is well-approximated in

terms of the following model pressures as we will see later), the pressure ϕΘ̇
is a linear combination of the following “decoupled” ones:

• Pressure relevant to droplet motion: We recall the two auxiliary
problems (3.16) and (3.17) in a slightly modified form. We introduce
the pressures Ψ0,V (generated by a nonzero flux-boundary condition
far from droplet) by

−∇ · (m∇Ψ0,V ) = 0,

J0,V · ν →
(1
0

)
· ν as |x| ↑ ∞, where J0,V := m∇Ψ0,V ,

(4.7)

and Ψ1,V , which makes the droplet move with unit speed, by

−∂1hV,0 −∇ · (m∇Ψ1,V ) = 0,

J1,V · ν → 0 as |x| ↑ ∞, where J1,V := −m∇Ψ1,V .
(4.8)



22 KARL GLASNER, FELIX OTTO, TOBIAS RUMP, DEJAN SLEPČEV

As before, m = m(1 + hV,0). The subscript V highlights the depen-
dence of m and h on the volume. Note that both Ψ0,V and Ψ1,V

are centered in the origin in contrast to the pressures determined
by (3.16) and (3.17). Furthermore we use explicitly the mesoscopic
droplet profile for the characterization.

Using the isotropy of the mobility in (4.8) we can determine the

pressure corresponding to arbitrary droplet velocity vector Ẋ ∈ R
2

instead of (1, 0)T . We denote this pressure by ΨẊ
1,V . It has a dipolar

form:

ΨẊ
1,V (x) = Ψ1,V (|x|) |Ẋ | cos θ (4.9)

in the polar coordinates determined by

x

|x| ·
Ẋ

|Ẋ |
= cos θ.

• Pressure relevant to droplet mass change: We introduce the pressure
needed to move the mass from a single mesoscopic droplet into the
surrounding precursor film: ΨV is a radially symmetric solution of

∇ · (m∇ΨV ) = −∂hV,0
∂V

. (4.10)

Note that outside of the droplet ΨV satisfies the Laplace equation.
For r > R, where R = ωV 1/3 is the radius of the droplet, we have

1 =

∫

B(0,r)

∂hV,0
∂V

dx = −
∫

∂B(0,r)
m∇ΨV · ν = −2πr(∂rΨV ).

Therefore we can determine the pressure outside of the droplet up
to an additive constant

ΨV (x) = − 1

2π
ln |x| + const. for |x| > R. (4.11)

Since ϕΘ̇ depends linearly on the change Θ̇, the first term in (4.6) defines

a quadratic form in Θ̇. The associated bilinear form is

D(Θ̇, Ξ̇) :=

∫
1

m
JΘ̇ · JΞ̇ dx =

∫

m∇ϕΘ̇ · ∇ϕΞ̇ dx (4.12)

for admissible change vectors Θ̇ and Ξ̇. Since the space of admissible change
vectors is finite-dimensional, there is a symmetric matrix G representing the
bilinear form:

Θ̇TG Ξ̇ = D(Θ̇, Ξ̇).

Such matrix G is not unique. The canonical choice is the matrix G which
also satisfies Gp = 0. A symmetric matrix G represents the same bilinear
form on the set of admissible change vectors if and only if ΠGΠ = G, where
Π = I − ppT is the orthogonal projection to the orthogonal complement of
p.
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Minimizing (4.6) in the form Θ̇TGΘ̇ + ∇E · Θ̇ in Θ̇ with the constraint

Θ̇ · p = 0 gives that Θ̇ is uniquely determined by

Π(GΘ̇ + ∇E) = 0

Θ̇ · p = 0.
(4.13)

In the following subsections, we will give asymptotic expressions for the
entries of G in terms of the auxiliary pressures ΨV and Ψi,V and solve the
problem explicitly for a two-droplet-configuration.

4.2. Coefficients of G in the two-dimensional case. As indicated above,
the coefficients of G describe the dissipation generated by the fluxes that
correspond to volume changes and motion of droplets. For clarity, we sub-
divide the matrix G ∈ R

3n×3n into three sub-matrices: the volume change
matrix Gv ∈ R

n×n, the migration matrix Gm ∈ R
2n×2n and the coupling

matrix C ∈ R
2n×n:

G =

[
Gv CT

C Gm

]

. (4.14)

4.2.1. Approximate coefficients of G . We show in Subsection 4.3 that

Gvij =

{

−1
2

(∫

B(0,L)m|∇ΨVi
|2 +

∫

B(0,L)m|∇ΨVj
|2
)

+O(1) if i 6= j,

0 if i = j,

(4.15)

Gmij =

{

diag(gi, gi) + o(gi)2×2 if i = j,

o(
√
gigj)2×2 else,

(4.16)

where o(f)2×2 =

[
o(f) o(f)
o(f) o(f)

]

and

gi =

∫

mi(x) |∇Ψ1,Vi
(x)|2 dx, (4.17)

where mi(x) := m(1+hi(x+Xi)) and Ψ1,Vi
is defined in (4.8). The coupling

coefficients are given by

Cij =

{
Xi−Xj

|Xi−Xj | cij + o(cij)2×1 if i 6= j,

0 else,
(4.18)

where, using (3.31)

cij =
1

2π

1

|Xi −Xj |

∫

∂1hi(x+Xi)Ψ0,Vi
(x)dx =

1

|Xi −Xj |
lim
r→∞

r Ψ1,Vi
(r)

(4.19)

and Ψ0,Vi
is defined in (4.7).
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Asymptotic values of relevant quantities. Let Lij = |Xi −Xj |. We consider
the regime mini6=j Lij ≫ maxiRi. We furthermore require that droplets are

of comparable sizes in that
Lij

Ri
≫
(
Ri

Rj

)3
for all i, j. In Subsection 4.3 we

show that for i 6= j

Gvij = − 1

4π

(

ln(Lij/V
1

3

i ) + ln(Lij/V
1

3

j )

)

+O(1).

The asymptotic values of gi and cij for i, j = 1, 2 and i 6= j follow from
(3.27) and (3.28):

gi =







C V
4−q
3

i for q ∈ [0, 3),

π
2
3

3 V
1

3

i lnVi for q = 3,

C V
1

3

i for q > 3,

(4.20)

cij = − 1

Lij







C V
3−q
3

i for q ∈ [0, 2),

1

3π
4
3

V
1

3

i lnVi for q = 2,

C V
1

3

i for q > 2.

(4.21)

Rayleigh dynamics of two droplets. As an insightful illustration we consider
the particular case of two droplets in detail. Let us compute the equations
for Θ̇ in the natural coordinates for the two-droplet configuration [e1, e2]:

e1 =
X2 −X1

|X2 −X1|
, e2⊥e1, |e2| = 1 (4.22)

The characterization of G given in (4.15)-(4.19) yields

G =











0 Gv12 0 0 c21 0
Gv12 0 −c12 0 0 0
0 −c12 g1 0 0 0
0 0 0 g1 0 0
c21 0 0 0 g2 0
0 0 0 0 0 g2











.
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We obtain that the dynamics according to (4.13) is given by the following
system of ODEs:

V̇1 + V̇2 = 0,

−Gv12V̇1 +Gv21V̇2 + c12Ẋ
1
1 + c21Ẋ

1
2 = −2

√
2

ω
(V

− 1

3

1 − V
− 1

3

2 ),

g1Ẋ
1
1 − c12V̇2 = 0,

Ẋ2
1 = 0,

g2Ẋ
1
2 + c21V̇1 = 0,

Ẋ2
2 = 0.

Solving the system yields in particular

V̇1 =
2
√

2

ω

(

2Gv12 +
c212
g1

+
c221
g2

)−1

(V
− 1

3

1 − V
− 1

3

2 ). (4.23)

Using (4.20) and (4.21), the assumption L12 ≫ V
1

3

i for i = 1, 2 yields

−Gv12 ≫ 1 ≫ c212
gi
. (4.24)

Therefore the system of ODEs in the limit reduces to

V̇1 = − 4π
4

3

ln(L/V
1

3

1 ) + ln(L/V
1

3

2 )
(V

− 1

3

1 − V
− 1

3

2 ), (4.25)

Ẋ1
1 = −c12

g1
V̇1, Ẋ1

2 = −c21
g2
V̇1. (4.26)

Hence, both droplets move in the direction of the smaller one, whose
volume decreases. Figure 14 in Appendix E shows the migration in a
two-droplet configuration. In particular, it reveals the q-dependence of the
droplet velocity in accordance with the leading order scaling of the migration
factor.

The equations (4.26) for the motion of the droplets provide a nice way of
interpreting the connection between J∞ in the model problem in Section 3
and the case of a configuration of droplets with at least two droplets. For
this purpose, consider the equation of motion (4.13) that is

Ẋ1 = − V̇2

g1
C12 =

∫
∂1h1 Ψ0,V1

(x−X1) dx
∫
m1|∇Ψ1,V1

(x−X1)|2 dx

(

− V̇2

2π

X1 −X2

|X1 −X2|2

)

=

∫
∂1h1 Ψ0,V1

(x−X1) dx
∫
m1|∇Ψ1,V1

(x−X1)|2 dx

(

−∇
(

V̇2

2π
ln |X1 −X2|

))

,

and compare it to (3.24) in Section 3. It reveals that in the context of a
two-droplet system, J∞ can be interpreted as the flux at X1 generated by
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the harmonic potential which transports mass V̇2 out of the droplet centered
in X2.

4.2.2. Time scales in the dynamics. To deduce heuristically the typical time
scale of Ostwald ripening and migration from the reduced structure we as-
sume that the typical length scales (like the typical droplet radius) exhibit
scaling in time. In addition to scaling in V , we consider how the scaling
depends on the average film height H, up to logarithmic corrections. Note
that the mass conservation dictates that

HLd = V. (4.27)

Heuristically, these time scales allow us to identify the dominant coarsening
mechanism in different regimes.

The equation (4.25) describes the mass transfer rate between two droplets.
It follows

V̇ ∼ 1

lnV
V − 1

3 ,

where we use (4.27). Hence the time scale for ripening is

τrip =
V

V̇
= V

4

3 lnV. (4.28)

We expect that L̇ ∼ |Ẋ| and thus

L̇ ∼ |Ẋi| ∼
1

lnL
V − 1

3
1

L







V − 1

3 for q ∈ [0, 2),

V − 1

3 lnV for q = 2,

V
q−3

3 for q ∈ (2, 3),
1

lnV for q = 3,

1 for q > 3.

(4.29)

Therefore the time scale for migration of droplets,

τmig =
L

L̇
∼ 1

H
V

4

3 lnV







V
1

3 for q ∈ [0, 2),

V
1
3

lnV for q = 2,

V
3−q
3 for q ∈ (2, 3),

lnV for q = 3,

1 for q > 3.

(4.30)

Note that τmig ≫ τrip if q < 3 and V ≫ 1 which indicates that droplets
are nearly stationary. When q = 3 the difference between time scales is only
logarithmic in V , while when q > 3 they are comparable. It is also worth
noting the scaling in the average film height: The importance of motion of
droplets grows if the average film thickness is increased.

In the two-dimensional case, the fact that a droplet migrates over a dis-
tance L does not necessarily imply collision with another droplet, since
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droplets might miss each other. In the following, we will give formal argu-
ments that on the one hand, a configuration of two isolated droplets cannot
lead to collision, whereas on the other hand, a configuration of two relatively
small droplets submerged into a matrix of larger droplets generically leads
to collision.

A configuration of two isolated droplets will not lead to collision: Consider
two droplets with volumes V1 < V2 and centers of mass X1 and X2, respec-
tively, see Figure 9 (left). As we found out above, mass exchange between

Ẋ1 Ẋ2

ψ

Figure 9. Left: Two isolated droplets of different size gen-
erate a flux field J , which transports mass from the smaller
droplet to the larger one. Right: The flux J is the gradient of
a harmonic function ψ. For both droplets, the constant part
of −∇ψ in an annular region of the droplet (playing the role
of J∞) points eastwards, and therefore gives rise to migration
to the west.

droplets gives rise to a flux field J . In the precursor, J is the gradient of a
harmonic function: J = −∇ψ, where ψ has the form of a harmonic function
1
2π (V̇1 ln(x − X1) + V̇2 ln(x − X2)), see Figure 9 (right) for a cross-section.
In an annular region around a given droplet centered at X, it makes sense
to speak of the linear part of ψ (in the sense of a Laurent expansion). This
linear part, or more precisely, its constant gradient plays the role of the flux
J∞ as we pointed out in the previous subsection. Hence, it is this linear
part, which determines the migration speed Ẋ of the droplet.

Here, the constant part of −∇ψ in an annular region around a droplet
is parallel to X2 −X1 due to the symmetry of the problem. Furthermore,
it holds for both droplets that this constant part has positive slope in the
direction of X2 −X1. Since V̇1 = −V̇2, it even holds that the constant parts
are equal. Thus, according to the considerations above, both droplet move
westwards in the direction of the smaller droplet. As the scaling of the mi-
gration factor (3.29) reveals, the smaller droplet moves faster than the larger
one. Therefore, collision cannot happen in a two-droplet configuration. By
this, we obtain a different result than Pismen and Pomeau in [15] in the
following sense: They claim that both droplets migrate in the direction of
the larger droplet, that is eastwards in our picture. Furthermore, they argue
(in accordance with our findings) that the smaller droplet moves faster, so
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that it might catch up with the larger one leading to collision. In contrast,
numerical tests confirm our findings, see Figure 14 in Appendix E.

However, in many-droplet configurations, there is a bias towards collision
of small droplets: Consider two relatively small droplets submerged into a
configuration of larger droplets. We find that both droplets loose mass to
the surrounding droplets, see Figure 10 (left). Furthermore, the specific

Ẋ1 Ẋ2

ψ

Figure 10. Left: Two smaller droplets submerged into a
configuration of larger droplets. They both loose mass to
the surrounding droplets. Right: The constant part of −∇ψ
points westwards in the neighborhood of the western droplet,
and eastwards in the neighborhood of the eastern droplet.
Therefore, the droplets move towards each other.

form of ψ, see Figure 10 (right), yields constant parts of −∇ψ, which on
the one hand, points westwards in the neighborhood of the western droplet,
and on the other hand, points eastwards in the neighborhood of the eastern
droplet. Here, we again invoke the symmetry of the problem. Accordingly,
the droplets move toward each other, which eventually leads to collision,
provided no droplet vanishes.

Hence for q ≥ 3, the average film height H sets the relative importance
of collision for the coarsening process for all times (up to a logarithm for
q = 3). In particular, we expect a collision-dominated coarsening scenario
for configurations with large average height.

4.3. Derivation of the coefficients of G. We present the details of the
derivation of coefficients of G only for a configuration of two droplets. It con-
tains all the essential ingredients of the derivation with n droplets present,
but is significantly easier to present. Accordingly, we consider a configura-
tion of two droplets, Θ = (V1, V2,X

T
1 ,X

T
2 )T . Let L = |X2 −X1|.

4.3.1. Computing Gv. Consider the general mass exchange given by the
change vector v = (V̇1, V̇2, 04)

T with V̇1 + V̇2 = 0. Then

△hv(x) =
∂h1

∂V1
(x)V̇1 +

∂h2

∂V2
(x)V̇2. (4.31)
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By the definition of the dissipation rate (4.12) it follows that

Gv11(V̇1)
2 +Gv22(V̇2)

2 + 2Gv12V̇1 V̇2 = vTGv =

∫

R2

m|∇ϕv(x)|2 dx,

where

∇ · (m∇ϕv) = △hv. (4.32)

The above condition fully determines the volume exchange part of the bilin-
ear form, D, but, as we discussed before, the matrix G is not unique. Since
we have in mind the dissipation due to mass exchange it is natural to choose
G for which Gv11 = Gv22 = 0, which implies

2Gv12 V̇1V̇2 =

∫

R2

m|∇ϕv(x)|2 dx.

To determine the value on the right hand side, we will show that ϕv is, in a
sense, well approximated by −V̇1ΨV1

( · −X1)− V̇2ΨV2
( · −X2). We start by

observing that an elementary computation based on (4.11) shows that for
i = 1, 2

∫

B(0,L)\B(0,Ri)
m|∇ΨVi

|2dx =
1

2π
ln(L/V

1

3

i ) +O(1). (4.33)

Let us now show that the integral over B(0, Ri) is of size O(1). Consider

Ji(x) := −m(x)∇ΨVi
(x). Then ∇·Ji = ∂h

∂V

∣
∣
V=Vi

. Let y = x/Ri. Let J̃(y) be

the radially symmetric solution of ∇y ·J̃(y) = ∂h
∂V

∣
∣
V=1

. The scaling property

of the family of steady states yields that J̃(y) = Ri Ji(x). Therefore
∫

B(0,Ri)
m|∇ΨVi

|2 ≤
∫

B(0,Ri)
|Ji(x)|2dx =

∫

B(0,1)
|J̃(y)|2dy, (4.34)

which proves the claim.

Thus we need to show that −2Gv12 = 1
2π (ln(L/V

1/3
1 )+ln(L/V

1/3
2 ))+O(1).

Note that there are two representations of
∫
m|∇ϕv(x)|2 dx:

∫

m|∇ϕv(x)|2 dx = max
ζ

{∫

−m|∇ζ(x)|2 + 2△hv(x)ζ(x)dx
}

(4.35)

= min
J

{∫
1

m
|J |2dx

∣
∣
∣ ∇ · J = △hv

}

. (4.36)

In the following, we provide lower and upper bounds on
∫
m|∇ϕv(x)|2 dx

that differ by an amount of O(1).

Lower bound. Let l = L/3. To construct the test function let

ζi(x) =







− V̇i

2π ln(Ri/l) if |x−Xi| < Ri,

− V̇i

2π ln(|x−Xi|/l) if Ri < |x−Xi| < l,

0 else,

see Figure 11. The test function ζi is a harmonic function such that the
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ζi

Xi

Ri

Xi − (l, 0)T Xi + (l, 0)T

Figure 11. The test function ζi carries the mass V̇i outside
the i-th droplet.

mass flux across the i-th droplet boundary is equal to V̇i:
∫

B(Xi,Ri)
−∇ζi(x) ·

(
x−Xi

|x−Xi|

)

dx = V̇i.

Now consider the test function ζ =
∑
λiζi where the constants λ1 and

λ2 need to be determined. (In case of additional droplets that lie in the
support of ζ it would need to be modified near the droplets as in (4.41).)
One computes

∫

−m(h(x))|∇ζ(x)|2 + 2△hv(x)ζ(x)dx =
1

2π

2∑

i=1

(V̇i)
2 ln(l/Ri)(−λ2

i + 2λi).

Maximizing in λi gives λi = 1. Therefore

∫

m|∇ϕv(x)|2 dx ≥ 1

2π

2∑

i=1

ln(l/Ri)(V̇i)
2 =

(

1

2π

2∑

i=1

ln(L/Ri) +O(1)

)

(V̇i)
2.

Upper bound. Let l = L/3, X = (X1+X2)/2 andO = B(X,L)\(B(X1, l)∪
B(X2, l)). We construct the test flux J as follows:

J(x) =







V̇1 J1(x−X1) if x ∈ B(X1, l),

V̇2 J2(x−X2) if x ∈ B(X2, l),

Jout if x ∈ O,

0 if x 6∈ B(X,L),

(4.37)

where Ji for i = 1, 2 were defined above and Jout = −∇µout with

−∆µout = 0 on O,

−∇µout · ν = V̇i

2πl on ∂B(Xi, l) for i = 1, 2, and ∇µout · ν = 0 on ∂B(X̄, L).
Note that boundary conditions are such that Ji · ν = Jout · ν at ∂B(Xi, l),
which makes J an admissible test function.

Scaling of the domain and changing variables shows that
∫

O
|∇µout|2dx
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is independent of L, which is the only length scale in the problem. Therefore
for some C, independent of L and Vi for i = 1, 2,

∫

O

1

m(h)
|Jout|2 ≤ C.

Combining this bound with the ones in (4.33) and (4.34) yields the desired
upper bound.

4.3.2. Computing Gm. Let Ẋ, Ẏ ∈ R
2. To compute the diagonal elements,

consider the change vectors v1 := (02, Ẋ
T , 02)

T and v2 := (02, Ẏ
T , 02)

T that
perturb the location of X1. By the definition of the dissipation rate (4.12)

ẊTGm11Ẏ =

∫

R2

m∇ϕv1 · ∇ϕv2 dx,

where ϕvi
solve

∇(m∇ϕv1) = −∇h1 · Ẋ,
∇(m∇ϕv2) = −∇h1 · Ẏ ,

(4.38)

and ∇ϕvi
· ν → 0 as |x| ↑ ∞.

The difference between ϕv1 and ΨẊ
1,V1

(defined in (4.8)) – beside the shift

to the origin – stems from different mobilities: ΨẊ
1,V1

solves the same prob-

lem, but with m = m(hΘ) replaced by m1(x) = m(1+h1(x)). Nevertheless,

we justify below that ϕv1 can be approximated by ΨẊ
1,V1

, so that we can

replace ϕv1(x+X1) by ΨẊ
1,V1

(x) = Ψ1,V1
(|x|) x

|x| · Ẋ .

Below we also use the following: Let ξ ∈ C([0,∞), [0,∞)) and
∫∞
0 ξ(r)r3dr <

∞. Elementary calculation verifies that
∫

R2

ξ(|x|)(Ẋ · x)(Ẏ · x)dx =
Ẋ · Ẏ

2

∫

R2

ξ(|x|) |x|2dx.

In the following we use that hV,0 is a radially symmetric function, and denote
the function of the radial distance by the same symbol. Assuming for now
the validity of the approximation of ϕvi

by Ψ1,V1
(justified below), after

integration by parts one obtains:

ẊTGm11Ẏ ≈
∫

R2

(

Ψ1,V1
(|x|) x|x| · Ẋ

)(

∇hV1,0(x) · Ẏ
)

dx

=
Ẋ · Ẏ

2

∫

R2

Ψ1,V1
(|x|) x|x| · ∂rhV1,0(|x|)

x

|x|dx

= Ẋ · Ẏ
∫

R2

Ψ1,V1
(|x|) x1

|x| ∂rhV1,0(|x|)
x1

|x|dx

= Ẋ · Ẏ
∫

R2

Ψ1,V1
(|x|) x1

|x| ∂1hV1,0(x)dx

= Ẋ · Ẏ
∫

R2

m1|∇Ψ1,V1
(x)|2dx.

(4.39)
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Thus Gm11 ≈ diag(g1, g1) with

g1 =

∫

R2

m1|∇Ψ1,V1
(x)|2dx.

Gm22 is computed analogously.

To determine Gm12 consider the change vectors v1 := (02, Ẋ
T , 02)

T and

v2 := (04, Ẏ
T )T . Then

ẊTGm12Ẏ =

∫

R2

m∇ϕv1 · ∇ϕv2dx.

In (4.51) we justify that

|ẊTGm12Ẏ | =

∣
∣
∣
∣
∣

∫

B(X2,R2)
ϕv1(x)∇hV2,0(x) · Ẏ dx

∣
∣
∣
∣
∣
= |Ẋ||Ẏ | o(√g1g2). (4.40)

Justification of the approximations. We introduce the following, interme-
diate, approximation of ϕv1 : Choose R2 ≪ l ≪ L. Let ξ ∈ C∞([0,∞), [0, 1])
be a cut-off function supported on [0, 2] and equal to 1 on [0, 1]. Let
ξl(x) := ξ(|x|/l). Then define

ϕ̃v1 := (1 − ξl(x−X2))Ψ
Ẋ
1,V1

(x−X1) + ξl(x−X2)Ψ
Ẋ
1,V1

(X2 −X1). (4.41)

Let us denote the error term by ϕe := ϕv1 − ϕ̃v1 . Let A be the annulus
B(X2, 2l)\B̄(X2, l). Let

f := −∇ · (m∇ϕe). (4.42)

Note that f = 0 on R
2\A, and that on A

f = −∆ξl(x−X2)(Ψ
Ẋ
1,V1

(x−X1)−ΨẊ
1,V1

(X2−X1))−2∇ξl(x−X2)·∇ΨẊ
1,V1

(x−X1).

Therefore on A

|f | .
1

l2
max
x∈A

|∇ΨẊ
1,V1

(x−X1)| l +
1

l
max
x∈A

|∇ΨẊ
1,V1

(x−X1)|.

The dipolar form (4.9) of ΨẊ
1,V1

and the scaling (3.28) imply via (3.30) that

for |z| > R1

|ΨẊ
1,V1

(z)| . |Ẋ| 1

|z|V
γ
1 β(V1). (4.43)

Here γ = max{3 − q, 1}/3, β(V ) = lnV if q = 2 and β ≡ 1 otherwise. Via
(3.23) it then follows

|∇ΨẊ
1,V1

(z)| . |Ẋ|
(

∂rΨ1,V1
(|z|) +

1

|z|Ψ1,V1
(|z|)

)

. |Ẋ | 1

|z|2V
γ
1 β(V1)

(4.44)
for |z| > |R1|. Using this estimate we obtain that on A

|f | .
|Ẋ|
l
V γ

1 β(V1)
1

L2
. (4.45)
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Note that the decay of ∇ϕ̃v1 implies that
∫

R2

−∇h1·Ẋ−fdx = lim
r→∞

∫

B(0,r)
∇·(m∇ϕ̃v1)dx = lim

r→∞

∫

∂B(0,r)
∂ν(m∇ϕ̃v1)dx = 0

Thus
∫

R2

fdx = 0.

Let BA := B(X2, 2l). Note that supp f ⊂ BA. Let ϕe := −
∫

BA
ϕedx.

Multiplying (4.42) by ϕe(x) and integrating by parts gives
∫

R2

m|∇ϕe|2dx =

∫

R2

f(x)ϕe(x) − f(x)ϕedx ≤ ‖f‖L2(BA)‖ϕe − ϕe‖L2(BA).

(4.46)
By Poincare inequality

‖ϕe − ϕe‖2
L2(BA) . l2

∫

BA

m|∇ϕe|2dx. (4.47)

Combining the inequalities gives
∫

R2

m|∇ϕe|2dx . l2‖f‖2
L2(BA). (4.48)

We also utilize the following estimate: Recall from (4.8) and (4.9) that

∇ · (m1(x−X1)∇ΨẎ
1,V1

(x−X1)) = −∇h1 · Ẏ .

Consequently, using that m(x) ≥ m1(x−X1), we obtain
∫

R2

m|∇ϕv2 |2dx = min
J

{∫

R2

1

m
|J |2 : ∇ · J = ∇h1 · Ẏ

}

≤ min
J

{∫

R2

1

m1
|J( · +X1)|2 : ∇ · J = ∇h1 · Ẏ

}

=

∫

R2

m1|∇ΨẎ
1,V1

|2 = g1|Ẏ |2

(4.49)

We are finally ready to justify the approximation used in (4.39)

ẊTGm11Ẏ =

∫

R2

m∇ϕv1 · ∇ϕv2 dx

=

∫

R2

m∇ϕ̃v1 · ∇ϕv2 dx+

∫

R2

m∇ϕe · ∇ϕv2 dx

=

∫

R2

ΨẊ
1,V1

∇hV1,0(x) · Y dx+

∫

R2

m∇ϕe · ∇ϕv2 dx
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To conclude we use (4.48), (4.45), and (4.20) to estimate:

∣
∣
∣
∣

∫

R2

m∇ϕe · ∇ϕv2 dx
∣
∣
∣
∣
≤
(∫

R2

m|∇ϕe|2dx
) 1

2
(∫

R2

m|∇ϕv2 |2
) 1

2

. l‖f‖L2(BA)
√
g1|Ẏ |

. l l
|Ẋ|
l
V γ

1 β(V1)
1

L2

√
g1|Ẏ |

≪ |Ẋ | |Ẏ |V (2−q)+/3
1 β(V1)

√
g1 . |Ẋ | |Ẏ |g1.

(4.50)

We now turn to showing (4.40).
∫

R2

m∇ϕv1 · ∇ϕv2dx =

∫

R2

m∇ϕ̃v1 · ∇ϕv2dx+

∫

R2

m∇ϕe · ∇ϕv2dx

=

∫

R2

ϕ̃v1 ∇h2 · Ẏ dx+

∫

R2

m∇ϕe · ∇ϕv2dx

=

∫

R2

m∇ϕe · ∇ϕv2dx

since ϕ̃v1 is constant on B(X2, R2). The remaining estimate is similar to
(4.50):

∣
∣
∣
∣

∫

R2

m∇ϕe · ∇ϕv2dx
∣
∣
∣
∣
≤
(∫

R2

m|∇ϕe|2dx
) 1

2
(∫

R2

m|∇ϕv2 |2
) 1

2

. l l
|Ẋ |
l
V γ

1 β(V1)
1

L2

√
g1|Ẏ |

≪ |Ẋ| |Ẏ |V (2−q)+/3
1 β(V1)

√
g2 . |Ẋ | |Ẏ |√g1g2.

(4.51)

4.3.3. Computing C. Consider the change vectors v1 := (02, Ẋ
T , 02)

T and
v2 := (1,−1, 04)

T .

ẊT [C11, C12]

(
1

−1

)

=

∫

R2

m(h)∇ϕv1(x) · ∇ϕv2(x)dx

= −
∫

ϕv1

(
∂h1

∂V1
(x) − ∂h2

∂V2
(x)

)

dx

using (4.57)
≈ −

∫

˜̃ϕv1

(
∂h1

∂V1
(x) − ∂h2

∂V2
(x)

)

dx

=

∫

B(X2,R2)
Ψ1,V1

(|X2 −X1|)
X2 −X1

|X2 −X1|
· Ẋ ∂h2

∂V2
dx

= Ψ1,V1
(|X2 −X1|)

X2 −X1

|X2 −X1|
· Ẋ.
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Thus

C11 − C12 ≈ Ψ1,V1
(|X2 −X1|)

X2 −X1

|X2 −X1|
≈ lim

r→∞
rΨ1,V1

(r)
X2 −X1

|X2 −X1|2
.

As above, this is the only requirement on C11 and C12. We set C11 = 0 and
thus

C12 ≈ − lim
r→∞

rΨ1,V1
(r)

X2 −X1

|X2 −X1|2
.

Justification of the approximation. To validate the approximations used
in computing the matrix C we need to refine the approximation of ϕv1 .
Analogously to (4.9) we define

ΨẊ
0,V (x) = Ψ0,V (|x|) |Ẋ | cos θ where cos θ =

x

|x| ·
Ẋ

|Ẋ |
. (4.52)

Let Z = ∇ΨẊ
1,V1

(X2 −X1). The construction is the refinement of the one in
Subsection 4.3.2. Let

˜̃ϕv1 := (1−ξl(x−X2))Ψ
Ẋ
1,V1

(x−X1)+ξl(x−X2)(Ψ
Ẋ
1,V1

(X2−X1)+ΨZ
0,V1

(x−X2)).
(4.53)

Let ϕe := ϕv1 − ˜̃ϕv1 . Then f = −∇ · (m∇ϕe) is supported on annulus
A = B(X2, 2l)\B(X2, l). On A

f = −∆(ϕv1 − ˜̃ϕv1) = −∆ ˜̃ϕv1

= −∆ξl

(

ΨẊ
1,V1

(x−X1) − ΨẊ
1,V1

(X2 −X1) + ΨZ
0,V1

(x−X2)
)

−∇ξl
(

∇ΨẊ
1,V1

(x−X1) −∇ΨZ
0,V1

(x−X2)
)

.

To estimate f we use (4.52) and the form of Ψ0,V1
(|x−X2|) given in (B.15),

(B.20), and (B.24). More precisely on A:

|ΨZ
0,V1

(x−X2) − Z · (x−X2)| .
R2

2

l
,

|∇ΨZ
0,V1

(x−X2) − Z| .
R2

2

l2
.

We furthermore use an extension of (4.43) in a form valid on A:

|D2ΨẊ
1,V1

| . |Ẋ | 1

L3
V γ

1 β(V1).

These estimates imply that

|f | . |Ẋ | 1

L3
V γ

1 β(V1)

(

1 +
R2

2L

l3

)

. |Ẋ | 1

L3
V γ

1 β(V1) (4.54)

provided that we choose
l3 ≥ LR2

2. (4.55)
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Let B = B(X1, 2L). From (4.48) we obtain via Poincare inequality

∫

B

∣
∣
∣
∣
ϕe −−

∫

B
ϕe

∣
∣
∣
∣

2

dx . L2l2‖f‖2
L2(BA). (4.56)

We are now ready to estimate the error in computing C. Using that
∫

R2
∂h1

∂V1
− ∂h2

∂V2
= 0,

∣
∣
∣
∣

∫

R2

(ϕv1 − ˜̃ϕv1)

(
∂h1

∂V1
− ∂h2

∂V2

)

dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

R2

(ϕe −−
∫

B
ϕe)

(
∂h1

∂V1
− ∂h2

∂V2

)

dx

∣
∣
∣
∣

≤
(
∫

B

∣
∣
∣
∣
ϕe −−

∫

B
ϕe

∣
∣
∣
∣

2

dx

) 1

2
(
∫

B

∣
∣
∣
∣

∂h1

∂V1

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂h2

∂V2

∣
∣
∣
∣

2

dx

) 1

2

. lL‖f‖L2(BA) (V
− 1

3

1 + V
− 1

3

2 )

.
|Ẋ |
L
V γ

1 β(V1)
l2

L

(
1

R1
+

1

R2

)

≪ |Ẋ |
L
V γ

1 β(V1) . |Ẋ |Ψ1,V1
(|X2 −X1|)

(4.57)

provided that

l2 ≪ LR1 and l2 ≪ LR2.

It is important to note that l can be chosen to satisfy both this requirement
and (4.55), provided that R1 and R2 are of comparable size. More precisely
if

(
R2

R1

)3

≪ L

R2
.
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Appendix A. Analysis of ψ1

We start with the asymptotics in (3.27) which are easier to establish
because of the variational characterization and its dual:

1

2

∫

m̄|∇ψ1|2 dx

= max
ψ1

{

−1

2

∫

m̄|∇ψ1|2 dx+

∫

∂1h̄ ψ1 dx

}

= min
J

{
1

2

∫
1

m̄
|J |2 dx

∣
∣
∣ − ∂1h̄+ ∇ · J = 0

}

. (A.1)

A.1. Case q = 0. The case of q = 0 and thus m̄ ≡ 1 however can be treated
explicitly. For this purpose we turn to the formulation (3.22) which for the
mesoscopic droplet profile (2.25) assumes the form

√
2 rR − ∂2

rψ1 − 1
r∂rψ1 + 1

r2
ψ1 = 0 for r < R,

−∂2
rψ1 − 1

r∂rψ1 + 1
r2ψ1 = 0 for r > R,

ψ1(r = 0) = 0, limr↑∞ ∂rψ1 = 0.

The solution of this ODE is easily checked to be

ψ1 =
R2

4
√

2

{

−2 rR +
(
r
R

)3
for r ≤ R,

−R
r for r ≥ R

}

. (A.2)

Hence we obtain as claimed
∫

m̄|∇ψ1|2 dx =

∫

∂1h̄ ψ1 dx = π

∫ ∞

0
∂rh̄ ψ1 r dr =

π

12
R4.

A.2. Case 0 < q < 3. For the range of q ∈ (0, 3), we introduce the rescaling
(which is consistent with (A.2) for q = 0)

x = Rx̂, h̄ = R ĥ, m̄ = Rq m̂,

ψ1 = R2−q ψ̂1, J = R Ĵ.
(A.3)

Notice that with this rescaling, (A.1) turns into

Rq−4 1

2

∫

m̄|∇ψ1|2 dx

= max
ψ̂1

{

−1

2

∫

m̂|∇̂ψ̂1|2 dx̂+

∫

∂̂1ĥ ψ̂1 dx̂

}

= min
Ĵ

{
1

2

∫
1

m̂
|Ĵ |2 dx̂

∣
∣
∣ − ∂̂1ĥ+ ∇̂ · Ĵ = 0

}

. (A.4)

Recall the outcome of the analysis in Section 2 in form of (2.23) and (2.24).
It implies that in the rescaling of (A.3), h̄ − 1 converges to the mesoscopic
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profile h̄meso − 1 given in (2.25):

ĥ →
{

1√
2
(1 − r̂2) for r̂ < 1,

0 for r̂ > 1

}

:= ĥlim.

Because of q > 0, this entails

m̂ →
{ (

1√
2
(1 − r̂2)

)q
for r̂ ≤ 1,

0 for r̂ ≥ 1

}

:= m̂lim.

Hence we infer from (A.4)

lim inf
R↑∞

Rq−4 1

2

∫

m̄|∇ψ1|2 dx̂

≥ max
ψ̂1

{

−1

2

∫

m̂lim|∇̂ψ̂1|2 dx+

∫

∂̂1ĥlim ψ̂1 dx̂

}

(A.5)

and

lim inf
R↑∞

Rq−4 1

2

∫

m̄|∇ψ1|2 dx

≤ min
Ĵ

{
1

2

∫
1

m̂lim
|Ĵ |2 dx̂

∣
∣
∣ − ∂̂1ĥlim + ∇̂ · Ĵ = 0

}

, (A.6)

with the understanding that
∫

1
m̂lim

|Ĵ |2 dx̂ = +∞ if the support of Ĵ is not

contained in the support of m̂lim, i. e. the closed unit disk. It remains to
argue that

∃Ĵ s. t. − ∂̂1ĥlim + ∇̂ · Ĵ = 0 and

∫
1

m̂lim
|Ĵ |2 dx̂ < ∞. (A.7)

Indeed, if this is the case, the variational problem on r. h. s. of (A.6) has

a (unique) solution Ĵ . The first variation shows that Ĵ is of the form Ĵ =

−m̂lim∇̂ψ̂1 and that ψ̂1 solves the variational problem in (A.5). Hence (A.7)
implies that (A.5) and (A.6) contract to

lim
R↑∞

Rq−4 1

2

∫

m̄|∇ψ1|2 dx

= max
ψ̂1

{

−1

2

∫

m̂lim|∇̂ψ̂1|2 dx̂+

∫

∂̂1ĥlim ψ̂1 dx̂

}

= min
Ĵ

{
1

2

∫
1

m̂lim
|Ĵ |2 dx̂

∣
∣
∣ − ∂̂1ĥlim + ∇̂ · Ĵ = 0

}

.

We now remark that (A.7) is true for q < 3: Consider Ĵ = ĥlim −
(1
0

)
which

automatically satisfies the first condition in (A.7) and for which

∫
1

m̂lim
|Ĵ |2 dx̂ =

∫
(ĥlim − 1)2

m̂lim
dx̂ = 2π

∫ 1

0

(
1√
2
(1 − r̂2)

)2−q
r̂ dr̂ < ∞,
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provided q < 3. But since 1
m̄lim

Ĵ = 1
m̄lim

ĥlim −
(1
0

)
is not a gradient, we

obtain the strict inequality

lim
R↑∞

Rq−4

∫

m̄|∇ψ1|2 dx <

∫

{|x̂|<1}

(
1√
2
(1 − |x̂|2)

)2−q
dx̂,

as opposed to the analogous equality in the one-dimensional case. Notice
that as in the one-dimensional case, the leading order behavior depends only
on the mesoscopic droplet profile.

A.3. Case q > 3. We reformulate (A.1) as

1

2

∫

m̄|∇ψ1|2 dx

=







max
ψ1

{

−1

2

∫

m̄|∇ψ1|2 dx−
∫

(h̄− 1) ∂1ψ1 dx

}

min
J

{
1

2

∫
1

m̄
|J + (h̄− 1)

(
1

0

)

|2 dx
∣
∣
∣∇ · J = 0

}







. (A.8)

Furthermore, we write (A.8) in polar coordinates, using the fact that ψ1 is

of the form (3.20) so that J = −m̄∇ψ1 − (h̄− 1)
(1
0

)
can be written as

J(x) = Jr(r) cosϕ

(
cosϕ

sinϕ

)

− Jϕ(r) sinϕ

(− sinϕ

cosϕ

)

.

Hence from (A.8) we obtain on the one hand

1

2π

∫ ∞

0
m̄|∇ψ1|2 dx

= max
ψ1(r)

{

−1

2

∫ ∞

0
m̄

(

(∂rψ1)
2 + (

ψ1

r
)2
)

r dr −
∫ ∞

0
(h̄− 1) ∂rψ1 r dr

}

(A.9)

and on the other hand

1

2π

∫ ∞

0
m̄|∇ψ1|2 dx

= min
Jr(r),Jϕ(r)

{1

2

∫ ∞

0

1

m̄

((
Jr + (h̄− 1)

)2
+
(
Jϕ + (h̄− 1)

)2
)

r dr
∣
∣
∣

∂rJr +
1

r
Jr −

1

r
Jϕ = 0

}

= min
Jr(r)

{
1

2

∫ ∞

0

1

m̄

((
Jr + (h̄− 1)

)2
+
(
r∂rJr + Jr + (h̄− 1)

)2
)

r dr

}

.(A.10)

We employ the nonlinear rescaling (2.12) used for the foot region in Section
2

r = R exp
( s

R

)

, Jr = R−1 Ĵr,
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(A.9) and (A.10) turn into

1

2π R

∫

m̄|∇ψ1|2 dx

= max
ψ1(s)

{

−1

2

∫ +∞

−∞
m̄
(
(∂sψ1)

2 +R−2ψ2
1

)
ds−

∫ +∞

−∞
(h̄− 1) ∂sψ1 exp(

s

R
) ds

}

= min
Ĵr(s)

{1

2

∫ +∞

−∞

1

m̄

((

R−1Ĵr + (h̄− 1)
)2

+
(

∂sĴr +R−1Ĵr + (h̄− 1)
)2 )

exp(2
s

R
) ds
}
. (A.11)

We recall from (2.15) that to leading order, h̄ is characterized by
∫ 2

h̄(s)

1
√

2W (h)
dh = s for |s| ≪ R.

Hence the (pointwise) limits h̄lim(s) and m̄lim of h̄(s) and m̄(s), respectively,
for R ↑ ∞ are characterized by

∫ 2

h̄lim(s)

1
√

2U(h)
dh = s and m̄lim(s) = h̄lim(s)p for all s.

This entails the differential characterization

∂sh̄lim = −
√

2U(h̄lim) and lim
s↑−∞

h̄lim = +∞, lim
s↑∞

h̄lim = 1.

Thus we obtain from (A.11)

max
ψ1(s)

{

−1

2

∫ +∞

−∞
m̄lim(∂sψ1)

2 ds−
∫ +∞

−∞
(h̄lim − 1) ∂sψ1 ds

}

≤ lim inf
R↑∞

1

2π R

∫

m̄|∇ψ1|2 dx

≤ lim sup
R↑∞

1

2π R

∫

m̄|∇ψ1|2 dx

≤ min
Ĵr(s)

{
1

2

∫ +∞

−∞

1

m̄lim

(

(h̄lim − 1)2 +
(

∂sĴr + (h̄lim − 1)
)2
)

ds

}

.(A.12)

Elementary optimization shows that the l.h.s. and r.h.s. coincide:

max
ψ1(s)

{

−1

2

∫ +∞

−∞
m̄lim(∂sψ1)

2 ds−
∫ +∞

−∞
(h̄lim − 1) ∂sψ1 ds

}

=
1

2

∫ ∞

−∞

(h̄lim − 1)2

m̄lim
ds

= min
Ĵr(r)

{
1

2

∫ +∞

−∞

1

m̄lim

(

(h̄lim − 1)2 +
(

∂sĴr + (h̄lim − 1)
)2
)

ds

}

.(A.13)
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From (A.12) and (A.13) we thus obtain

lim
R↑∞

1

R

∫

m̄|∇ψ1|2 dx = π

∫ ∞

−∞

(h̄lim − 1)2

m̄lim
ds, (A.14)

which implies the scaling claimed in (3.27) for q > 3. Notice that this
deviates by a factor 1

2 from the local expression

lim
R↑∞

1

R

∫
(h̄− h̄∞)2

m̄
dx = 2π

∫ ∞

−∞

(h̄lim − 1)2

m̄lim
ds. (A.15)

As in the one-dimensional case, the actual value depends on the details of
the potential U , as can be seen from (D.4):

π

∫ ∞

−∞

(h̄lim − 1)2

m̄lim
ds = π

∫ ∞

1

h− 1

hq
1

√

2U(h)
dh.

A.4. Case q = 3. Guided by the prior analysis, we construct test functions
for (A.9) and (A.1) which give identical bounds in terms of scaling in R≫ 1.
For (A.9) we make the Ansatz

ψ1 =







− 1√
2
r
R

1√
2(R−r)+1

for r ≤ R,

− 1√
2
R
r for r ≥ R






.

This function is constructed such that its derivative

∂rψ1 =







−(1 + 1√
2R

) 1

(
√

2(R−r)+1)
2 for r ≤ R,

1√
2
R
r2

for r ≥ R







satisfies m̄∂rψ1 ≈ −h̄ in the foot region. As in the one-dimensional case for
q = 3, the main contribution comes from a logarithmic divergence in the
foot region. Hence we right away use the mesoscopic droplet profile (2.25).
We obtain for the various contributions to (A.9) in the regime R≫ 1

∫ R

0
m̄(∂rψ1)

2 r dr ≈ R√
2

lnR,

−
∫ R

0
(h̄− 1) ∂rψ1 r dr ≈ R√

2
lnR,

∫ R

0
m̄(

ψ1

r
)2 r dr ∼ R ≪ R lnR,

and outside the droplet
∫ ∞

R

(

(∂rψ1)
2 + (

ψ1

r
)2
)

r dr =
1

4
≪ R lnR.

From (A.9) and this asymptotic behavior of the test function ψ1 we conclude

1

2π

∫

m̄|∇ψ1|2 dx '
R

2
√

2
lnR. (A.16)
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For the upper bound corresponding to (A.16), we make the Ansatz

Jr =

{
R√
2

(
r
R

)2
(1 − r

R)2 for r ≤ R,

0 for r ≥ R

}

.

This radial flux component is constructed such that

∂rJr =

{ √
2 r
R (1 − r

R ) (1 − 2 rR ) for r ≤ R,

0 for r ≥ R

}

has the behavior r∂rJr ≈ −
√

2(R− r) ≈ −(h̄− 1) in the foot region r ≈ R.
We turn to the individual terms in (A.10). In the regime R≫ 1 we have

∫ ∞

0

1

m̄
(h̄− 1)2 r dr ≈ R√

2
lnR,

∫ ∞

0

1

m̄

(
r∂rJr + (h̄− 1)

)2
r dr ≤

∫ R

0

1

(h̄− 1)3
(
r∂rJr + (h̄− 1)

)2
r dr

∼ R ≪ R lnR,
∫ ∞

0

1

m̄
J2
r r dr ≤

∫ R

0

1

(h̄− 1)3
J2
r r dr

∼ R ≪ R lnR.

Combining these estimates with help of the triangle inequality, we obtain

1

2

∫
1

m̄

(
(Jr + (h̄− 1))2 + (r∂rJr + Jr + (h̄− 1))2

)
r dr /

R

2
√

2
lnR,

so that (A.10) yields

1

2π

∫

m̄|∇ψ1|2 dx /
R

2
√

2
lnR.

This concludes the proof of (3.27).

Appendix B. Analysis of ψ0

We now turn to showing the scaling of
∫
ψ0∂1h̄dx claimed in (3.28). Al-

though problem (3.16) for ψ0 is variational, the expression (3.28) does not
have an easy variational characterization as (A.1). This means that we
have to get an understanding of the solution ψ0(x) of (3.16), or in its radial
version (3.21) for ψ0(r), itself.

Let us clearly state that we do not find universal functions Cq(R) and

ψ̂0(
r
R ), such that ψ0(r) = Cq(R)ψ̂0(

r
R ) on the whole domain. Depending on

the mobility exponent q, equations (B.18), (B.26) and (B.22) give asymptotic
expressions for ψ0 in the precursor, foot and cap region.
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B.1. Case q = 0. When q = 0 (3.16) turns into

−∆ψ0 = 0, ∇ψ0 →
(

1

0

)

as |x−X| ↑ ∞,

so that (up to irrelevant additive constants):

ψ0 = (x−X) ·
(

1

0

)

. (B.1)

We therefore obtain as claimed

−
∫

ψ0 ∂1h̄ dx =

∫

∂1ψ0 (h̄− 1) dx
(B.1)
=

∫

(h̄− 1) dx
(2.25)
=

π

4
√

2
R3.

B.2. Reduced order equation: The u problem. In the general case, we
start by analyzing

u :=
d lnψ0

d ln r
=

r

ψ0

dψ0

dr
, r ∈ (0,∞), (B.2)

which is well-defined according to (3.25). The merit of u is that it satisfies
a first order but nonlinear ODE (a Ricatti equation):

du

ds
= −u2 + q a u+ 1, (B.3)

where the new variable s and the coefficient a are defined by

s := ln
r

R
= ln r − lnR and a := −d ln h̄

ds
. (B.4)

Notice that

lim
s→−∞

u
(B.2),(B.4)

= lim
r↓0

r

ψ0

dψ0

dr
= 1, (B.5)

since dψ0

dr (r = 0) 6= 0 because of uniqueness for the ODE (3.21). Together

with a = −d ln h̄
ds = − r

h̄
dh̄
dr ≥ 0, it follows in particular from (B.3) & (B.5)

that
u ≥ 1 for all s. (B.6)

Based on the mesoscopic droplet profile (2.25), we find for the coefficient
a that

a =







2
exp(2s)

1 − exp(2s) +
√

2
R

for s < 0,

0 for s > 0






.

To leading order in R ≫ 1, this implies the following asymptotic behavior
in the cap region, the foot region, and the precursor, respectively:

a =







2 exp(2s) for − s≫ 1,

1

−s+ 1√
2R

for 0 < −s≪ 1,

0 for s > 0







. (B.7)
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B.2.1. Cap region −s ≫ 1: In view of (B.7), we notice that for −s ≫ 1,
(B.3) behaves as du

ds = −u2 + 1 for which u = 1 is unstable at s → −∞.
Hence we can extract information from the boundary condition (B.5). To
this purpose, we approximate (B.3) for u ≈ 1 and −s ≫ 1. We obtain in
view of (B.7)

d(u− 1)

ds
= −2(u− 1) + 2q exp(2s) for − s≫ 1.

All solutions of the linear ODE are given by

u = 1 +
1

2
q exp(2s) + const exp(−2s) for − s≫ 1,

and because of (B.5), the only relevant one is

u = 1 +
1

2
q exp(2s) for − s≫ 1. (B.8)

This expression approximates the solution of (B.3) in the cap region −s≫ 1.
In particular, it is independent of R to leading order. Since a is independent
of R to leading order for −s≫ 1

R , cf. (B.7), we obtain

u is to leading order independent of R for −s≫ 1
R . (B.9)

B.2.2. Foot region 0 < −s≪ 1: We now turn to the foot region 0 < −s≪ 1.
Since a≫ 1 in this region, we also expect u≫ 1 in view of (B.3) and (B.6)
(we use q > 0 here). In view of (B.7), (B.3) is then well-approximated by

du

ds
= −u2 + q

1

−s+ 1√
2R

u for 0 < −s≪ 1.

All solutions are given by

u =







q − 1

(−s+ 1√
2R

)(1 + const(−s+ 1√
2R

)q−1)
for q 6= 1,

1

(−s+ 1√
2R

)(const − ln(−s+ 1√
2R

))
for q = 1







. (B.10)

We notice that for 1
R ≪ −s≪ 1, u asymptotically simplifies to

u =







q − 1

(−s)(1 + const(−s)q−1)
for q 6= 1,

1

(−s)(const − ln(−s)) for q = 1







for
1

R
≪ −s≪ 1.

Thus we infer from (B.9):

const in (B.10) is to leading order independent of R.
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Therefore we may conclude from (B.10) the following asymptotic behavior:

u =







q − 1

(−s+ 1√
2R

)
for q > 1,

1

(−s+ 1√
2R

) ln 1
−s+ 1√

2R

for q = 1,

C

(−s+ 1√
2R

)q
for q ∈ (0, 1),







for 0 < −s≪ 1,

(B.11)
where C > 0 denotes a generic constant independent of R. Notice that these
expressions are consistent with our initial assumption that u≫ 1 in the foot
region.

B.2.3. Precursor region s > 0: We finally address the precursor region s > 0,
where in view of (B.7), u satisfies the autonomous equation

du

ds
= −u2 + 1 for s > 0.

All solutions u > 1, cf. (B.6), are of the form

u =
1

tanh(s + const)
for s > 0.

In order to connect to (B.11) we must have to leading order in R≫ 1:

u =







1

tanh(s+ 1
(q−1)

√
2R

)
for q > 1,

1

tanh(s+ ln(
√

2R)√
2R

)
for q = 1,

1

tanh(s+ 1
C(

√
2R)q

)
for q ∈ (0, 1)







for s > 0. (B.12)

The asymptotic expressions (B.8), (B.11) and (B.12) for u allow us to
reconstruct ψ0 according to (B.2).

B.3. Case q > 1: Recovering ψ0 from u. We recall that we just found
that to leading order in R≫ 1:

u(s) =







1

tanh(s+ 1
(q−1)

√
2R

)
for s > 0

q − 1

−s+ 1√
2R

for 1 ≫ −s > 0,

1 + 1
2q exp(2s) for − s≫ 1,







. (B.13)
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B.3.1. Precursor region s > 0: In order to pass from u = d lnψ0

ds to lnψ0, we
use the boundary condition on ψ0 for r ↑ ∞ and then work backwards. We
recall (3.23) in form of

ψ0 = r − const
R2

r
for r ≥ R, (B.14)

which translates into

lnψ0 = s+ lnR+ ln(1 − const exp(−2s)).

This implies

d lnψ0

ds
=

1 + const exp(−2s)

1 − const exp(−2s)
,

whereas (B.13) can be rewritten as (to leading order in R≫ 1)

d lnψ0

ds
=

1 + (1 −
√

2
(q−1)R ) exp(−2s)

1 − (1 −
√

2
(q−1)R ) exp(−2s)

,

from which we read off that const = 1 −
√

2
(q−1)R . Therefore, (B.14) can be

specified to

ψ0 = r −
(

1 −
√

2

(q − 1)R

)

R2

r
for r ≥ R. (B.15)

B.3.2. Foot region 0 < −s ≪ 1: We now turn to the foot region. From
(B.13) we infer that lnψ0 must be of the form

lnψ0 = (q − 1) ln
1

−s+ 1√
2R

+ const for 1 ≫ −s > 0,

or

ψ0 =
const

(−s+ 1√
2R

)q−1
for 1 ≫ −s > 0.

Since for |s| ≪ 1, r
R = exp(s) ≈ 1 + s, we obtain to leading order

ψ0 =
const

(1 − r
R + 1√

2R
)q−1

for r ≈ R with r ≤ R.

The matching with (B.15) determines the constant in the above

ψ0 =

√
2

q − 1

1

(
√

2(R− r) + 1)q−1
for r ≈ R with r ≤ R. (B.16)
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B.3.3. Cap region −s≫ 1: We finally turn to the cap region. From (B.13)
we gather that

lnψ0 = s+
1

4
q exp(2s) + const

= ln
r

R
+

1

4
q
( r

R

)2
+ const for − s≫ 1,

or

ψ0 = const

(

1 +
1

4
q
( r

R

)2
)
r

R
for 0 < r ≪ R.

Matching with (B.16), which we reformulate as

ψ0 =

√
2

q − 1

1
(√

2(1 − r
R)
)q−1

1

Rq−1
for

r

R
≈ 1 with 1 − r

R
≫ 1

R
.

we deduce that

ψ0 = C

(

1 +
1

4
q
( r

R

)2
)

r

Rq
for 0 < r ≪ R, (B.17)

with C independent of R to leading order.

B.3.4. Scaling of (3.28): In order to deduce the scaling (3.28), we collect
the results (B.15), (B.16) and (B.17) just obtained in the case of q > 1:

ψ0 =







r −
(

1 −
√

2

(q − 1)R

)

R2

r
for r ≥ R,

√
2

q − 1

1

(
√

2(R − r) + 1)q−1
for r ≈ R with r ≤ R,

C

(

1 +
1

4
q
( r

R

)2
)

r

Rq
for 0 < r ≪ R







. (B.18)

We now see that for the integral under consideration, i. e.

−
∫

ψ0 ∂1h̄ dx = −π
∫ ∞

0
ψ0 ∂rh̄ r dr

(2.25)
=

√
2π

R

∫ R

0
ψ0 r

2 dr,

there is a cross-over at q = 2: For q < 2, the cap region dominates, for q > 2,

the foot region does. For q < 2 we infer the scaling
√

2π
R

∫ R
0 ψ0 r

2 dr ≈ CR3−q

from the cap region behavior in (B.18). In case of q ≥ 2, we conclude from
the foot region behavior in (B.18):

√
2π

R

∫ R

0
ψ0 r

2 dr ≈ 2πR

q − 1

∫ R

0

1

(
√

2(R− r) + 1)q−1

( r

R

)2
dr

≈







√
2πR lnR for q = 2,
√

2πR

(q − 2)(q − 1)
for q > 2







.

This concludes showing (3.28) for q > 1.
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B.4. Case q = 1: Recovering ψ0 from u. We found in (B.8), (B.11) &
(B.12) that to leading order in R≫ 1:

u =







1

tanh(s + ln(
√

2R)√
2R

)
for s > 0

1

(−s+ 1√
2R

) ln 1
−s+ 1√

2R

for 1 ≫ −s > 0,

1 + 1
2 exp(2s) for − s≫ 1,







. (B.19)

B.4.1. Precursor region s > 0: As before, (3.23) translates into

d lnψ0

ds
=

1 + const exp(−2s)

1 − const exp(−2s)
.

To leading order in R≫ 1, (B.19) behaves like

u ≈
1 − (1 − 2 ln(

√
2R)√

2R
) exp(−2s)

1 + (1 − 2 ln(
√

2R)√
2R

) exp(−2s)
,

from which we obtain that const = (1 − 2 ln(
√

2R)√
2R

) and therefore

ψ0 = r −
(

1 − 2
ln(

√
2R)√

2R

)

R2

r
for r ≥ R. (B.20)

B.4.2. Foot region 0 < −s≪ 1: From (B.19) we infer that

lnψ0 = ln

(

ln

(

−s+
1√
2R

))

+ const

and thus

ψ0 = const ln

(

1 − r

R
+

1√
2R

)

for r ≈ R with r ≤ R.

The matching with (B.20) yields

ψ0 = −
√

2 ln

(

1 − r

R
+

1√
2R

)

for r ≈ R with r ≤ R. (B.21)
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B.4.3. Cap region −s≫ 1: In the cap region we obtain as before

ψ0 = const

(

1 +
1

4

( r

R

)2
)
r

R
for 0 < r ≪ R.

The constant is determined by matching with (B.21): Near the cap re-
gion, the term 1 − r

R dominates 1√
2R

to leading order in R ≫ 1, so that

ψ0 ≈ −
√

2 ln(1 − r
R ). The matching yields a constant const = C2 which is

independent of R. Hence

ψ0 = C2

(

1 +
1

4

( r

R

)2
)
r

R
for 0 < r ≪ R.

Collecting the asymptotic expressions for ψ0 in the different regions, we
finally obtain:

ψ0 =







r −
(

1 − 2
ln(

√
2R)√

2R

)

R2

r
for r ≥ R,

−
√

2 ln

(

1 − r

R
+

1√
2R

)

for r ≈ R with r ≤ R,

C2

(

1 +
1

4

( r

R

)2
)

r

R
for 0 < r ≪ R







. (B.22)

B.4.4. Scaling of (3.28). As shown for q < 1, the contribution from the cap
region to (3.28) is ≈ CR2 to leading order. The same holds for the foot
region:

√
2π

R

∫

foot
ψ0r

2 dr
(B.22)

= −2π

R

∫

foot
ln

(

1 − r

R
+

1√
2R

)

r2 dr ≈ CR2.

This proves (3.28) for q = 1.

B.5. Case q < 1: Recovering ψ0 from u. We now turn to the case of
q < 1 and recall that we argued that to leading order in R≫ 1:

u =







1

tanh(s+ 1
C(

√
2R)q

)
for s > 0

C

(−s+ 1√
2R

)q
for 1 ≫ −s > 0,

1 + 1
2q exp(2s) for − s≫ 1,







, (B.23)

where C > 0 denotes a constant independent of R.

B.5.1. Precursor region s > 0: With the same reasoning as before, this
yields for the precursor region

ψ0 = r −
(

1 − 2

C(
√

2R)q

)
R2

r
for r ≥ R. (B.24)
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B.5.2. Foot region 0 < −s ≪ 1: Now for the foot region. From (B.23) we
infer that lnψ0 must be of the form

lnψ0 = − C

q − 1

(

−s+
1√
2R

)1−q
+ const for 1 ≫ −s > 0

and thus

ψ0 = const

(

1 − C

1 − q

(

1 − r

R
+

1√
2R

)1−q
)

for r ≈ R with r ≤ R.

The matching with (B.24) determines the multiplicative constant to leading
order in R≫ 1:

ψ0 =

√
2
2−q

R1−q

C
−
√

2
2−q

R1−q

1 − q

(

1 − r

R
+

1√
2R

)1−q
for r ≈ R with r ≤ R.

(B.25)

B.5.3. Cap region −s≫ 1: In the cap region we must have as before

ψ0 = const

(

1 +
1

4
q
( r

R

)2
)

r

R
for 0 < r ≪ R.

Matching with (B.25), we gather that

ψ0 = C1

(

1 +
1

4
q
( r

R

)2
)

r

Rq

with a constant C1 independent of R to leading order.

Collecting the asymptotic expressions for ψ0 in the different regions, we
finally obtain

ψ0 =







r −
(

1 − 2

C(
√

2R)q

)
R2

r
for r ≥ R,

√
2
2−q

R1−q
(

1

C
− 1

1 − q

(

1 − r

R
+

1√
2R

)1−q
)

for r ≈ R with r ≤ R,

C1

(

1 +
1

4
q
( r

R

)2
)

r

Rq
for 0 < r ≪ R







.

(B.26)

B.5.4. Scaling of (3.28). We infer the scaling of

−
∫

ψ0 ∂1h̄ dx
(2.25)
=

√
2π

R

∫ R

0
ψ0 r

2 dr

from (B.26). Both the cap and the foot region reveal the scaling CR3−q:
√

2π

R

∫

cap
ψ0 r

2 dr
(B.26)

=

√
2π

R

∫

cap
C1

(

1 +
1

4
q
( r

R

)2
)

r

Rq
r2 dr ≈ CR3−q
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and
√

2π

R

∫

foot
ψ0 r

2 dr
(B.26)

=
√

2
2−q

πR−q
∫

foot

(

1

C
− 1

1 − q

(

1 − r

R
+

1√
2R

)1−q
)

r2 dr

≈ C(R3−q +R).

R3−q dominates R, since 3 − q > 2 for q < 1. This concludes the proof of
(3.28) for q < 1.

Appendix C. Migration vs. sliding

It is enlightening to compare the problem of a near-equilibrium droplet
migrating in a flux field prescribed at infinity to that of a near-equilibrium
droplet sliding in an external potential field. The latter can be achieved
physically, for example, by placing a droplet on an inclined surface where
gravity plays the role of the field [16, 18]. In reference [15, III.C], it was
envisioned that this is the same as migration in a prescribed flux field.
However, as we shall discuss towards the end of this subsection, our findings
deviate from theirs. In analogy to a constant flux field f∞ at infinity we
consider an external potential with constant gradient:

µext = −f∞ · (x−X). (C.1)

We argue that the drift velocity Ẋ of the droplet is determined by the
following problem:

−Ẋ · ∇h̄−∇ · (m̄∇µ) = 0, (C.2)

J · ν → 0 as r ↑ ∞ where J := −m̄∇µ, (C.3)
∫

µ∇h̄ dx = f∞

∫

(h̄− h̄∞) dx. (C.4)

Analogous to subsection 3.1, we can give two argument in favor of this,
either based on the Rayleigh principle or based on a solvability argument.
For shortness, we skip this part.

As before, we seek a better characterization of the Ẋ-f∞-relationship
implicitly defined by (C.2), (C.3) and (C.4). Again, in the case of a 1-d
substrate, we obtain a fairly explicit expression: From (3.7) and the no-flux

boundary condition of J we infer J = Ẋ(h̄− h̄∞) and thus obtain from the

variation w.r.t. Ẋ in the Rayleigh principle argument

0 =

∫

(h̄− h̄∞) (
1

m̄
Ẋ (h̄− h̄∞) − f∞) dx

or

Ẋ =

∫
(h̄− h̄∞) dx

∫
1
m̄(h̄− h̄∞)2 dx

f∞. (C.5)

Notice that formula (C.5) differs from (D.1) not just by the sign (droplets
drift in direction of the force f∞ coming from the external potential) but in
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structure. Since m̄ ≫ 1 in the droplets, the reaction to J∞ is much weaker
than to f∞.

The formula for a 2-d substrate relates to (C.5) as (3.18) does to (D.1):

Ẋ =

∫
(h̄− h̄∞) dx
∫
ψ1 ∂1h̄ dx

f∞.

Indeed, this identity follows from (C.4) since µ = Ẋ ψ1. As before, (3.17)
and integration by parts of the denominator yield

Ẋ =

∫
(h̄− h̄∞) dx
∫
m̄|∇ψ1|2 dx

f∞. (C.6)

Notice that (3.24) and (C.6) have the same denominator. The authors of
[15] call this quantity, which we shall analyze more closely in Section A
“dissipative integral” – rightfully so, since in view of (3.17) it is the rate of
energy dissipation when an equilibrium droplet moves with unit speed in an
environment quiescent far away from the droplet. However, our formula

I :=

∫

m̄|∇ψ1|2 dx (C.7)

is not quite the same as theirs:

I :=

∫
1

m̄
h̄ (h̄− h̄∞) dx, (C.8)

cf. [15, formula (14)]. Formula (C.8) has the same flavor as the one-dimensional
expression

∫
1
m̄ (h̄ − h̄∞)2 dx, cf. (C.5). This difference stems from ignor-

ing divergence-free fields when integrating the thin-film equation to obtain
equation [15, formula (9)] in their work. In particular, the flux that we
find, −m∇ψ1 is dipolar (3.20), while the flux, j, of Pismen and Pomeau is
unidirectional. Also if the flux is assumed to tend toward zero as |x| → ∞,
then the right hand side of [15, formula (9)] should read (in our notation)
C(h − h∞)/m̄ instead of Ch/m̄. We see in Subsection A.3 (in particular
in (A.14) and (A.15)) that for sufficiently monotone mobilities in the sense
of q ≥ 3, the two expressions, (C.7) and

∫
1
m̄(h̄ − h̄∞)2dx, differ only by

a factor of 2 in the regime of large equilibrium droplets. The factor 2, is
due to the dipolar nature of the flux; it enters (A.9) as the consequence of
1
2π

∫ 2π
0 cos2 ϕdϕ = 1

2 .

Appendix D. Analysis in one-dimensional setting

D.1. Characterization and sign of the migration velocity. The con-
tinuity equation (3.7) combined with the flux boundary conditions (3.2)
implies

J = J∞ + Ẋ (h̄− h̄∞).

Inserting this identity into (3.8) yields

0 = J∞

∫
1

m̄
(h̄− h̄∞) dx+ Ẋ

∫
1

m̄
(h̄− h̄∞)2 dx,
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or

Ẋ = −
∫

1
m̄ (h̄− h̄∞) dx

∫
1
m̄ (h̄− h̄∞)2 dx

J∞, (D.1)

which is identical with the formula derived in [7, formula (4.10)] by the above
solvability argument. In particular, the droplet migrates in the direction
opposite to the prescribed flux. If the flux goes from left to right, one should
think of the droplet gaining mass at its left end while loosing mass at its
right end, thus drifting to the left.

D.1.1. Scaling of migration velocity. One has to investigate integrals of the
form

Iγ :=

∫
1

m̄
(h̄− h̄∞)γ dx =

∫
(h̄− h̄∞)γ

h̄q
dx.

Obviously, there is a cross-over at q = γ+1: For q < γ+1, the contribution
from the cap region dominates Iγ , while for q > γ+1, the contribution from
the foot region dominates.

We appeal to the first integral of −∂2
xh̄+ U ′(h̄) = P , that is,

−1

2
(∂xh̄)

2 +W (h̄) = 0, (D.2)

where W is defined in (2.7). Because of (2.4) (which a-fortiori holds in the
one-dimensional case), (D.2) turns into

∂xh̄ = −
√

2W (h̄) for x > 0,

so that

Iγ = 2

∫ h̄(x=0)

h̄∞

(h− h̄∞)γ

hq
1

√

2W (h)
dh. (D.3)

Recall that h̄∞ → 1 as P ↓ 0, cf. (2.2), so that to leading order, (D.3) turns
into

Iγ ≈ 2

∫ h̄meso(0)

1

(h− 1)γ

hq
1

√

2U(h)
dh

(2.25)
= 2

∫ 1+R/
√

2

1

(h− 1)γ

hq
1

√

2U(h)
dh, (D.4)

since due to γ > 0, the (potential) singularity at h = 1 is integrable.

For q > γ + 1, (D.4) is also integrable at h ↑ ∞, so that to leading order
Iγ is independent of R:

Iγ ≈ 2

∫ ∞

1

(h− 1)γ

hq
1

√

2U(h)
dh ∈ (0,∞).

Note that the leading order scaling of Iγ depends on the details of the
potential U .
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On the other hand, for q = γ + 1, we have a logarithmic divergence

Iγ ≈
√

2 lnR,

and for q < γ + 1, the divergence

Iγ ≈ CRγ−q+1.

Thus in case of a one-dimensional substrate, we find the following scaling
to leading order in R≫ 1:

∫
1

m̄
(h̄− h̄∞)2 dx =







C R3−q for q ∈ [0, 3),√
2 lnR for q = 3,

C for q > 3

(D.5)

∫
1

m̄
(h̄− h̄∞) dx =







C R2−q for q ∈ [0, 2),√
2 lnR for q = 2,

C for q > 2

(D.6)

where C > 0 denotes a generic constant independent of R (but dependent
on q).

D.2. Interacting mesoscopic droplets: Two droplet case. We now
carry out the analysis of Section 4 for the one-dimensional setting. Let us
first consider a configuration of two droplets, see Figure 12, where we set

X1 X2

R1 R2

L = X2 − X10 Λ

Figure 12. Droplet configuration.

L := L12. The change vectors have the form v = (V̇1,−V̇1, Ẋ1, Ẋ2)
T ∈ R

4

or, in Eulerian coordinates,

△hv = −∂xh1(x)Ẋ1 − ∂xh2(x)Ẋ2 +

(
∂h1

∂V1
− ∂h2

∂V2

)

V̇1.

The matrix G representing the dissipation rate is a matrix in R
4×4 with

sub-matrices Gv , Gm and C in R
2×2, as in (4.14).

We determine the approximate values of coefficients in the regime (4.1)
of large, far apart droplets.
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Computing Gv. Let w := (1,−1, 0, 0)T . Then −∂xJw = △hw = ∂h1

∂V1
− ∂h2

∂V2
.

Hence

wTGw = Gv11 −Gv12 −Gv21 +Gv22

=

∫
1

m(h(x))
|Jw(x)|2 dx

The above is the only requirement on coefficients of Gv, which allows us to
define

Gv11 = Gv22 := 0

Gv12 = Gv21 := −1
2

∫
1

m(h(x))
|Jw|2 dx.

Elementary integration yields

Jw(x) =







0 outside,

− 1
6
√

2ω
V

− 3

2

1 (x−X1)
3 − 1

4
√

2ω
V

− 1

2

1 (x−X1) − 1
2 in B(X1, R1),

−1 in between,

1
6
√

2ω
V

− 3

2

2 (x−X2)
3 + 1

4
√

2ω
V

− 1

2

2 (x−X2) − 1
2 in B(X2, R2),

0 outside.

In the regime L≫ Ri, the dissipation tensor is to the leading order
∫

1

m
|Jw|2 dx =

∫

B(X1,R1)

1

m
|Jw|2 dx+

∫ X2−R2

X1+R1

1 dx

︸ ︷︷ ︸

≈L

+

∫

B(X2,R2)

1

m
|Jw|2 dx ≈ L,

since the two integrals over B(Xi, Ri) scale like Ri. In conclusion

Gvii = 0 (D.7a)

Gv12 = Gv21 ≈ −1
2L. (D.7b)

Computing Gm. Let w1 := (0, 0, 1, 0)T and w2 := (0, 0, 0, 1)T . Then −∂xJwi
=

△hwi
= −∂xhi, for i = 1, 2. Hence

Gmii = wTi Gwi =

∫
1

m(h(x))
|Jwi

(x)|2 dx.

Elementary integration yields Jwi
(x) = hi(x) and thus

Gmii =

∫
1

m(h(x))
(hi(x))

2 dx =: gi. (D.8a)

Since Jwi
has support in B(Xi, Ri), it follows that

Gm12 = Gm21 =

∫
1

m(h(x))
Jw1

(x) · Jw2
(x) dx = 0. (D.8b)
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Computing C. For i = 1, 2

wTi Gw = Ci1 − Ci2

=

∫
1

m(h(x))
Jwi

(x) · Jw(x) dx, where
−∂xJwi

= −∂xhi
−∂xJw = ∂h1

∂V1
− ∂h2

∂V2

=

∫

B(Xi,Ri)

1

m(h(x))
hi(x)(c(x −Xi)

3 + c̃(x−Xi) − 1
2) dx

= −1
2

∫

B(Xi,Ri)

1

m(h(x))
hi(x) dx.

This allows us to define

C11 = C22 = 0, (D.9a)

C12 = c1 := 1
2

∫

B(X1,R1)

1

m(h(x))
h1(x) dx, (D.9b)

C21 = −c2 := −1
2

∫

B(X2,R2)

1

m(h(x))
h2(x) dx. (D.9c)

Collecting the results of (D.8), (D.7) and (D.9), the full matrix G is given
by

G =







0 −1
2L 0 −1

2

∫
1
mh2 dx

−1
2L 0 1

2

∫
1
mh1 dx 0

0 1
2

∫
1
mh1 dx

∫
1
mh

2
1 dx 0

−1
2

∫
1
mh2 dx 0 0

∫
1
mh

2
2 dx







(D.10)

to the leading order.

Rayleigh dynamics. Note that ∇E =
√

2
ω (V

− 1

2

1 , V
− 1

2

2 , 0, 0)T . According to

(4.13), coordinates of Θ̇ = (V̇1, V̇2, Ẋ1, Ẋ2)
T are the solutions of the following

system of linear ODEs:

V̇1 + V̇2 = 0,

Gv12(V̇2 − V̇1) − c2Ẋ2 − c1Ẋ1 = −
√

2

ω
(V

− 1

2

1 − V
− 1

2

2 ),

c1V̇2 + g1Ẋ1 = 0,

−c2V̇1 + g2Ẋ2 = 0.

Solving the system yields for the volume change

V̇1 =

√
2

ω

(
c21
g1

+
c22
g2

+ 2Gv12

)−1

(V
− 1

2

1 − V
− 1

2

2 ),

and for the migration

Ẋ1 =

√
2

ω

c1
g1

(
c21
g1

+
c22
g2

+ 2Gv12

)−1

(V
− 1

2

1 − V
− 1

2

2 ).
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Note that in the regime L ≫ V
1

2

i , using the estimates on the coefficients

from (D.5) and (D.6) we obtain Gv12 ≫ c21
g1

+
c22
g2

, so that

(
c21
g1

+
c22
g2

+ 2Gv12

)

≈ 2Gv12 ≈ −L.

Therefore

V̇1 =

√
2

ω

1

L
(V

− 1

2

2 − V
− 1

2

1 ), (D.11)

Ẋ1 =

√
2

ω

1

L

∫
1

m(h) h1dx
∫

1
m(h) h

2
1dx

(V
− 1

2

2 − V
− 1

2

1 ). (D.12)

D.3. Interacting mesoscopic droplets: n-droplet case. The compu-
tation of the matrix G in R

2n×2n is analogous to the two-droplet case. In
particular,

Gvij = −1
2Lij ,

C = diag(c1, . . . , cn)T, where Tij :=







1 if i < j,
0 if i = j,
−1 if i > j,

Gm = diag(g1, . . . , gn).

(D.13)

It is easy to check that the choice Gvij = −1
2Lij is consistent with (D.7).

To determine the dynamics in a transparent form, assume that Xi < Xi+1

for all i = 1, . . . , n − 1. Let us use the notation V̇ = (V̇1, . . . , V̇n)
T and

Ẋ = (Ẋ1, . . . , Ẋn)
T . The equations of the dynamics are then

(I − ppT )(GvV̇ + CT Ẋ) = −(I − ppT )∇VE

CV̇ +GmẊ = 0.

Here, p has been restricted to its first n coordinates. It follows that

Ẋ = − diag

(
c1
g1
, . . . ,

cn
gn

)

T V̇ . (D.14)

Substituting in the first equation and observing that, as for two droplets,

C(Gm)−1CT ≪ Gv

gives the following approximation when Lij ≫ V
1

2

k ≫ 1 for i, j, k = 1, . . . , n,
i 6= j:

(I − ppT )GvV̇ = −(I − ppT )∇VE. (D.15)

The remainder of this subsection is devoted to finding a solution of this
equation with

∑

i V̇ = 0. For this purpose, note that the submatrix Gv
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has the form of a Green’s function in one dimension: The i-th entry of the
product Gv V̇ , i.e.

−1
2

∑

j 6=i
|Xi −Xj | V̇j ,

realizes the superposition of potentials in Xi generated by “mass sources”
at Xj with masses V̇j . Thus, it is reasonable that equation (D.15) can be
solved by applying a discrete Laplace operator D, that has the form of a
tridiagonal matrix:

Dij :=







1
Li−1 i

if j = i− 1

−
(

1
Li−1 i

+ 1
Li i+1

)

if j = i
1

Li i+1
if j = i+ 1

0 else,

with no-flux condition at the boundary. We used the convention L0 1 = ∞
Lnn+1 = ∞. Note that D(I − ppT ) = D.

Indeed, a direct calculation of −DGv based on the relation Li j+1 = Li j+
Lj j+1 yields

−DGv = 1
2










1 −1 . . . . . . −1
2

. . .

2
−1 . . . . . . −1 1










,

and finally, using the conservation of volume
∑

i V̇i = 0, the identity

−DGvV̇ = V̇ .

Applying the same transformation to the right hand side gives for i =
1, . . . , n

(∇E)i+1 − (∇E)i
Li i+1

−(∇E)i − (∇E)i−1

Li−1 i
=

√
2

ω




V

− 1

2

i+1 − V
− 1

2

i

Li i+1
−
V

− 1

2

i − V
− 1

2

i−1

Li−1 i



 ,

where we let L01 = Lnn+1 = ∞. Hence, we obtain the equation for the
volume change given by (D.15):

V̇i =

√
2

ω




V

− 1

2

i+1 − V
− 1

2

i

Li i+1
−
V

− 1

2

i − V
− 1

2

i−1

Li−1 i



 . (D.16)

To determine Ẋ, we use (D.14). It follows from (D.16) that

Ẋi =

√
2

ω

∫
1

m(h) hidx
∫

1
m(h) h

2
i dx




V

− 1

2

i − V
− 1

2

i−1

Li−1 i
+
V

− 1

2

i+1 − V
− 1

2

i

Li i+1



 . (D.17)
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Now it is easy to check that equations (D.16) and (D.17) indeed coincide
with the equations of motion and pressure change proposed by Glasner and
Witelski in [7]. To switch between the volume and the pressure one applies

the relation Pi =
√

2
ω V

− 1

2

i .

D.4. Time scales in the dynamics. From (D.11) and (D.12), we can de-
duce heuristically the typical time scale for Ostwald ripening and migration

for a configuration of many droplets. We recall the assumption L≫ V
1

2 .

Ostwald ripening. From (D.11) we obtain

V̇ ∼ 1

L
V − 1

2 .

Hence the time scale for ripening is

τrip ∼
V

V̇
∼ LV

3

2 ∼ V
5

2 /H. (D.18)

Here we used mass conservation (4.27).

Migration. Equation (D.12) implies the scaling

L̇ ∼ |Ẋ | ∼ c

g

1

L
V − 1

2

and therefore

τmig ∼
L

L̇
∼ g

c
L2V − 1

2 ∼ g

c
V

3

2 /H
2
.

Here, g and c denote the coefficients of the migration and the coupling
matrix, resp., for a typical droplet. From (D.5) and (D.6) we deduce the
scaling

c

g
= 1

2

∫

B(X,R)
1
mh dx

∫

B(X,R)
1
m(h)2 dx

∼







V − 1

2 q ∈ [0, 2),

V − 1

2 lnV q = 2,

V
q−3

2 q ∈ (2, 3),

ln−1 V q = 3,

1 q > 3.

(D.19)

Hence the time scale for the droplet migration is

τmig ∼ V
5

2

H
2







V
1

2 q ∈ [0, 2),

V
1

2 ln−1 V q = 2,

V
3−q
2 q ∈ (2, 3),

lnV q = 3,

1 q > 3.

(D.20)
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The relative importance of migration depending on V and H can be
deduced from the quotient of the time scales:

τrip
τmig

∼ H







V − 1

2 q ∈ [0, 2),

V − 1

2 lnV q = 2,

V
q−3

2 q ∈ (2, 3),

ln−1 V q = 3,

1 q > 3.

Appendix E. Numerical simulations

E.1. Dependence on mobility. The propensity of a droplet to migrate
on the precursor layer strongly depends on the mobility exponent q. Based
on the discretization of the full PDE (1.9) introduced in [13] with Neumann
boundary conditions, we choose the following setup for a numerical test:
(see Figure 13):

• domain [0, Lx] × [0, Ly], where Lx = 300 and Ly = 150, and
• an initial configuration of two droplets with radii R1(0) = 20 and
R2(0) = 40 and centers atX1(0) = (120, 75)T andX2(0) = (200, 75)T .

Figure 13. Initial configuration of two droplets on a domain
with Neumann boundary conditions.

We compare the migration of the droplets for three different (physically
relevant) mobilities: q = 1, 2, 3. The positions only change in the first
coordinate, so that it is sufficient to monitor the x1-coordinates X1

1 and
X1

2 of the centers, see Figure 14. A qualitative comparison of the different
mobilities reveals

• that the migration velocity increases with q, and
• that the smaller droplet is faster than the bigger one

in accordance with the scaling relations in (4.29).

E.2. Collision vs. collapse. From the scaling relations (4.30) we infer that
the time scales for Ostwald ripening and migration are comparable (up to
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Figure 14. Trajectories of x1-components of the centers X1

(left) and X2 (right).

a logarithm) in the case of q = 3. These relations are based on the re-
duced system of ODEs (4.13) with coefficients (4.2.1) derived by asymptotic
analysis in the regime 1 ≪ R≪ L.

We conducted numerical tests solving the system of ODEs to show that
migration indeed can play a role in the coarsening process – depending on
the mobility exponent. Let us mention that an explicit knowledge of the
constants in the asymptotic expressions (4.20) and (4.21) is necessary for
the simulations.

Large time horizons are needed in the test runs: The bigger the typical
distance between droplets, the slower the volume change and the migration
speed. On the other hand, the vanishing of a droplet happens on a much
faster time scale. Hence we use an adaptive time stepping controlled by the
smallest droplet volume of the configuration.

Figure 15. Initial configuration for the numerical simula-
tion of the reduced ODE system.

As an initial configuration we consider two rings of each 8 droplets and
one center droplet, see Figure 15. The typical radius of the droplets in the
outer ring is ≈ 400 but randomly perturbed in the range of 1%, in the inner
ring ≈ 250 (again randomly perturbed); the center droplet has radius 200.
The droplet distances vary between 1600 and 2000.
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The subsequent figures show the trajectories of the centers over the total
time T = 1010 derived from the reduced system of ODEs for mobility expo-
nents q = 2 and q = 3. We take exactly the same initial configuration for
both exponents. Let us first give some explanations:

• The crosses are the initial positions of the droplets. The grey circles
give the initial size.

• When a droplet vanishes, its last position is given by a triangle.
• In case of a droplet collision, the centers of the two involved droplets

marked by circles are merged along the line to a new one (also de-
picted by a circle).

Let us first consider the case q = 3 in Figure 16 and 17:

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000 
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

Figure 16. Trajectories in the case q = 3.

• Since the average radius of a droplet in the outer ring is much larger
than in the inner ring, all droplets migrate towards the center droplet
positioned at the origin. The center droplet vanishes first.

• Every change in the number of droplets affects the movement of the
remaining droplets immediately; the trajectories are non-smooth. So
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each singularity of a trajectory can be related to a disappearance of
a droplet.

• In Figure 17 one can inspect two collision events along the red lines.
The asymmetric coalescence is due to the different droplet sizes, see
the comment on the ‘merging rule’ below.

• The varying resolution of the trajectories reveals that the migration
speed of each droplet varies: The closer a droplet is to another one,
the faster they both move.

• Eventually all droplets in the inner ring vanish (including the newly
merged ones), only the outer ring of larger droplets survives.

• The total balance of the evolution is: 2 collisions and 7 collapses.

−2000 −1000 0 1000 2000

−2000

−1000

0

1000

2000

Figure 17. A closer look at collisions in the case q = 3.

A ‘merging rule’ for two droplets in the one-dimensional case is proposed
in [8]. We adapt it analogously for the two-dimensional case: Due to mass
conservation the volume of the merged droplet is the sum of the volumes
of the collided droplets. Its position is symmetric with respect to the outer
contact lines of the two droplets along the difference vector Xold

2 − Xold
1 ,
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that is

Xnew =
1

2
(Xold

1 +Xold
2 ) +

1

2L
(Rold

2 −Rold
1 )(Xold

2 −Xold
1 ).

Let us clearly state that in the two-dimensional case no analysis has been
done for a further justification of this rule.

In the case of q = 2 (see Figure 18) collisions do not occur; the dominating
coarsening process is Ostwald ripening. Furthermore the droplets migrate
much slower as can be seen from the lengths of the trajectories.
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Figure 18. Trajectories in the case q = 2.

Appendix F. Relationship to matched asymptotic expansions

Much of the foregoing analysis can also be phrased in the language of
matched asymptotic expansions [9]. Here we briefly summarize the connec-
tions between the current presentation and this alternative approach.

The asymptotic droplet profiles (2.22-2.24) and other approximations
were derived under the assumption of large droplet size R → ∞ compared
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to a fixed precursor thickness. One could alternatively rescale the thin film
equation as

x′ = x/R0, h′ = h/R0 (F.1)

where R0 is a typical droplet radius. Under this rescaling, droplets have the
same contact angle, but their size is of order unity. The precursor film layer
has thickness 1/R0 ≡ ε ≪ 1, and the width of the foot region under such
a rescaling is also of order ε. This suggest the use of matched asymptotic
expansions in three regions:

• Precursor region: The solution is expanded as h = εh1 + ε2h2 + . . ..
The correction term h2 satisfies the exterior Laplace equation that
describes quasistationary diffusion, whose boundary conditions are
given by matching across the foot layers of each droplet. The flux
which droplets experience arises at this level in the same fashion
as flux arises in the Mullins-Sekerka reduction of the Cahn-Hilliard
equation [14].

• Foot region: The solution has the expansion h = εH1(z)+ε
2H2(z)+

. . . where z = (R(t)−r)/ε is a stretched radial coordinate. The lead-
ing order solution recovers the foot region solution given implicitly
in equation (2.15).

• Cap region: The solution has the expansion h = h0 + εαh1 + . . ..
At leading order one recovers the parabolic cap solution (2.22-2.24).
The exponent α depends on q and is determined by matching re-
quirements.

The expansions in the foot and cap region are carried to further orders
whose scaling in ε is prescribed by the mobility exponent q. These choices
ultimately lead to matching conditions between the foot and cap layers, and
suggest how time should scale as a function of ε. The cases q = 2, 3 are,
of course, somewhat delicate because they lead to logarithmic terms in the
expansions.

In the cap and foot regions, the correction terms (call them h1) satisfy a
linear equation of the form

MLh1 = f, where Mµ = −∇ · (m̄∇µ) and Lh′ = −∆h1 +U ′′(h0)h1.
(F.2)

Fredholm-type solvability conditions are derived from (null) eigenfunctions
ψ of the adjoint problem, which can be written

Lh′0 = 0, Mψ = h′0. (F.3)

The relevant nullvector for migration is h′0 = ∂1h, from which we see that
ψ solves the same problem as ψ1 in equation (3.17). The difference is that
(3.17) is determined using the detailed droplet profile rather than the lead-
ing order terms in the asymptotic expansions. The solvability conditions
that arise in the matched asymptotic analysis therefore yield formulas for
the migration dynamics that have the same structure as (3.19). Another
solvability condition gives the dynamics of the droplet radii in terms of the
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flux transmitted across the foot region. This results in mass exchange be-
tween droplets as in conventional Ostwald ripening. The net result of all
this is to specify the droplet dynamics in terms of flux which arises from
quasistationary diffusion in the precursor region.

Finally, the matched asymptotic approximation can be further recon-
nected to the reduced gradient flow of Section 4. An effective medium
(Green’s function-type) approximation [15, 19] for the exterior Laplace equa-
tion in the precursor region can be used to write the dynamics in terms of the
droplet radii alone. Such an expansion is valid under the same assumption
(4.1) that led to the approximation of the metric coefficients. The sum total
of all the formal approximations is a system which resembles the reduced
dynamics (e.g. (4.25-4.26)).
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