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Abstract

This paper is concerned with the asymptotic behavior as ¢ — 0 of the solutions
of nonlocal reaction-diffusion equations of the form u; — Au+e2f (u, e fo u) =0
in O x (0,T) associated with nonlinear oblique derivative boundary conditions.
We show that such behavior is described in terms of an interface evolving with
normal velocity depending not only on its curvature but also on the measure
of the set it encloses. To this purpose we introduce a weak notion of motion
of hypersurfaces with nonlocal normal velocities depending on the volume they
enclose, which extends the geometric definition of generalized motion of hy-
persurfaces in bounded domains introduced by G. Barles and the first author
in [BDL] to solve a similar problem with local normal velocities depending on
the normal direction and the curvature of the front. We also establish com-
parison and existence theorems of viscosity solutions to initial-boundary value
problems for some singular degenerate nonlocal parabolic pde’s with nonlinear
Neumann-type boundary conditions
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Introduction

In this paper we study the limiting behaviour, as ¢ — 0, of the solution of the following
equation

Uet — Aue + b(x) - Du, + 5_2f(u€,6/ ue) =0 in O x (0,7), (1)
o

where O is a smooth bounded domain of RN, T > 0, u*: Ox [0, 7] — IR is the solution,
the nonlinearity f(u,v) is smooth and fy(u) := f(u,0) is the derivative of a double-
well potential W. A typical example is fo(u) := 2u(u?—1) and f(u,v) = fo(u)+vh(u).
The equation (1) is obtained as a limit as a system of reaction-diffusion equations
often referred to as a Belousov-Zhabotinskii model (see, e.g. [CHL]). We consider (1)
together with a nonlinear boundary condition of the form

G(z,t,Du) =0 on 00 x (0,7), (2)

where G : 90 x (0,T) x IRY — IR is a continuous function satisfying : for any T > 0,
there exists a constant v(T) > 0 such that, for all A\ > 0, z € 0, t € [0,T], p € R",
one has

G(z,t,p+ An(x)) — G(z, t,p) > v(T)\.

Typical examples of such boundary conditions, besides the homogeneous Neumann
boundary condition, are the oblique derivative boundary condition

ou,
dy

=0 ond0 x (0,7), (3)

where v : 00 x (0,T) — IR" is a Lipschitz continuous vector field such that v(z,t) -
n(z) > 0 on 00 x (0,T), n(z) being the unit exterior normal vector to 90 at x and
the capillarity type boundary condition

Ou

5 = 0(z,t)|Dul on 00 x (0,T), (4)

where 0 : 00 x (0,T) — IR is, say, a locally Lipschitz continuous function such that
|6(z,t)| <1 on 00 x (0,T). Finally we impose an initial data

ue(z,0) = g(x) on O x {0}, (5)

where g € C(O).
When f(u,v) is independent of v, i.e, f(u,v) = fo(u) the equation (1) reduces
to the Allen-Cahn equation [AC] modelling the motion of the sharp interface -the
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antiphase boundary- between regions of different phases of a material. The main
feature of the solution of the Allen-Cahn equation is that the zero level set of the
solution approximates (as ¢ — 0) the motion by mean curvature. Formal derivation
of this connection was carried out by Allen-Cahn [AC], Keller, Rubinstein, Stenberg
[KRS], Fife [F] and many others.

A first rigorous, but partial, proof of this result was proposed by Chen [C] in the
case when the motion by mean curvature is classical i.e. when the fronts are smooth
hypersurfaces evolving smoothly. This means in fact a small time result since it is
well-known that, for motion by mean curvature, singularities develop in finite time.

In order to rigorously prove and even formulate the result for all time, a suitable
notion of generalized motion by mean curvature is needed in order to define it past the
development of singularities. This question was solved in a rather general way by the
“level-set approach” (see Osher and Sethian [OS] Evans and Spruck [ES] and Chen,
Giga and Goto [CGG].) Then a different but related approach using the properties
of the (signed) distance to the front was introduced (see Soner [S] and Barles, Soner
and Souganidis [BSS].) For a general review of these theories, their relationship as
well as other related facts we refer to Souganidis [Soul, Sou2).

In order to treat the case of more complicated reaction-diffusion equations, Barles
and Souganidis introduced in [BS] a more geometrical approach. Recently Barles
and the first author in [BDL] apply this approach to the the asymptotics of reaction-
diffusion equations in bounded domains and with Neumann-type boundary condition,
thus extending the result obtained by Katsoulakis, Kossioris, and Reitich [KKR] for
convex domains and with homogeneous Neumann boundary condition.

All the results mentioned above concern with the asymptotics of “local” reaction
diffusion equation. The first asymptotic result for “nonlocal” equations of the form
(1) was provided by Chen, Hilhorst, Logak [CHL]. In [CHL] the authors proved that
the limiting behaviour of the solution u® of

( Uep — Aue + e f(ue,e [Hu) =0 in O x (0,7),
) 8_u( =0 00 x (0,7) (6)
on Z, = on ) ’
( ue(z,0) = g(z) on O,

is governed by the motion of an interface (I';); with the following normal velocity V,,
V, = —trDv + co(A(Q)) — A(2;)) (7)

where v and Dy denote the exterior normal vector to I'y and its derivative , Q is the
region enclosed by I'y, Q7 = O\ (T, UQ}"), A\(Qf) is the Lebesgue measure of Qf and



Co is a certain constant depending only on the velocity of the traveling wave solution
associated with f. Yet their asymptotic result is proved under the assumptions that
(Ty); is a family of smooth hypersurfaces evolving smoothly according to the law (7)
and never touches the boundary 00, therefore their convergence result holds as long
as a smooth evolution of the motion exists.

The aim of this paper is to rigorously establish for all time the connection between
the equations (1) set in bounded domains with nonlinear Neumann boundary condi-
tions and the motion of fronts with normal velocity (7) and satisfying a contact angle
boundary condition on the boundary. In order to do that the first step is to find a way
to interpret the evolution with “nonlocal” normal velocities past the development of
the singularities, moreover the weak definition has to be sufficiently flexible in order
to be able to justify the appearance of an interface in the asymptotic analysis of the
reaction-diffusion equations.

To this purpose we consider the motion of hypersurfaces ['; with general normal
velocity

V, = 9(z,t,v, Dv, Q) (8)

under the assumption that v is decreasing with respect to Dv and increasing with
respect to ; (which is the region enclosed by I';) in order to guarantee that the result-
ing evolutions satisfy the geometric maximum-type principle (the so called avoidance-
inclusion property). A typical example is the evolution law (7) with ¢y > 0. When
is not monotone with respect to either arguments such property mail fail (see e.g. the
counter-example in [Cal). In [Ca] Cardaliaguet proposed a weak definition of motion
of compact hypersurfaces in JR" by nonlocal velocities of the form (8) including also
the case when v is not increasing with respect to €2;. In this last case he showed the
existence of approximate solutions to the problem which converge to the generalized
solution of the problem only under suitable regularity assumptions on v.

In this paper we follow an approach which is very close to the one developed for
local motions by Barles and Souganidis in [BS] and later modified by Barles and the
first author [BDL] to treat problems with Neumann-type boundary conditions. We
recall that both approaches in [BS] and [BDL] consist in considering the evolution
of open sets instead of hypersurfaces (which is quite natural from the point of view
of the applications) and rely on the “monotonicity property” of the front propaga-
tions which, roughly speaking, can be expressed in the following way : if (Q})se(ap)
(Q2)se(ap) are two families of open subsets evolving with the same normal velocity
then, if Q C Q2 for some ¢ € (a,b), one has

Ql cQ? forany s € [t,b).

The key points used in [BS] and in [BDL] are that (i) it is enough to test against
families of smooth open subsets evolving smoothly, (ii) this has to be done only on
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small time interval and (iii) one can use families whose normal velocities are smaller
or bigger than the considered normal velocity.

At this level of generality these basic ideas apply more or less readily in our
framework.

Indeed we extend the notion of viscosity solution to initial-boundary value prob-
lems for nonlocal parabolic pde’s with nonlinear Neumann boundary conditions (al-
ready introduced by one of the authors in [S]] in the case of homogeoneous Neumann
boundary condition). Then we provide a general comparison result between semicon-
tinuous viscosity sub- and supersolutions to Neumann-type problems for a large class
of nonlocal degenerate parabolic (possibly singular) pde’s which includes the case of
nonlocal “geometric” equations such as for example

u — tr[(I — Du ® Du)D?u] — ¢o|Dulp(z,t,u) =0 in O x (0,7),

9)
G(z,t,Du) =0 in 00 x (0,7),

where p(z,t,u) = MQ(u) — A, (w)), Qp(u) = {u(-,t) > u(z,t)}, for all
p#0p=|p|~'p and p® p denotes the symmetric matrix defined by (p ® p)i; = pip;s
for all 1 < 4,57 < N. As a consequence of the comparison result we get by means of
the Perron Method (which can be applied with minor changes to the case of nonlocal
equations) the existence of a unique continuous viscosity solution. Moreover under the
additional assumption that G is homogeneous of degree 1 in p, the level-set approach
can be extended to geometric pde’s (9), namely we can define the front T'; moving by
(8) as the zero level set of a the unique solution u of (9) (with the convention that
the set ; enclosed by I’y is given by {u(-,t) > 0}).

In analogy with what was done in [BS| and [BDL| the geometric approach we
want to apply to our problem is based on the idea that given the geometric definition
it suffices to justify the assumptions when everything is smooth. Even though we
can still consider small-time smooth approximations of the fronts in our case, local-
in-space approximations by smooth functions as in [BS] and [BDL] does not apply
directly to problems like (1). Indeed the main difficulty in our analysis lies in finding
a proper approximation of the nonlocal term in the equation, both in the definition
of the generalized fronts and in the asymptotic analysis.

In this paper we focus on nonlocal velocities depending on the Lebesque measure of
the region €2; (or on any finite measure which is absolutely continuous with respect to
the Lebesgue one) and in this particular case we can find appropriate approximations
of the volume of the set Q; (see Theorem 2.2). This fact motivates our definition,
namely we say, roughly speaking, that a family of open sets (€;); is a generalized
solution for motions with the nonlocal velocity V, if and only if it is a generalized
solution, according to the geometric definition introduced in [BDL], for motion with



local velocities obtained by replacing the volume of the set {2, with smooth functions
of time which are less (resp. bigger) than the volume of €.

We also show that, as in [BS] and [BDL], our approach is essentially equivalent
to the level-set approach (see Theorem 2.3).

We then extend the abstract method introduced in [BS] and [BDL] to justify the
appearance of moving interfaces in the asymptotic limits of problems like (1). One
of the main assumptions which allows us to apply readily this method and to have
a rather simple proof of the asymptotics is that the nonlinearity f is supposed to
be nonincreasing with respect to v. Indeed under this condition we can replace the
nonlocal term in the reaction-diffusion equations with some suitable smooth functions
of the time and to use in this way the asymptotic result obtained in [BDL] in the case
of equations with z, ¢ and e- dependent f’s. We remark that under this monotonicity
assumption we are able to prove a comparison result for viscosity solutions of (1) which
automatically yields, by means of the Perron Method, the existence of a continuous
solution. Finally we show how it would be possible, by using the same approach,
to extend the asymptotics under a suitable relaxation of the monotonicity condition
of f with respect to v. In particular we have in mind the case when this condition
holds only in the interval between the two stable equilibria of W, and one of the main
example is f(u,v) = 2(u +v)(u? — 1).

Two main issues that we would like to understand and investigate in the future
is the asymptotics when f, > 0 (namely f it is still monotone with respect to v but
in the opposite way) and to see if our approach can be applied to reaction-diffusion
systems like the one studied in [SS| and [HLS].

This paper is organized as follows. In Section 1 we extend the definition of viscosity
solutions to nonlocal second order degenerate parabolic pde’s introduced by one of the
authors in [Sl]. We also prove the comparison between discontinuous viscosity sub-
and supersolutions of initial-boundary value problems for a large class of nonlocal
degenerate, possibly singular, parabolic pde’s (including the “geometric” ones) with
nonlinear Neumann-type boundary conditions, thus extending the comparison result
obtained in [S]] in the case of homogeneous Neumann boundary conditions. In Section
2 we introduce the new definition for motions with nonlocal velocities and angle
boundary condition and show its connection with the level set approach. Section 3
is devoted to the application of the new definition to the study of the asymptotics of
reaction-diffusion equations: we first present a general abstract method and then we
apply it to the model case of the nonlocal Allen-Cahn Equation (1) with a nonlinear
Neumann boundary condition.

Acknowledgement : The authors would like to thank Prof. P. Souganidis for
proposing the problem and the first author wishes to thank also Prof. G. Barles for
the helpful discussions.



1 Viscosity solutions for nonlocal equations, exis-
tence and uniqueness

Let O C RN be a bounded open set with C' boundary and B the set of all measurable
subsets of O. The topology on B is generated by the distance d(A, B) = A(AAB),
where ) is the Lebesgue measure.

Let F be a real-valued, locally bounded function on O x [0, c0) x RN x S(N) x B,
which is continuous in O x [0,00) x RN \ {0} x S(N) x B, where S(N) is the set of
real symmetric N X N matrices and let G be a real-valued, continuous function on
00 x (0, 00) x IR . We consider nonlocal degenerate (and possibly singular) parabolic
equations, with nonlinear Neumann-type boundary conditions, of the following form:

(i)  wug+ F(z,t,Du,D*u,{y € O : u(y,t) > u(z,t)}) =0 in O x (0,7T),
(i) G(x,t,Du) =0 in 00 x (0,7),
(7i1) u(z,0) = ug(x) in O,
(10)
Some examples of such operators F' are:

F(x,t,p, X, K) := —Trace[(I —p®p)A(x,t,p)X] +p- b(x,t) — co|p|(A(K) — A(K°))
with ¢y > 0 and
F(z,t,p, X, K) = —Trace[A(x,t,p)X]| + H(x,t,p) — |p| B (/ 0(x,t,p, y)dy)
K
where

A(z,t,p) = o(z,t,p)o’(z,t,p)

with 0: Q x [0, 7] x RN — My (the space of N x k matrices) is a bounded function,
possibly discontinuous at p = 0 and locally Lipschitz on Q x [0,T] x IR" \ {0} with

C
|Dyo(z,t,p)] < C and |Dyo(z,t,p)| < —

p|

for every t, almost every x € Q and p € R™ \ {0}. Function b is assumed to be
Lipschitz continuous in z and continuous in ¢, while H is assumed to be locally
Lipschitz continuous on O x [0,T] x IR, and such that for all ¢, almost all z € O
and p € RY

D, H(z,t,p)| < C(1+pl) and |D,H(z,1,p)| < C.

Function § € C(O x [0,T] x S¥~1 x O, [0,00)) is assumed to be Lipschitz continuous
in x and p variable, while § is nondecreasing and Lipschitz continuous.
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If these operators are to be geometric (that is to satisfy condition (A4) that
follows) then we need also to require that A is homogeneous of degree 0 in p and H
is homogeneous of degree 1 in p (and also to add (I — p ® p) under the trace in the
second example).

In (i) we have typically in mind the following two boundary conditions:

0

6—3:0 on 00 x (0,00) , (11)
where v : 00 x [0,00) — IR" is a Lipschitz continuous vector field such that v(z, ) -
n(z) > 0 on 90 x [0,00), n(z) being the unit exterior normal to dO at z, and the
capillarity type boundary condition

8_u
on

where 6 : 00 x [0,00) — IR is, say, a locally Lipschitz continuous function such that
|0(z,t)| <1 on 00 x [0,00).

To define, and prove existence and uniqueness of, viscosity solutions of (10), we
follow [S]] where nonlocal equations with homogeneous Neumann boundary conditions
were studied. Using results on (local) parabolic equations with nonlinear Neumann-
type boundary conditions by Ishii and Sato [IS] and Barles [B], we extend the results
of [S]] to equations of the form (10).

=0(z,t)|Du| on 00 x (0,00), (12)

We now list the requirements on F' and G. The assumptions introduced because
of the presence of the nonlocal term are the monotonicity with respect to set in-
clusion and the continuity of F' (with respect to topology on B). The precise basic
assumptions are:

(A1) The function F is locally bounded on 0 x[0,00) x RN x S(N) x B, continuous
on O x [0,00) x RN\ {0} x S(N) x B, and satisfies the degenerate ellipticity
condition:

F(z,r,p,X,K) < F(z,r,p,Y,K) whenever X > Y (13)
where “ > 7 stands for the usual partial ordering of symmetric matrices.
(A2) F is nonincreasing with respect to its set arguments:
F(z,r,p,X,K) < F(z,r,p,X,L) whenever L C K, (14)
(A3) For any T > 0, the function G is uniformly continuous on 80 x (0,T) x IRY
and there exists a constant v(7") > 0 such that, for all A > 0, z € 00, t € (0,7

and p € R",
G(z,t,p+ In(z)) — G(z,t,p) > v(T)\. (15)



The nonlocal equations we consider are in most instances level-set equations of
some geometric evolutions. Such equations fall in the class of geometric equations,
that is the ones that satisfy the following two conditions:

(A4) Forany A >0, v € Rand z € O, t € (0,00), p € RY \ {0}, X € S(N),

KeB

F(z,t, \p, A X +vp®p,K) = A\F(z,t,p, X, K), (16)
where p ® p denotes the symmetric matrix defined by (p ® p)i; = pip;, for all
1<4,5 < N.

(A5) Forall A >0,z € 90, t € (0,00) and p € R"
G(z,t,Ap) = AG(, 1, p). (17)

To be able to show the uniqueness and existence of solutions we need additional
assumptions. Since we are able to extend both the results of [B] and [IS], the condi-
tions required in either of the papers (for local equations) are sufficient. We denote
these assumptions by (A6) and list them in the Appendix A.

We will show that assumptions (A1)-(A6) imply the existence and uniqueness of
solutions of (10) with continuous initial data. In the remainder of the paper we will
refer to any set of assumptions that includes (A4) and (A5) and implies existence and

uniqueness of (10) for all uy € C(O) as “the assumptions of the level-set approach”.

We recall that if f : A — IR, where A is a subset of some IR*, the upper- and
lower-semicontinuous envelopes f* and f, of f are given by

f*(y) =limsup f(2) and fi(y) = lirgl)i;lff(z).

z2—=Y

We define the viscosity solutions to the problem (10), analogously to [S].

Definition 1.1 An upper-semicontinuous function u : O x [0,T) — IRU {—oco} is
a viscosity subsolution of (10) if for all x € O, u(z,0) < ui(z) and for all (z,t) €
O x (0,T) and all functions o € C®(0 x (0,T)) such that u — ¢ has mazimum at
(x,t), if © €O orxz € dO and G(zx,t, Dp(x,t)) > 0 then

oi(z,t) + F(z,t, Dp(z,t), D*¢(x,t), {y : u(y,t) > u(x,t)}) < 0. (18)

A lower-semicontinuous function v : O x [0,T) — IR U {oo} is a viscosity superso-
lution of (10) if for all x € O, v(x,0) > ug,(z) and for all (z,t) € O x (0,T) and all
functions ¢ € C*°(0 x (0,T)) such that v — ¢ has minimum at (x,t), if = € O or
x € 00 and G(z,t, Dp(x,t)) < 0 then

oi(z,t) + F*(x,t, Do(x,t), D*¢(z,1), {y : u(y,t) > u(z,t)}) > 0. (19)
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A function u : O x [0,T) — IR is a viscosity solution of (10) if u* is a subsolution
and u, 1S a supersolution.

We remark that using different test sets in the definition of sub and supersolutions
is necessary for having the desired properties of viscosity solutions (in particular
stability and existence).

Viscosity sub and supersolutions defined as above, have the following properties:

(P1) Stability: If {un}n=12,. is a sequence of subsolutions (resp. supersolutions)
of (104,17) bounded from above (resp. below) then u = limsup*u, is also a
subsolution (resp. u = liminf, u, is a supersolution).

We recall the half-relaxed limits of a sequence of functions u,: O x [0,T] — IR
are defined by

limsup® wu,(z,t) ;== limsup w,(y,s) and liminf, wu,(z,t) ;== liminf w,(y,s).
(,8)—=(z,t) (y,8) ()
n—0oQ n—00

(P2) If u is a subsolution (resp. supersolution) of (104,i) and p : IR — IR nonde-
creasing then (pou)* is also a subsolution (resp. (po u), is a supersolution).

Proofs of these properties can be found in [S]]. Here we just remark that the second
property is a consequence of the geometric nature of the equations (assumptions (A4)
and (A5)), and just means that the equation is invariant under relabelings of level
sets that preserve inclusion. The proofs of comparison and existence also make use
of the following fact about stability of level sets of semicontinuous functions.

Lemma 1.1 Let f : 55 (a,b) — RY be a lower (resp. upper) semicontinuous
function. For every x € O, t € (a,b) and € > 0 there exists 6 > 0 such that

ALFCt) > flz, )} \ Af(8) > fla,t) +6}) <e
(resp. A({f(-,8) = f(z,8) =} \ {f(-, 1) = f(z,1)}) <¢)

fors € (t—0,t+9).

Proof. As the two claims are proven analogously, let us show only the first one.
We can assume that f(z,t) = 0. Assume that for some ¢ > 0 and ¢ € (a,b) no
appropriate 0 can be found. Then there exist sequences d,, converging to 0 and s,
converging to t as n goes to infinity such that for all n € IV

ALSC ) > 03 \{F(- 5 8n) > 0n}) 2 €
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Since f is lower semicontinuous,

{f(-,1) > 0} Climinf{f(-,5,) > 6.} = UNCs0 > 6

n=11i=n

Note that there exists ny such that for all n > nyg

(U (- >5}\ﬂ{f >5}>

k=11=k

So for n > nyg
)‘({f(’t) >0}\{f(a3n) >5n}) <é

Contradiction. O

The main result of this Section is the following Theorem in which we prove a
comparison result between viscosity sub- and supersolutions of (10). Although the
equations we have in mind are geometric the comparison holds for more general
equations, and we indicate that below.

Theorem 1.1 (Comparison). Assume (A1)-(A3), (A5) and (A6). Let u,v be
respectively a wviscosity sub- and supersolution of (10). If u(x,0) < v(z,0) for all
r € O, then u(x,t) < v(x,t) for allz € O and all t € [0,T).

Proof. Under the set of assumptions that includes (A6a) the proof of comparison
given in [IS] extends, following [Sl], to nonlocal equations without any difficulties.

However, there are some technical difficulties if (A6b) is satisfied but nevertheless
enough control on the nonlocal term can be obtained so that the test function of [B],
as well as techniques of [B], can be used. For simplicity we present the proof assuming
that the boundary condition G is independent of time. Handling of the nonlocal term
is still the same if G depends on time.

Let u be a subsolution and v a supersolution of (10). Assume that the comparison
principle does not hold, that is, that for some (2',') € O x (0,T), u(z',t') > v(a',t).
Let 7 be a number in (¢, T). Choose v > 0 so that u(x',t') —v(2',t') — # > 0. Let

(x9,to) be a point where u(z,t) — v(x,t) — 7 ” reaches its maximum on O x [0, 7).
For ¢ > 0, n > 0, and a > 0, consider the function

Y
w’r],a,a(xa Y, t) = U(.T, t) - U(y: t) - Cn,e,a(xa y) - :

where (., . is the test function constructed by Barles in [B]. The test function is
rather complicated, so we only present its form, and list its properties:

Creal@,y) = (e (2,9)) "1 — a(d(2) + d(y))
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where d € W3*(0, [0, 1]) coincides with the distance to dO in a neighborhood of 9O,
and 1, is a C? functlon defined in the Appendix of [B]. It satisfies the following
inequalities for € and 7 small enough:

lz -yl
Ce?

for some constant C' independent of 1 and . Moreover, for any =,y € O such that
|z —y| < e,

—Chne + (20)

2
r—y
< Ynpe(r,y) < Cne + 0‘672‘

~one+ S22 0 < D))
Dnete) < 025y e
Datele.y) + Dyl < 222 4o
S8 < Dafay) < g[_ﬁ ‘f]wnf, (21)

G(z, Dyhye(z,y)) > 0 if z €00,
G(y, Dytye(z,y)) < 0 if y€00.

Let (Zye,as Uneos tne,e) De the point where wy, . o, reaches its maximum on O x
O x [0,7). For the sake of simplicity of notations, from now on we drop the indexes
were possible. Standard argument shows that |z — 7|*/e? — 0 as € — 0 and that for
g,n, @ small enough ¢, ., > 0. By considering ¢ small enough (depending on 7) we
can assume that |Z — §| < ne so that the properties (21) hold for (z,y) = (Z, 7). By
parabolic Crandall-Ishii Lemma [CIL, Lemma 8.3] it follows that for any § > 0 there
exist numbers @, b and symmetric matrices X, Y such that

( P u(z, 1)
( P" (g, %)
Y
_ 99
— 22)
1 2 X 0 2 N 2 _
+ ”D Cn,s a( )” I < 0 -Y < (I+ 0D Cn,e,a(xay)) D Cn,s,a(xay)
where p = Dy(yc0(Z,9) and § = =Dy, ¢ o(Z, ). The properties of (, . o insure that
G(Z,p) >0 ifzeO and G(7,q)<0 ifgeO

Ql

bl

€
€

j=al

QT

T
Sl ~—

b )

I

Therefore

<
> (23)



Since norms of X,, Y,, p, and G, have bounds independent of «, they, as well
as To, Ja, and f, converge along a subsequence as o — 0. Let us denote again
the limiting quantities by X,Y,p, q, 7,9, and . Note that u(Za,Ja) — u(z,?) and
V(Ya,ta) — v(y,t) as a — 0. along the same sequence. Otherwise wy(z,y,t) >
Wa(Ta, Yo, ta) for a small enough, which would contradict the fact that w, reaches
its maximum at (Zq, Yo, ta)-

Lemma 1.1 now implies that

lm A({u(-,ta) > u(Za, ta) \{u(-, 1) 2 u(z,1)}) = 0,
Lm A({v(-, %) > o(F, D\ {o(-,ta) > v(0a; ta)}) =0

where the limit is taken along the sequence. Therefore since Fj is lower and F* is

upper semicontinuous, and both are monotone in the set valued variable, (22) and

(23) hold for new quantities with & = 0 and w;, ¢ o has a maximum at (Z, g, t).
Therefore for all z € O

u(xvi) - U(.QC, E) < u('fai) - U(gaf) - [(¢W,E(fvg))+]6 + [(¢n,€($7$))+]6'

Let us first consider the case that for all 7 and £ small enough

(Ve (Z,9)) 118 — [(Wne(2,2))T]¢ >0 forallz € O.

Then {u(-,?) > u(Z,t)} C {v(-,?) > v(y,?)} which gives us the desired control on
the nonlocal term. Obtaining a contradiction from (23) and (H5-2) follows a classical
argument, and we refer the reader to [B] for details. Now consider the case that there

is a sequence of n and ¢ converging to zero, such that there always exists z € O so
that [(vye(Z,9))"]® < [(¢¥ye(z,2))*]8. Then from (20) it follows that

1z —7/°
Ce?

Therefore |Z — 7| < 2Ce,/ne. The estimates on derivatives of ¢, . that we listed, then
yield that | D, (Z, )| and | Dy, (7, 7)| are O(e71/?) and || D%y, .|| is O(e72).

Using that (,.0(z,y) = [(¢¥ne(z,y))T]° and that ¢, .(Z,5) = O(¢), along with
(22) (with 0 = ||D?Cye.a(Z,7)|| ! for example) implies that X, Y, p, and g converge
to zero as € and 7 converge to zero along the aforementioned sequence. Passing to a
subsequence, we can assume that Z, 7, and ¢ also converge as ¢ and 7 go to 0. We
use the same notation for the limits. From (23) then follows, by the semicontinuity
of F, and F* and their monotonicity in the set-valued argument, that

- 0775 S wn,s(j: :U) S %,5(36,96) S 0775-

a+ F,.(%,£,0,0,0) <0 and b+ F*(4,%,0,0,0) > 0.
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The fact that @ > b combined with (65) leads to contradiction. O

The existence of a viscosity solution to (10) is obtained via the Perron’s method.
Although the application of Perron’s Method is rather standard we provide a proof
for completeness and to outline the difficulties posed by the presence of nonlocal term.

Theorem 1.2 (Existence). Let F' and G be functions satisfying the conditions
(A1)-(A3), (A5) and (A6) and let uy be a continuous function. Then the problem
(10) has a unique continuous viscosity solution.

Proof. Let
u(z,t) :=sup{w(z,t) : w a subsolution of (10)} (24)

We claim that u is the solution to problem (10). Showing that u*(x,0) = ug(z) =
u.(z,0) on O requires construction of appropriate sub- and supersolutions (barriers),
which because of nonlinear boundary conditions poses some difficulties. However the
existing constructions given by Ishii and Sato [IS] and mentioned by Barles [B], extend
with minimal modifications to equations with nonlocal terms, so we omit them.

Note that, u* is then, by stability, a viscosity subsolution of (10). The definition
of u then implies that u = u*. Let us show that u, is a supersolution. Assume it
is not. Then there exists a smooth function ¢ on O x (0,T) such that u, — ¢ has a
minimum at (zg, %) and

o120, to) + F*(xo, to, Dp(z0, o), D*@(0,0), {y * us(y, o) > us(wo, t0)}) < —2¢

for some € > 0 (and G(zo,to, Dp(zo,ts) < —2¢ if g € 00). We can assume that
©(xo, to) = us(zo,t9) = 0. Consider the function

(z,t) = max{u(z,t), ©°(z,1)}

where ©°(z,t) := p(z,t)+86— |z —20|* — |t —t0|* and & > 0 is to be determined. Since
u, and F, are lower semicontinuous, using Lemma 1.1, there exists a positive r < 1
such that if (z,t) € B((wo,t),7) then to/2 <t <T —t3/2, |02 (z,t) — @i(T0,t0)| < &
and

F*(mvta DgpdaDZ(pda {U*( :t) > QMT}) < F*(x07t07D(P7 DQ@? {’U,*( :tO) > 0}) +e€

where M := |l¢|lcr@y + 1 with U := O x [to/2, (I’ + t,)/2]. By making r smaller if
necessary we also require that if 2o € O then r <dist(0,00) and if o € 0O then
G(z,t,Dy’) < G(zg,to, D) + ¢ on B((wg,ty), 7). Now take any positive § < r4/2.
Let us show now that @ is a subsolution of (10). Let 1) be a smooth function such
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that @ — 1 has a maximum at (%,%). If %(%,%) = u(Z,1) then u — 1 has a maximum
at (Z,t) and since u is a subsolution

wt + F*(fﬁ,f, D¢,D2¢a {ﬂ( )E) > ﬂ(jat)})
< i+ Fu(@, 1, DY, D*, {u(-, 1) > u(#,1)}) <0

(or G(,t, DY) <0 if ¥ € 90).

If (%, %) > u(Z,t) then i(x,t) = ©°(z,t) near (,7). Since § < r*/2, 6—|z—mzo|*—
[t —to|* < 0 when (x,t) & B((x0,t),r). Using that @(z,%) > u(,) > ¢(,%) we
conclude that ( t) € B((zo,t0),7). If T € O then using that ©(,%) < 6 + M(|(Z —
To,T — tg)| < r*+ Mr < 2Mr one obtains

U+ F.(&,1, Dy, D*p,{a(-,1) > a(z,1)})
< @) (&,1) + Fu(&,1, D’ D*¢’ {a( -, 1) > ©°(%,1)})
< pi(wo,to) + € + Fu(&,1, D’ D*° {u,(-,t) > 2Mr})
< @u(@o,to) + € + Fu(zo, to, Do, D*p, {u.( -, ) > 0}) + ¢ < 0.

If € 00 then Dy (%,1) = D¢’(,1) — An for some A > 0. Here n is the unit outside
normal to 0O at Z. Therefore using property (A3)

G(Z,t, Dy(Z,1)) < G(wo, te, Dp(0,10)) + € < 0.

Also note that @(-,0) < up(-) on O since r < t;. Together with inequalities
above, that implies that @ is a subsolution of (10). Note that since u(zo,%) = 0,
there exists a sequence (z,,t,) converging to (xo,to) such that u(z,,t,) converges
to 0 as n goes to infinity. But then for n large enough @(z,,t,) > u(xy,t,), which
contradicts the definition of u, since u is a subsolution.

Therefore u, is a supersolution. The comparison result in Theorem 1.1 implies
that v < w,, and hence v = u,. Therefore u is a continuous solution of (10). The
uniqueness of the solution follows again from Theorem 1.1. 0

2 A generalized definition for nonlocal motion and
its connections with the level-set approach

In this section we consider the initial-boundary value problem (10) with F' and G
satisfying the “assumptions of the level set approach”. Our aim is to extend the
geometrical approach to the weak motion of hypersurfaces in bounded domains with
an angle contact boundary condition introduced in [BDL] to the case of nonlocal
normal velocity depending not only on the normal direction and the curvature but
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also on the volume of the set the fronts enclose. Moreover we show its connections
with the level-set approach. We first briefly recall the basic ideas of the level-set
approach connected to initial boundary value problem (10).

The level-set approach for problems associated with Neumann type boundary
conditions (see e.g. [B, GS, IS]) can be described in a similar way to the IR" case
(see e.g. [CGG, ES]). Let £ be the collection of triplets (', D™, D™) of mutually
disjoint subsets of O such that I' is closed and D* is open and O = T'U DT U D~.
For any (T'y, Dy, Dy ) € &, first choose ug € C(O) so that

Df ={z €0 :up(z) >0}, Dy, ={x €0 :ug(z) <0} and Ty ={z € O : uy(z) =0},

By results of Section 1, for every T > 0 and uy € C (0), there exists a unique
viscosity solution u of (10) in C'(Ox[0,T1]). If, for all ¢ > 0, we define (I'y, D;", D;) € £
by

[i={z€0 :u(z,t) =0}, D ={x €0 :u(x,t) >0}, D; ={z €0 :u(z,t) <0},

then, because of (A4), (A5) and since a comparison result holds for (10), the collec-
tion {(T's, D;", D;) }+>0 is uniquely determined, independently of the choice of ug, by
the initial triplet (T, Dy, Dy ).

The properties of the generalized level set evolution have been the object of ex-
tended study, at least in JR". One of the most intriguing issues — rather important in
the study of the asymptotics of reaction-diffusion equations — is whether the so-called
fattening phenomena occurs or not, i.e. whether the set I'; develops an interior or not.
Following the IR™ —case, we say that the no-interior condition for {(z,t) : u(zx,t) = 0}
holds if and only if

{(z,t) :u(z,t) =0} =0{(x,t) :u(z,t) >0} =0{(z,t) :u(z,t) <0} (25)

The question when no-interior condition holds is a difficult one. For some condi-
tions on when it holds and examples when it fails (for fronts in IR") see [BSS], [K] and
references therein. The importance of the “no-interior condition” and its connection
with more geometrical approaches than the level-set one is explained in the following
result, proved in IRY in [BSS] and which can be easily extended to the case of nonlocal
equations and with nonlinear Neumann boundary conditions. In this result, if A is a
subset of some IR*, 14 denotes the indicator function of A, i.e., l4(z) =1 ifz € A
and 14(z) =0if z € A°

Theorem 2.1 Under the assumptions of the level-set approach, the functions ]lD;rurt—
Lp- and 1 p+ — L p-p, are respectively the mazimal subsolution (and solution) and
the minimal supersolution (and solution) of (10) associated respectively with the ini-
tial data ug = N pryp, — Ip- and ug = M py — - . Moreover, if Iy has an empty
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interior, ]ID;r — ﬂD; is the unique discontinuous solution of (10) associated with the
initial data ug = Iyt —1p- if and only if the property (25) holds .

In fact the main consequence of Theorem 2.1 is that, if (25) holds, the problem
is well-posed geometrically since the evolution of the indicator function is uniquely
determined.

Now we turn to the geometrical definition. To do so and to simplify the presen-
tation, we have to introduce some notations.

If A is a subset of some IR*, we denote by Int(A) the interior of A and if z € A
and r > 0, we set By(z,r) := B(z,r) N A (the open ball in the topology of A),
BY(x,r) := B¢(z,7) N A, Bu(x,7) := B(z,7) N A (the closed ball in the topology of
A) and 0By(z,r) := 0B(z,r) N A.

In the sequel we denote by (£)ic(,r) a family of open subsets of O and we set
[y = 0. The signed-distance function d(z,t) from x to I'; defined by

_ [d(z,Ty) ifxeQy,
d(z,t) = {—d(m, [';) otherwise,

where d(z,[';) denotes the usual nonnegative distance from = € RN toT,. If T, is a

smooth hypersurface, then d is a smooth function in a neighborhood of I';, and for

z € Iy, n(x,t) = —Dd(x,t) is the unit normal to I'; pointing away from 2.
Hereafter we consider “geometric” operators F' of the form

F(z,t,p,X,K) := F(x,t,p, X, \(K)) (26)

where F is a real-valued locally bounded function on O x [0,T] x R" x S(N) x IR
satisfying the assumptions of the level set approach and being decreasing with respect
to the last variable.

One of the main examples we have in mind is

F(z,t,p, X, K) := =Trace(I — p® p)X — co|p|(MK) — A(K®))

with ¢y > 0.

We remark that all the results of this Section hold also in the case of nonlocal
operators depending on any measure which is absolutely continuous with respect to
the Lebesgue one.

We premise the following result which motivates the definition of generalized
super- and sub-flow with nonlocal normal velocity —F' and angle boundary condi-
tion G we will give later.

Theorem 2.2 Suppose that the assumptions of the level set approach hold.
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(i) Let ()iec(o,r) be a family of open subsets of O such that the set Q 1= Uy oS x {t}
is open in O x (0,T). Then the function x = g — llge is a viscosity supersolution of
(10)(z) — (4¢) wff for all smooth functions 0:[0,T] — IR such that 8(t) < \(), for all
t € (0,7) and for all > 0, x is a supersolution of

{ (1) wus+ F(x,t, Du, D*u,0(t) —a) =0 in O x (0,7T), (27)

(17) G(z,t,Du) =0 in 00 x (0,T),

(it) Let (Fy)ie(o,r) be a family of closed subsets of O such that the set F := UpsoFe x {t}
is closed in O x (0,T). ThenY = 1z — Lz is a viscosity subsolution of (10)(z) — (i7)
iff for all smooth functions 6:[0,T] — IR such that A\(F;) < 0(t) for allt € (0,T) and
for all a > 0, X is a subsolution of

(1) wus+ F(x,t, Du, D*u,0(t) +a) =0 in O x (0,7), (25)

(1) G(z,t,Du) =0 in 00 x (0,T).
Remark 2.1 One can show that for any family (€2)sc(0,r) (resp. (Ft)ie(o,r)) of open
(resp. closed) subsets of O, the function x = Ly,0,xq3 — Lu,0ix{y)e (Tesp. X =
Ny, 7 5qy — LU, 7 x{})e) is lower (resp. upper) semicontinuous if and only if

Q, C U liIsn_)itnf (Qs —e)  (resp. ﬂ limsup (Fs +¢) C F)

>0 e>0 57

where

lim inf €, = ) 2 (resp. lim sup = U 7

50 0<|s—t|<d 60 0<|s—t|<d

Thus if (€4)sco,r) (resp. (Fi)ieo,r)) satisfies the hypotheses of Theorem 2.2 then the
map t — A(%) (resp. t — A(F)) is lower semicontinuous (resp. upper semicontin-
uous).

Proof of Theorem 2.2. We only prove (i), the case (ii) being analogous. We first
assume that x is a viscosity supersolution of (10)(i)-(ii). Let (zq,t5) € O x (0,T) be
a strict global minimum point of x — ¢ where ¢ € C*(O x [0,T]). We have to show
that for all smooth functions 6: [0, 7] — IR, such that 6(t) < \(Q;) for every ¢t € (0,7)
and for all a > 0 we have

9¢

8t (l’o, t()) + F (l‘(), to, D¢($0, to) D2¢(l'0, to), O(to) - OJ) 2 0.

This inequality is certainly true if (xg, tp) is in the interior of either the set {x = 1} or
the set {x = —1} since in these two cases x is constant in a neighborhood of (zg, to).
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Hence aa—(f(ﬁ(), to) = O, D¢(.T0, to) = 0, D2¢($0, t()) S 0 and F*(.’L'(), t(), 0, 0, g(to) — a) =

0. Assume that (zg,t5) € 0{x = 1} N d{x = —1}). The lower semicontinuity of x
yields x(zg,%p) = —1. In this case the inequality follows directly from (A2).
Conversely suppose that for all smooth functions 6:[0,T] — IR, such that (¢) <
A(€) for every ¢ € (0,T) and for all a > 0, x is a supersolution of (27). Let (zq, %) €
O x (0,T) be a strict global minimum point of x — ¢ where ¢ € C*°(0 x [0,T]). We
consider again only the case (xg,ty) € O x (0,T). We have to show the inequality
99

E(iﬁo,to) + F*($07t0a D(b(x(]: tO)aD2¢($07t0)ﬂ {y : X(y: tO) > X(xatO)}) > 0.

This inequality is obvious if (g, %) is in the interior of either the set {x = 1} or the
set {x = —1} for the reasons above. Assume that (xg, %) € d{x =1} No{x = —1})
and suppose by contradiction that, for some v > 0, we have

0
8_f($0’t0) + F* (20, to, Do(z0, 1), D*¢(x0, 10), {2 : Xx(2,t0) > —1}) < —v
and hence
8¢ et 3 2
E(mm tO) + F (an tO: D(}S(CCQ, tO), D (15(.%'0, to), /\(Qto)) < —=7.

Since the function ¢ — A(2;) is lower semicontinuous (see Remark 2.1) it is the
supremum of a family of smooth functions. Therefore there exists a smooth function
6(-) satisfying 6(t) < A(€2;) and a small positive constant a such that A\(Q,)—0(ty) —«
is so small that (using the upper semicontinuity of F*)

0 —x 3

a—f(xo, to) + " (2, to, D (0, 10), D60, 10). (1) — ) < 7.
But this contradicts the assumption that x is a supersolution of (27), which concludes
the proof. O

Now we give the definition of generalized super- and sub-flow in bounded domains
with the nonlocal normal velocity —F' and angle boundary condition G.

Definition 2.1 A family ()01 (resp. (Ft)ico,r)) of open (resp. closed) sub-
sets of O is called a generalized super-flow (resp. sub-flow) with normal velocity
—F(x,t,Dd, D*d, {d(y,t) > d(z,t)}) and angle condition G(z, t, Dd) iff for all smooth
functions 6:[0,7] — IR such that for all ¢t € (0,7)

6(t) S M) (resp. A(F) < 0(1))

and for all @ > 0, (€); is ageneralized super-flow (resp. sub-flow) in the sense
of Definition 1.1 in [BDL] with normal velocity —F(z,t, Dd, D%d,0(t) — a) (resp.
—F(z,t,Dd, D*d,0(t) + )) and angle condition G(z,t, Dd).
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We denote B B
F_(z,t,Dd, D*d) := F(z,t, Dd, D*d, 0(t) — )

and
Fo(z,t,Dd,D*d) := F(z,t,Dd, D*d, 0(t) + ).
We recall the definition in [BDL] of a generalized super and sub-flow with normal

velocity given respectively by —F_ and —F, and angle boundary condition G.

Definition 2.2 A family (€2)iwcor) (resp. (Fit)ic(o,r)) of open (resp. closed) sub-
sets of O is called a generalized super-flow (resp. sub-flow) with normal velocity
—F (x,t,Dd, D*d) (resp. —F(z,t,Dd, D*d)) and angle condition G(z,t, Dd) if
and only if, for any zg € O, t € (0,7) , 7 > 0, h > 0 and for any smooth func-
tion ¢ : O x [0,T] — IR such that

0) % 4 (F )y (,5,06,0%) < 0, (resp.
B6($Oa ) X [t’t+h]a

(ii) G(y,s,D¢) <0 (resp. G(y,s,D¢) >0) in 00 N B(xo,r) X [t,t+ A,
(

iii) For any s € [t,t + h], {y € B(zo,7) : ¢(y,s) =0} # 0 and
[Dé(y,s)| #0 on {(y,s) € By(wo, ) x [t,t+h] : (y,s) =0},
(iv) {y € Bo(zo,7) : ¢(y,t) > 0} C Q (resp. {y € By(wo,7) : $(y,t) <0} C F),

(v) for all s € [t,t + h]

O ()35, D6,D%) > 0) in

{y € 0B5(xo,7) = ¢(y,s) > 0} C €

(resp.
{y € 0Bg(xo,7) = ¢y, s) <0} C F7),

then we have
{y € Bg(zo,7) = d(y,t+h) >0} C Quyn

(resp.
{y € Bg(zo,7) = d(y,t+h) <0} C Ffpp).

The next result gives the relationship between the notion of generalized super-
and sub-flow and the level-set evolutions related to (10). Since it is a straightforward
consequence of Theorem 2.2 and Theorem 1.2 in [BDL] about the equivalence of
Definition 2.2 with the evolutions related to (28) or (27), we omit its proof.
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Theorem 2.3 Suppose that the assumptions of the level set approach hold.

(i) Let (Q)ieo) be a family of open subsets of O such that the set Q := U x {t}
is open in O x [0, T]. Then (§)sco,r) s a generalized super-flow with normal velocity
—F and angle boundary condition G if and only if the function x = g — Lqe is a
viscosity supersolution of (10)(7) — (44).

(ii) Let (Fi)ie(o,r) be a family of closed subsets of O such that the set F 1= UpsoF; x {t}
is closed in O x [0,T]. Then (Ft)te(o,r) 18 a generalized sub-flow with normal velocity
—F and angle boundary condition G if and only if the function ¥ = Lx — Lz 1S a
viscosity subsolution of (10)(3) — (7).

3 Applications to the asymptotics of nonlocal
reaction-diffusion equations

3.1 The abstract method

In this section, we describe the abstract method to study the asymptotics of solu-
tions to nonlocal semilinear reaction-diffusion equations set in bounded domains with
Neumann-type boundary conditions. In the asymptotic problems we have in mind, we
are given a family (u,), of bounded functions on O x [0, T, typically the solutions of
reaction-diffusion equations with Neumann type boundary condition and with a small
parameter € > 0. The aim is to show that there exists a generalized flow (£2;)cjo,r7 on
O with a certain nonlocal normal velocity —F(z, t, Dd, D*d, €);) and angle boundary
G(z,t, Dd) on 0O such that, as € — 0,

ue(z,t) = bz, t) i (z,t) € Q= | @ x{t},
te(0,T)

and
ue(z,t) = a(z,t) if (z,t) € Q°

where, for all (z,t), a(z,t),b(x,t) € IR can be interpreted as local equilibria of this
system. In order to be more specific and to present the main steps of the method, we
introduce the sets

Q' =Int{(z,s) € O x [0,T] : liminf, [u, — b] (z,s) > 0}, (29)

and
Q? = Int{(x,s) € O x [0,T] : limsup' [u, — a] (z,5) <0} . (30)

Then we are going to consider the families (€2}); and (Q2), defined by
Q=0'"NOx{t}) =0"n(0 x{t}). (31)
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For simplicity of notations, for s = 1,2, we identify Q! and (Q2!)¢ with their projections
in O.

It is worth noticing that Q', Q2 are defined as subsets of O x (0, T], they are open
by definition and disjoint. In particular we remark that, by construction the functions
X = lgr— 1) and X = L (g2)c — L2 are respectively lower and upper semicontinuous
functions in O x (0,7] where, in fact, Q! has to be read here as U Q; x {t} and

t€(0,T
0?2 as U Q2 x {t}. We finally point out that x, X can be extended either by lower
t€(0,T7]
semicontinuity or by upper semicontinuity to O x [0, 7] and we keep below the same
notations for these extensions.

As in [BDL], our method can be described in three steps.

1. Initialization : we have to determine the traces Qf and Q2 of Q! and Q2 for ¢ = 0.
A convenient way to define these traces are through the function y and ¥

QU={rc0: x(z,00)=1} and QX ={zx€O0: x(r,0)=—-1}. (32)

2. Propagation : we have to show that (Q}); and ((Q?)¢), are respectively super- and
sub-flow with normal velocity —F' and angle condition G.

3.Conclusion : we use the following corollary whose proof is a straightforward conse-
quence of Theorem 2.3 and therefore we omit it.

Corollary 3.1 Assume that the assumptions of the level-set approach hold and that
the above (Q}); and ((Q2)¢); are respectively super and sub-flow with normal velocity
—F and angle boundary condition G and suppose there ezists (0905 ,Q5,Q5) € &
such that Qf C Qf and Qp C Q3. Then if (T, Q,Q;) is the level-set evolution of
(094, 9Q4,95) we have
(i) for all t > 0,

Qf CcO CcQfuly, Q CcQPCcQ UTy.
(i) If U,y x {t} satisfies the no interior condition, then for all t > 0, we have

QF =Q; and Q = Q2

We turn to comment the first two steps of our method. We first point out that the
main difficulty to prove these steps comes from the nonlocal feature of the velocity
and our strategy consists in replacing in a suitable way the volume of Q! and Q2
with smooth functions . More precisely for every smooth function 6: [0, 7] — IR such
that 0(t) < A(Q}) (resp. A((Q%)¢) < 6(t)) and all constants @ > 0 we introduce the
follwing sets

(x,5) >0},  (33)

Q' (o, 0) = Int{(z,s) € O x [0,7] : liminf, [g]
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0?(a,0) = Int{(z,s) € O x [0,7] : limsup [ug%a”‘] (z,s) <0} (34)

where (a®®). and (b*%). are suitable sequences of real-valued functions defined in
O x [0,T] such that a®* — a, b>* — b, as € — 0, uniformly in O x [0, 7], and for all
a > 0 small enough.

In the Subsection 2.3 of [BDL] the set (33) (resp. (34)) is shown to be a gen-
eralized super-flow (resp. sub-flow) in the sense of Definition 2.2 with respect to
—F(z,t,Dd, D%d,0(t) — ) (resp. —F(x,t,Dd, D*d,0(t) + «)) and angle bound-
ary condition G(z,t, Dd). Thus our main aim is to show that Q' = Q!(c,6) and
0% = S~22(a,0). Indeed if the previous equalities hold we automatically get both
the initialization and the propagation of the front with the nonlocal normal velocity
—F(x,t,Dd, D*d, {d(y,t) > d(z,t)}) and angle boundary condition G(z,t, Dd) as a
consequence of the results in [BDL].

3.2 The asymptotics of nonlocal Allen-Cahn equation with
monotonicity

This section is devoted to the study of the model case of nonlocal Allen-Cahn Equation
set in a bounded domain with a Neumann type boundary conditions, which will be
also the occasion of giving the reader a more precise idea of how the abstract method
works. More precisely we will focus our attention to the following initial boundary
value problem

(1) ter — Aue 4 b(z) - Dug + 7 f(ue,e [,u:) =0 in O x (0,T),

(17) G(z,t, Du.) =0 on 00 x (0,7), (35)

(7ii) ue = g on O x {0},
where ¢ is a real-valued continuous function in O, G satisfies the conditions for the
level-set approach to hold, in particular (A4), and (A5), and b:O — IR" is a Lips-
chitz continuous vector field. As far as the reaction term f: IR — IR goes, throughout
the paper, we assume that f € C%(IR?, IR) and fy(u) := f(u,0) satisfies

fo has exactly three zeroes m_ < my < my,

fo(s) > 01in (m_,my) and fo(s) < 0 in (mg, m,), (36)

fi(m=) >0, fi'(m_) < 0 and fi'(my) > 0.
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We observe that, for sufficiently small v there exist h_(v) < ho(v) < hy(v) such

that
f(h—(v),v) = f(ho(v),v) = f(hs(v),v) = 0.
f(r,v) >0 on (h_(v), ho(v)) and on (h4(v), +00) ,
f(r,v) <0 on (hy(v), hs(v))and on(—oo, h_(v))
Julr,v) 2y >0; on (=00, h_(v) + 7] U [hs(v) =7, +00), (37)

for some v > 0 independent of v.
We assume that for all (r,v) € IR x IR

fo(r,v) <0 (38)
We note that as a consequence of the above assumptions on f we have:
hy(v) = my, ho(v) > my asv — 0 (39)

Since, for fixed v, the function u — f(u, v) satisfies the hypotheses of Aronson and
Weinberger [AW] and Fife and McLeod [FM], there exists a unique pair (¢(r, v), ¢(v))
such that

Grr (1, 0) + ¢(v)g,(r,v) = f(q(r,v),v) (40)

and
}iglo q(r,v) = hx(v) and ¢(0,v) = ho(v). (41)

We continue listing some technical assumptions that we will be making on (g(-, v), ¢(v)) :
q(-,v) and ¢(v) depend smoothly on v (42)
and referred
(1) Timy o sup,[[v|(Igu| + [guo|) + [gro|] = 0
(i) 7|72 g | + |77 gr| < Ke 0, for all |r| > 6
(#33) q(r,v) — hi(v) exponentially fast as r — foo (43)
() gr(r,v) >0

(v) gu(r,v) = O(1), as v — 0 locally uniformly wrt r
Finally we impose

¢(0) =0 and —@ — co > 0. (44)
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One example we have in mind is the one considered in [CHL] where
flu,v) = 2u(u® — 1) + vh(u) (45)
with A < 0. In particular if A(u) = —C < 0 then by analogous computations in [BSS]

one can show that ¢y = 50.

We recall that the notion of viscosity solution can be extended to integro-differential
equations of the form (35)(i) with f satisfying the monotonicity condition (38) (see,
ie. [AT)).

Below for the reader’s convenience we give a sketch of proof of the comparison
result between viscosity bounded sub and supersolutions of the problem (35) for fixed
€ > 0. Then the comparison result and the Perron’s Method yield the existence of a
unique continuous viscosity solution of (35). The existence and the uniqueness of a
smooth solution of (35) without the assumption (38) was obtained in [CHL] in the
case of homogeneous Neumann boundary condition.

Lemma 3.1 Assume (36) and (38). Let u,v be respectively bounded lower and upper
semicontinuous viscosity sub- and supersolution of (35) (i)-(ii) with fized ¢ = g > 0
and u(z,0) < wv(zx,0). Then

u(z,t) < wv(z,t) for all (z,t) € O x [0, 7).

Proof.

1. Without loss of generality, we can fix ¢ = 1. For simplicity, we assume that
u,v are smooth functions and 90O is C?. (For general case, one can combine the
arguments in [CIL] and in [AT]).

2. Suppose that u—v has a maximum &y > 0 at (z, tp) in O x [0, T]. Fix a positive
constant L and let

a(z,t) = e “u(-,t), v(z,t) =e “o(-,1).

Then @(z,t)—9(x, t) has a maximum §(L) > 0in Ox [0, T]. Note that if the maximum
is attained at a point (zr,t), then eL§(L) < dy.

3. Consider the signed distance function d(z,00) with d > 0 in O and extend
this function from a neighborhood of O to O such that the extended function d(x)
is C% in O. Then for ¢ > 0 the function

w(x,t) = u(z,t) — v(z,t) + ed(z)

has a maximum at P. = (z.,t.) in O x [0,7T], which converges to (z1,t1),tr > 0
with o — v = §(L) at (zr,t). Suppose that z. € 00. Since at P. we have Du =
Dv + en(z.) + An(z.) with A > 0, by (A3) we have

G(ze,te, Du) > G(xe, te, DU 4 en(xe)) > G(ze, t., DV),
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which contradicts the definition of u, v.
4. Therefore . € O and we have the following inequality at P.:

L(a—1) < A(a—1v)+b(z.) - (Da— Do) +e " [f(v, [v) = f(u, [ u)]
< O(e) + e [f (v, [ov) = f(u, [pu)]

Since u < v + eX=§(L), e*=§(L) is bounded and f(u,-) is decreasing, by sending
e — 0 we get

L§(L) < e ™MrK (14 |0))et*=6(L) = M(1 + |0|)6(L),

where M is the global Lipschitz constant of the function f (since u,e™Z§(L) are
bounded and f is C?, we may assume that f is globally Lipschitz without loss of
generality). Thus we get a contradiction if we choose L > M(1 + |O|). O

In the following Lemma we show some estimates satisfied by the (u.). by using
the comparison result in Lemma 3.1.

Lemma 3.2 Under the assumptions of Lemma 3.1 the family (u.). satisfies
m_ +o(l) <u(z,t) <my+o(l) ase =0 (46)
uniformly in O x [0,T).

Proof. We just sketch the proof, being it quite standard. We first show that family
(u.). is uniformly bounded in (z,t) € O x [0,T]. To this purpose, one observes that
the functions @ := Ct + M and v := —Ct — M with M,C > 0 large enough are
respectively super and subsolution of (35). Thus by comparing u* with u and u we
obtain ||uf||, < K for some K > 0.

Now we prove that u.(z,t) < mi+4o(1) ase — 0 (the other inequality being proved
in a similar way). Since ||[u°|| < K and f, < 0 we have that u® is a supersolution of

(4) ter — Aue + b(x) - Due + e 2 f(ue, e KA(O)) =0 in O x (0,7)
(17) G(x,t, Du.) =0 on 00 x (0,7), (47)
(741) ue = ug on O x {0},

We consider the solution of the ode

C(s,8) +e 2f(C,eKNO)) =0 s e (0,00)
(48)
€(0,6)=¢
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where & > max(||¢||oo, |m+|). By using the properties of f one can show that
((5,€) < b (eKA(0)) + (€ = hy (tKN(0))) exp(~e>C)

for some C' > 0. Since h (e KA(O)) — my as € — 0, we get ((s,€) < (m4 +o0
¢ — 0. Finally having by construction u*(z,0) < £ we obtain u®(z, t)
¢ — 0 and we conclude. O

Under the current assumptions we expect that the front evolution associated with
the asymptotics of (35) is motion by mean curvature and an additional term depend-
ing on the volume enclosed by the front. The corresponding geometric pde is

u, — tr[(I — Du® Du)Du] + b(z) - Du — co| Dulp(z, t,u) =0 in O x (0,T)
G(z,t,Du) =0 on 00 x (0,7),

U = Uy on O x {0},

(49)
where u(x,t,u) = m+)\(§2£t(u)) + m_)\((Q;;t(u))c), Q;t(u) = {u(y,t) > u(z,t)},
and c¢g > 0 is defined in (44).

We premise the following Lemma where we show a key property of G which is
used in the sequel to check the Neumann boundary condition. To formulate it, we
use the following notation : for p € R™ and z € 90, T(p) :=p — p - n(z)n(z). T(p)
represents the projection of p on the tangent hyperplane to 0O at .

Lemma 3.3 Assume that (A2) and (A4) hold and that, for some x € 00, t € (0,7T)
and p € RN, we have G(z,t,p) < 0 (resp. G(z,t,p) > 0), then there erists a constant
K(T) such that, if p-n(x) < —K(T)|T (p)|, then

G(z,t,p+p) <0.
(resp. if p-n(z) > K(T)|T(p)l, then

G(z,t,p+p)>0.)

We refer the reader to [BDL] for the proof of Lemma 3.3, we only remark that, by
(A4), G(z,t,0) = 0 and therefore the above result holds with p = 0.

The main result of this Section is
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Theorem 3.1 Assume (36), (48) and let u. be the solution of (35) where g : O — IR
is a continuous function such that the set Ty ={z € O : g(x) = my} is a nonempty
subset of O. Then, as ¢ — 0,

my {U’ > 0}7
ue(z,t) — locally uniformly in
m_ {u < 0},

where u is the unique viscosity solution of (49) with uy = do, the signed distance to
Lo, which is positive in the set {g > mo} and negative in the set {g < mo}. If, in
addition, the no interior condition (25) holds, then, as € — 0,

my {’LL > O}a
ue(z,t) — locally uniformly in
m_ {u>0}.

Proof of Theorem 3.1. We consider the open sets Q' and Q? of sets defined in
Section 3.1 by (29), (30) with b(x,t) = m, and a(z,t) =m_.

By following the abstract method in Section 3.1 we have to show that {0 and Q3
are not empty and the families (Q});s0, and ((2?)¢)i0 are respectively a generalized
super-flow and sub-flow with normal velocity —F' and angle condition G. We will
consider the Q!-case, the Q?-case being treated in a similar way. To this purpose we
proceed as follows.

1. Let us consider a smooth function 6:[0,7] — IR satisfying for all t € (0,7),
0(t) < A(Q) and a constant a > 0. By the definition of Q! and Lemma 3.2 for small

€ > (0 we have
/ugdac
16)

p(t) := (my —m_)(0(t) — a) + m_A(O) (51)

and we set f¢(u,t) := f(u,epu(t)) (for clarity of notations we drop the the dependence
on o and @ in p and f¢). ;From (38) it follows that for € small enough u. is a
supersolution also of

(2) uer — Aue + b(z) - Due + e 2f(ue,t) =0 in O x (0,7T)

v

/ myllg, +m lgedz — (my —m )
> (my —mo)0(t) + m_AO) — (my — m_) (50)

We denote by

(i7) G(z,t, Du.) =0 on 00 x (0,7T), (52)
(41) ue = ug on O x {0},

28



Let m$®* and m>® be the greatest and the smallest stable equilibria for f¢(u,t). We
introduce the following set (depending on a and 0):

ue (€, 5) — mZ"(s)

Q'(a,6) := Int{(z,s) : liminf, . > 0} (53)
and for all ¢ € (0,7 we set
Ql(a,0) := Q' (o, 0) N (O x {t}). (54)

2. We show that for all & > 0 and (-) as above we have Q'(a,8) = Q' (see Lemma
3.4).

3. In [BDL] it is proved that Ql(,0) # 0 for ¢ > 0 small, and (Q!(a,0)), is
a generalized super-flow in the sense of Definition 2.2 with respect to the velocity
—F_(z,t,Dd, D?d) and angle boundary condition —G(x,t, Dd). Thus we automati-
cally obtain that 2} # 0 (namely the initialization of the front) and (}); is a gener-
alized super-flow (namely the propagation of the front) with respect to the nonlocal
normal velocity —F(x,t, Dd, D?d,€)}) and angle boundary condition —G(z,t, Dd).
The conclusion then follows from Corollary 3.1. U

Remark 3.1 We remark that the initialization procedure can be proved also directly
without introducing the set (53). More precisely one can reproduce the same argu-
ments of the first step of Theorem 2.3 in [BDL] by constructing globally in O sub- and
supersolutions of (52) with f¢(u) := f(u,0) £ eK'\(0)), for a suitable choice of K’,
associated with radially symmetric moving fronts. We point out that this can be done
without the monotonicity condition (38), only the assumption that (u®). is uniformly
bounded being necessary in order to replace in the equation (35) f(u®, ¢ [, u®) with
f(u,0) £ eK'A\O).

In the next Lemma we prove that Q! (e, §) = Q1. Such an equality is a consequence
of the estimates on u, that the initialization step in [BDL] gives and which have been
properly adapted to this case.

Lemma 3.4 For all o > 0 and for every szwoth function 0:[0,T] — IR such that
0(t) < X(Q}) for alit € (0,T) we have Q' = Q' (v, 0).

Proof. It is enough to show that “Q' C Q'(«, #)”, the other inclusion being trivially
satisfied by the definition of these sets. More precisely we are going to show the
following inequality

{(z,s) : liminf, [u.(x,s) —my] >0} C {(z,s) : liminf, ue(z, 8) — m7%(s)

> 0}
(55)

€
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from which the inclusion “Q! C Q'(«, #)” follows (by considering the interior of the
above sets). To this end we follow the strategy of proof of Proposition 2.1 in [BDL].
Let (zo,t0) € O x (0,T] be such that

liminf, [u.(zo,t0) —m4] >0

Then, by definition of liminf, , for any v > 0 there exist A > 0,7 > 0, > 0 such that
for all e < &, © € Bg(wo,7) and |t — ty| < h we have u.(x,t) > my — 7.

We suppose that 2o € 0O (the case x € O being similar and even simpler). By
the smoothness of O, if n is small enough and if Z := zy — nn(xg) then B(z,n) C O
and B(z,n) N 00 = {x¢}. Consider the function 1, (z) = n* — |z — z|?. We observe
that D1y, (zo) - n(x) = —n < 0. Thus we can find R > n and § > 0 such that
B(z, R) C B(xg,r) and the function

Y(z) =R - |z — af* (56)

satisfies Dy(z) -n(z) < 0on {x € O : |d(z)| < 6}, d(-) being the signed distance
function to the set {z : v(z) = 0}. By Lemma 3.3, choosing R close enough to 7, we
may have also G(z,t, Dy(z)) < 0 on {z € 00 : |d(z)| < d} for, say, any t < 1.

We introduce the function ¥: O x [0,7] — IR given by

Y(z,s) =¢(x) —C(s—to+h), (57)
with C > 0 which will be chosen later and denote by d(-, s) the signed distance to the
set {¥(-,s) = 0} which is normalized to have the same signs of ¥ in O x [0,7’]. Here

d(z,s) = [(R*=C(s—to+h) Y2 = |z — 7| .

(my —my)

5 A 6 such that for all 0 < § < ¢ and

By the choice of R, there is 0 < §' <
t € (to — h,to + h) we have

ue(w,t) > (my — 7)1155@0;) - K]l(Ea(wo,r))c > (mo + 25)]1{\11(-,t)>0} — Kty <oy

where K is an upper bound of ||uf||s.

Now we need the following two Lemmae whose proof is postponed in the Appendix
29

Lemma 3.5 Under the assumptions of Theorem 3.1, for any B > 0, there are con-
stants T > 0 and & (depending on B) such that for all 0 < ¢ < & and for all
t € (to — h,to + h) we have

UE(.’II, t+ts) > (mia (t+t6) _ﬁg)ﬂ{d(m,t—l—ta)Zﬂ} + (mia(t_i’ts) _ﬁg)ﬂ{d(m,t+ta)<ﬂ} on O .

where t. = Te%| loge]|.
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Lemma 3.6 There exist h < h, B > 0, depending only on 1 defined in (56) such
that, if B < B(y) and e < E(B,7), then there exits a subsolution w? of (52) in
O X (to — te,to + h) such that,

WP (@, to—te) < [ (to—te) — BelLiag to—to)>p1 +m" (to—t:) — Be]Lia( to—to)<pr 0 O.
Moreover, if (z,t) € O X (ty — t.,to + h) satisfies d(x,t) > 203, then

w(z,1) = m° (1)
13

> 923

lim inf,

We first observe that if in Lemma 3.5 we choose ¢t = t3 — 2¢, then for ¢ small
enough we have

e (T, t0—1te) > (M (to—te) — Be) Lya(a,i—t)>py + (M7 (=) — Be) Lia(t—1.)<py  in O

Then Lemma 3.6 yields a subsolution w®# of (52)(i)-(ii) such that

wP(x,tg — t.) < uc(x,tg —t.) in O
thus by the maximum principle we have

wP(x,t) < u(z,t) in O X (tg — te, tg + h).

Morever from (77) it follows that if t € (ty — t.,to + h), = € O N Bg(zo,7) and
d(z,t) > 2 we have

ue(z, 1) —mi(t)

3

lim inf, [ ] > —-20.

Since 3 is arbitrary and does not depend on h and d(zg,t,) > 0 (by construction),

we have o
lim inf, [“g(xo’t") — My (to)] > 0.
19

Thus we have proved the inequality (55) and we conclude. O

Remark 3.2 The asymptotic result of this subsection continues to hold also in the
case of nonlinearities f depending on (z,t, u,v) provided the monotonicity condition
(38) is satisfied for all (z,t,u,v).
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3.3 Some remarks on the asymptotics of nonlocal Allen-Cahn
equation without monotonicity

In this subsection we extend the asymptotic result of the subsection 3.2 under a
suitable relaxation of the monotonicity assumption (38).

As we have already pointed out in the subsection 3.2 the monotonicity condition
on f allows us to have a rather simple proof of the asymptotics by replacing the
nonlocal term with some suitable smooth functions of the time. On the other hand,
as we observed in Remark 3.1, the initialization step can be proved without the
monotonicity condition (38), moreover the proof of Lemma 3.6 can be readily extended
also to the case when uf is a supersolution of

Ug ; — Aug + b(x) - Du, + e 2f (ug, eu(t)) = o(1) in O x (0,7), (58)

where () is the function defined in (51) and o(1) — 0 as € — 0 locally uniformly
in (x,t) (that is trivially satisfied in the monotone case). Indeed if we examine the
proof of Lemma 3.6, we build a function w*? satisfying for some positive constant v
(independent on ¢)

wi? — Aw™P + b(z) - Dw™ + e 2 f(w™? ep(t)) < —e ' +0(1), ase —0. (59)

locally in the space and in suitable small intervals (see (76)). Thus one can choose
§ > 0 such that for ¢ > 0 small enough u, and w*? are respectively strict sub and
supersolutions of

Uep — Aue + b(x) - Du, + 72 f (ue, ep(t)) = —6 (60)

and hence we can compare them.

Now we give some sufficient conditions on f implying (59). Typically we have in
mind the case when the monotonicity condition (38) holds between the two stable
equilibria of W such as

f(u,0) = 2(u+ 0z, t)v)(u —m_)(u —my)

f(u;0) = 2(u + h(u)v)(u —m_)(u —my)

with 6(z,t), h(u) > 0.
In this subsection we assume the hypotheses of subsection 3.2 except (38) and we
add the following assumptions on f:

(H1) f(ms,v)=0forallve R.

(H2) There exists C' > 0 such that for every 6 € (0,m; —m_) f,(u,v) < C§ for all
u € [m_ — 3§, my + 0] and for all v € IR.
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(H3) f,(u,v) <0 forallu € [m ,my] and for all v € RR.

(H4) For all € there exists a smooth solution u, of (35) and the family ° is uniformly
bounded in O x [0, T].

Proposition 3.1 Under the current assumptions the family (u®). satisfies
m_ — Lexp(—¢ 2Kt) < uf(x,t) < my + Lexp(—e 2Kt)
for suitable L, K > 0 and for (z,t) € O x (0,T).
Proof. We prove the inequality
uf(z,t) < my + Lexp(—e 2Kt)

the other one being proved in an analogous way. Let us introduce the function
M (t) := supg(u®(z,t) — m4)t and we claim that it is a viscosity subsolution of the
following variational inequality:

min(¢(t), () + e 2y(C(¢))) =0 for all t € (0,T), (61)

where v > 0 is the constant appearing in (37). To this purpose, let 1) be a smooth
function of the time ¢ such that M (t) — ¢(¢) has a global maximum at ¢ € (0,7,
and M5 (t) = 9¥(f). If M5 () = 0 then (61) is trivially satisfied. Otherwise M¢(f) =

(uf(Z,%) —m4 )" with Z € O. We first assume that M¢ (f) = u®(7,1) —m, with 7 € O.
We note that u® — 1 has a maximum at (Z,%) as well. Thus ¢(f) = u$(z,t) and
Duf(z,t) = Di(t) = 0. Since u, is a smooth solution of (35) we have

wl® + e (@D, [ v de) o
o
On another hand since u(Z,t) > m, and (37), (H1) hold, we have
fe@ e [ w@hd) > ful6e [ 0o ds) (@) - my)
o o

> y(u(z,t) —my)
where m, < & < u®(Z,t). Therefore we have
min(yy (), $(f) + e7*y(M5 (7)) < 0. (62)
Now we assume that M$ (f) = u®(Z,?) — m4 with Z € 00. We introduce the function
U(z,t) =u(z,t) — ¥(t) + ad(x),
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where @ > 0 and d(-) is the signed distance function from 00. Let (z4,t,) be a
sequence of maximum points of ¥. By the same arguments of Lemma 3.1 one can
show that z, € O and uf(z4,ta) — m4 converges to M3 (%) as o — 0. We may also
assume that u®(xq4,t,) — my > 0. Thus we have

0 = u(ts) +€_2f(u5(xa,ta),s/ u®(z,t,) dx)
0
2 wt(ta) + 8727(“’6('@(15 ta) - m-l-)

By letting @ — 0 we get (62). Hence we prove the claim.
Now let us consider the solution of the ode:

{ ((t,€) + e 29¢(t,€) =0 in (0,7)
€(0,6)=¢

with € > ||uf||«. Easy computations show that

((t,€) < Lexp(—e 2Kt) forallte (0,7)
for some positive constants L, K independent on £. We note that ( is a supersolution
of min(¢, {(t, &) +&2v¢(t,£)) = 0. Since M*(0) < ¢(0) then by maximum principle we

have M®(t) < ((t) for all £ > 0. In particular we get u®(z,t) < my + Lexp(—e *Kt)
for all (z,t) € O x (0,7T) and we conclude. O

To conclude this subsection, we observe that Proposition 3.1, the hypothesis (H2)
and the fact that ||u.||c < M imply

f(ug,s/ous(x,t) dz) — f(u®,ep(t)) < eCexp(—e2Kt) (63)

for some C > 0 (depending on ||uf||s, m+) and for all ¢ € (0,7). Hence for all
to € (0,7) and for all A > 0, u® is a supersolution also of

Ug p — Aug + b(x) - Du, +e7%f(u.,t) = o(e) in O x (tg — h,to+h).  (64)

Thus the proofs of Lemma 3.5 and 3.6 can be adapted under the current assumptions
and consequently Lemma 3.4 continues to hold.

Appendix A

The additional assumptions on O, F, and G are
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(A6) ForallzeO,t€(0,7]and K, L € B,
—o0 < F*(z,t,0,0,K) = Fy(x,t,0,0, L) < oco. (65)

and either the additional conditions that Ishii and Sato imposed or the condi-
tions that Barles imposed hold:

(A6a) (Ishii and Sato)
e GeC(R" x1[0,T] x RY)nCYY(IRYN x [0,T] x IR\{0}).

e There exists a function w : [0,00) — [0,00) continuous at 0 satisfying
w(0) = 0 such that if for X, Y € 8" and py, ps € [0, 00) satisfy

X o0 ). AW I 0
0 -y )=\ 1 7T P2\ g 1 )0
then

F(yat1QaY5K)_F(xataanaK) S

(e = yP + (ZL A D) + o+ o — gl + 2 = yl(pl V gl + 1))

for allt € (0,T], z,y € O, p,q € R¥\{0} and K € B.

(A6b) (Barles)
e 00 is W3,
e For every T > 0 there exists ¥(T') > 0 such that for all t € (0,T), z,y € O
and p,q € R |G(z,t,p) — G(y,t,9)| < D) ((|p| + la)|z =y + [p - ql)
e For any C > 0 there exists a function we : [0,00) — [0, 00) continuous at

0 satisfying we(0) = 0 such that for all n > 0, for z,y € O, p,q € RV\{0},
and X,Y € S satisfying

Cn (1 0 X 0 Cn( I —I I 0
_?<0 1) (o —Y)S8—2<—I 1)+C"(0 1)
p—q| Ce(lp| A |q])

[z —y| < Cne
the following holds for all K € B:

<
<

2
T—Y
F(0,t,0,Y,K) = (e, .. X, K) < e (P22 4oyl v el +1))

The main difference between the conditions is that the conditions of Ishii and
Sato require less regularity on the domain (that is that 0O is C'' which was our basic
assumption on O), while condition Barles require less regularity on the boundary
condition (that is that G is uniformly continuous, which is a part of (A3)).
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Appendix B

In this appendix we give the proof Lemmae 3.5 and 3.6.
Proof of Lemma 3.5. We essentially follow the lines of the proof of Step 1 of
Theorem 2.3 in [BDL] and we reproduce here some key points for sake of completeness
and refer the reader to Subsection 2.3 in [BDL] for all the details.
1.  We modify the function f® taking in account the t-dependence and, to do so,
we do it here in the following way : because of the assumptions on f¢, there exists
a function 7 — fs(u) (0 < § < ¢') such that, for every T' > 0, if ¢ is small enough,
fs(u) > fe(u,t) + 2¢ for any u € IR and ¢t € [0,T]. Moreover f5 is a cubic type
nonlinearity satisfying (36) with three zeros which are m_ — 4§, my+9/2 and m, — 4.
We modify the function f¢ in two steps; we first introduce a smooth cut-off func-
tion (; € C§°(IR) such that 0 < ¢ < 1in R, (;(u) = 1 in (my — 6,my + ) and
C1(u) =0 for u < my — 26 and u > my + 26. We set

F5 (u,t) = Guw) fow) + (1= Gu(w) [f*(u,t) +£B)] (66)

where 0 < 8 < 1. Using the assumptions on f¢, it is easy to see that, for § small
enough, ff has the same regularity properties as the f° and has exactly three zeros,
m®*(t) + O(Be), mo + 6/2, m3* + O(Be); moreover ff > f° on IR with ff(u) =
fe(u,t) +ep if |[u —my| > 26 and fg is independent of ¢ for |u —mg| < 4. 2. Then we
consider another cut-off function {; € C§°(IR) such that 0 < {; < 1in IR (3(u) =0
in (—oo, mg + /4] U [mg + d,+00) and (o(s) = 1 in [mg + §/3, mg + 25/3]. Finally we
consider 5
Fin1) = (1= Q) Fya,1) + ol 2

We note that, because again of the properties of f¢, f§ has exactly three zeros :
m>*(t)+0(Be), mo+6/2, m%(t) +O(Be); moreover, for € small enough, fi > fe+ B¢
in R and f§ = f¢ +¢p for |u — mg| > 20.
2. We consider the solution x(¢, -, t) of the ode

{ X‘f‘fg(Xat):O (67)

| loge|

x(,0,t)=¢ € R,

3. Tedious computations show that y satisfies
Xe(€,8,t) >0 in IR x [0,400) x [0, +00),
for all 8 >0, T > 0, there exists a(3,0,T) > 0 such that

x(&,s,t) > m(t) — Be for s > a|loge| and £ > § +mg (68)
for all ¢ € [0, T,
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and
for every a,T > 0, there exists M (a,T) € IR such that, for € small enough,
(xe(&5,1) Mxee(€,s,t)| < e 'M(a,T) for 0 < s < alloge,

for all ¢t € [0, T].
(69)
4. If § is small enough, for every a > 0 and T > 0, there exists M(a, T) > 0 such
that, for ¢ small enough and for 0 < s < a|loge|, we have

Ix:(&,8,t)] < M(a, T)e .
5. Let ¢ be a smooth function such that

—K<¢o<my+2§ in R, ¢(z2)=K in{z<0} and ¢(z) =m+26 on {z > d}.

(70)
Fix t € (ty — h,to + h) and define w: O x [0,T] — IR by
M(s—1t) s—1
U)(.’L',S) = X(Qp(d(ﬂj,S)) - (8 )1 £2 ,S)-

Then w is a viscosity subsolution of 52(i)-(ii) in O x (¢,t + t.), where . = ag?|loge].
6. By construction we have

ue(w,t) > (mo + 20)Wgage,y>s) — Kl{a@n<sy on O .
and on an other hand,

w(z,t) = x(p(d(z,t)),0,z,t) = p(d(z,1))
< (mo +26) M g(z>6y + M- 14 <o)

Thus, the maximum principle yields that
w(z,s) < u.(r,s) on O x [t t+as?|logel]. (71)
Evaluating (71) for s = ¢ + ag?|loge| and for x € O such that d(z,s) > § we get
x(mo + 26 — Kael|tne|, a|logel, z, ag®|loge|) < u.(x,ac®|loge| +t)
But, since for € small enough

moy + 26 — Kae|loge| > mgy + 6,
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it follows from (68) that
my*(t+1t.) + O(Be) < ue(z,t+t.) ifd(z,t+t)>9.

7. Finally, because of the properties of fg, if a is large we have also XL@“, a|logel|, r,ae?|loge|+
t) > m>%(t + t.) + O(Be) for all bounded &. Therefore for all z € O we have

mia(t + tg) + O(ﬁE) < ug(:];’t + tg) for any x € 0
and
(Mm% (t+1:) + O (Be) [ fa(a,t4t)20) + M2 (2, t4) + O(Be) | Law ) <5y < ue(@, t+1e).

Then the result holds for 7 = a by taking 8 < ¢ small enough in order to replace if
necessary O(fe) by Se. O

Proof of Lemma 3.6.

Also in this case, since the proof is very similar to the ones of Lemma 2.3 and
Theorem 2.4 in [BDL], we just outline the kea ideas by refering the reader to [BDL]
for the details.

We consider the smooth function ¥ given by (?7) and we observe that for C' > 0
large enough one has for some g > 0

\\J
aa—t(:r,s) + F*(2,5, DY, D*¥, u(s)) < —p in O x (0,T) .

On an other hand, we have also
G(z,s,D¥(z,s)) < —o,

on a dO-neighborhood of {¥ = 0} and for small A. Using the smoothness of ¥ and
the fact that, for small h, DU(x,s) # 0 if U(z,s) = 0, there exist v > 0 and h < h
such that d is smooth in the set Q.7 = {(z,s) : |d(z,s)] <7, to—h < s <ty+h}
and |[DV| # 0 in @, ;. We note that on the set U, j<,<;+51¥(7,s) = 0}, d satisfies

d; + F*(z,s, Dd, D*d,0(s) — a) =

di — Ad — co|Dd|[(my —m_)(0(s) — o) + m_A(0)] < — 0

2| DY
Moreover recalling the properties of ¥ on 00, we have also

0

Dd) < —

on 00N Q (72)

Y,h
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We note that we can choose C, h such that d(zg,%;) > 0 and we may assume that
|Dd|=1 and D?dDd=0 inQ,j.

Let (¢°(r, s),c*(s)) be the unique pair satisfying

Grr(1,8) + (s)g; = 7(¢" 9). (73)
We consider in @, , a function of the form
,Ug($7 S) = qg(g_l(d(x: 8) - 25)7 S) - 2ﬂ5 (74)

We verify that v* is a viscosity solution of (52)(i)-(ii) in @, 5. As far as the boundary
condition (52)(ii) is concerned, we first observe that Dv(z,s) = ¢ '¢,Dd and thus
G(z,s,Dv(z,s)) = e 1¢¢G(z, s, Dd(x, s)) < 0 because of (A4) and (72).

Moreover we have

v — AvT 4 b(z) - DvF e 25 (v%,s) = L+ e 'L + 111, (75)
where
L = —q, —c(s)g + [°(d",9),
. = g(d—Ad+b(z) - Dd+c"¢(s)) = 263(¢" 5)
II. = ¢;+0(1).
We note that e~'c*(s) — —cou(s) as € — 0 locally uniformly in s and for all a.

By analogous computations to the one in [BS], one can see that if § is small
enough then v satisfies for some constant v(g, 3) < 0

vi — Av® +b(z) - Dve 4+ e 2f%(v,8) < e 'v(o, )+ O(1) ase =0 (76)

for all (7, s) € @, 4. Next we extend the subsolution v® to O x (¢, —t., o+ h) and we
do it in two steps.
First we have

Lemma 3.7 For £ small enough, the functions ¢ defined on [0,T] by ¢3%(s) =
m3%(s) — eB are viscosity subsolutions of (52)(i)-(ii).

We leave the proof of Lemma 3.7 to the reader since it follows rather easily from
the properties of f¢, m$* and m®>®.
The next step is to define the function v° : {(z,s) € O x [to —t.,to+h] : d(z,s) <
7} — R by
sup(ve(x, ), g°%(s)) if d(z,5) > —

9= (s) otherwise
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By similar computations of Lemma 4.2 in [BS] and using Lemma 3.7, it is easy to
prove that ©° is a viscosity subsolution of (52)(i)-(ii).

Then we choose a smooth function ¢ : IR — IR such that ¢’ <0in IR, ¢ =1 in
(—00,7/2),0 < p < 1in (v/2,3v/4), ¢ = 0 in (37/4,+00), and, finally, ¢” < 0 in a
neighborhood of /2.

The function w®? : O x [to — te, to + i_z] — IR defined by

bz s) = p(d(z, 5))0°(z, 5) + (1 — p(d(z, 5)))g7%(s) i d(z,5) <7,
, g2%(s) otherwise,

is a viscosity subsolution of (52)-(10)(#1) on O X (ty — t.,to + h), if € and h are
sufficiently small. Moreover

w P (-, to—t.) < (M5 (to—te) =) La(a to—te)25)+ (M2 (fo—1te) = BE) La(a,to—1)<py 0 O
and if s € (t) — t.,tg + h), £ € O N B(zy,7) and d(z, s) > 25, then

w(z, 5) — m°(s)

€

lim inf,

> —20. (77)

Thus we can conclude.
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