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Abstract. Certain liquids on solid substrates form a configuration of drop-
lets connected by a precursor layer. This configuration coarsens: The aver-
age droplet size grows while the number of droplets decreases and the char-
acteristic distance between them increases. We study this type of coarsening
behavior in a model given by an evolution equation for the film height on
an n-dimensional substrate. Heuristic arguments based on the asymptotic
analysis of Glasner and Witelski [6, 7] and numerical simulations suggest a
statistically self-similar behavior characterized by a single exponent which
determines the coarsening rate.

In this paper, we establish rigorously an upper bound on the coarsening
rate in a time-averaged sense. We use the fact that the evolution is a gradi-
ent flow, i.e. a steepest descent in an energy landscape. Coarse information
on the geometry of the energy landscape serves to obtain coarse informa-
tion on the dynamics. This robust method was proposed in [10]. Our main
analytical contribution is an interpolation inequality involving the Wasser-
stein distance which characterizes the coarse shape of the energy landscape.
The upper bound we obtain is in agreement with heuristic arguments and
numerical simulations.

1. Introduction

1.1. Statement of the result. Thin layers of viscous liquid are well-described
by the lubrication approximation which capitalizes on the separation of horizon-
tal and vertical length scales. It yields a single equation for the time-dependent
film height h = h(x, t) > 0, [20]. We now introduce this equation in its non-
dimensionalized form.

Let Q ⊂ R
n parametrize the substrate. We consider smooth solutions h :

(0,∞) × Q → [0,∞) of

∂th −∇ ·
(

M(h)∇
(

∂E

∂h

))
= 0 in (0,∞) × Q. (1.1)

Here, ∂E
∂h denotes the L2-gradient of the energy functional with respect to h.

The total energy E is given by

E(h) =

∫
1

2
|∇h|2 + U(h) dx, (1.2)

where the gradient term describes the linearized contribution of the liquid-air
surface energy, while U models the intermolecular forces between the substrate
and the film, see Subsection 1.3. We shall always write

∫
for
∫
Q.
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Qualitatively, the potential U is of the form sketched in Figure 1. We nor-

1

1 h

U

Figure 1: The intermolecular potential U combines repulsive and attractive
forces.

malize U so that U(∞) − minU = 1 and argmin U = 1. The well-known
Lennard–Jones potential [9] corresponds to U(h) = 1

3h−8 − 4
3h−2 + 1 but other

potentials are also physically relevant [24]. In fact, the exact expression for the
potential is often not essential; as in [2, 6, 7], our results hold for a large class
of potentials.

Bertozzi, Grün and Witelski [2] studied the equation (1.1) for potentials of
the form U(h) = h−q−h−p, 0 < p < q on a bounded one-dimensional substrate.
If q ≥ 2, that is if the potential blows up at zero fast enough, boundedness of the
energy was used to show that solutions with positive initial data stay positive
for all time. That implied that the equation has unique, classical solutions for
given initial data.

In our model (1.1), we consider the linear mobility function

M(h) = h. (1.3)

Let us clearly state that the appropriate mobility function for a liquid film
governed by the Stokes equations with no-slip boundary condition at the sub-
strate would be M(h) = h3. In case of boundary conditions which allow a finite
slip (Navier condition), the mobility would be M(h) = h2 provided that film
heights are small compared to the slip length, see [16, 17, 20]. The mobility
function (1.3) is appropriate for a liquid film governed by the Darcy equation,
as in a porous medium (n = 2) or a Hele–Shaw cell (n = 1). From the applied
point of view, M(h) = h is thus a rather artificial choice. It is motivated both
by a technical and a conceptual consideration: The technical consideration is
that only for M(h) = h, the induced distance in the gradient flow structure
(see Appendix B) is known explicitly. The conceptual consideration is that
for other mobilities, the coarse-grained slope of the energy landscape (see Sec-
tion 2) overestimates the heuristically derived coarsening rates: The “collision
pathways” (see Subsection 1.3) in the energy landscape are shortcuts not taken
by the actual dynamics. Hence the straightforward application of our method
would yield suboptimal results for mobilities other than (1.3), even though we
believe that the coarsening rate for M(h) = h3 is the same as for M(h) = h.
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In view of (1.2) and (1.3), equation (1.1) turns into

∂th + ∇ ·
(
h∇
(
∆h − U ′(h)

))
= 0 in (0,∞) × Q. (1.4a)

As suitable boundary conditions, we take equilibrium and no-flux boundary
conditions:

ν · ∇h = ν · ∇
(

∂E

∂h

)
= 0 on (0,∞) × ∂Q. (1.4b)

These boundary conditions ensure that the total mass
∫

h dx is conserved and
that the total energy E(h) decreases over time:

d

dt

∫
h dx = 0,

d

dt
E = −

∫
h
∣∣∣∇
(

∂E

∂h

) ∣∣∣
2

dx ≤ 0.

A glance at the energy functional E, and U in particular, reveals that there
is a characteristic scale for x and h, both normalized to order one. We are
interested in very large systems, i.e.

Q = (0, Λ)n with Λ � 1.

We focus on initial data which are within the unstable range:

h ≈ const with U ′′(h) < 0

and whose height is of the order of the precursor layer, i.e.

h ∼ 1.

Our numerical simulations reveal the generic behavior of the evolution. After
an initial stage, a configuration of well-defined droplets connected by a precur-
sor layer of height h ≈ 1 = argmin U emerges. From then onwards, the large
droplets grow at the expense of the small ones via mass exchange through the
precursor layer. Eventually, the smaller droplets disappear. Figure 2 shows a
typical evolution of the film height. In a sufficiently large systems, this coars-
ening process seems statistically self-similar. It is driven by the reduction of
total energy E. Our main result gives a lower bound on the rate by which the
energy decreases.

Figure 2: Plots of numerically computed height of the liquid on a two-
dimensional substrate at two different times.

We shall see that E not only is a Lyapunov functional for (1.4), but that
(1.4) can in fact be interpreted as a gradient flow of (1.2), see Appendix B. For
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our analysis, we need a measure of the distance in the configuration space, i.e.
a way to express how far two droplet configurations h0, h1 are. It is natural to
take the distance which is given by the gradient flow structure. As motivated
in Appendix B, that distance is the Wasserstein distance W(h0, h1):

W(h0, h1)
2 := inf

{∫∫
|x − y|2dπ(x, y)

∣∣∣
∫

dπ(·, y) = h0,

∫
dπ(x, ·) = h1

}
.

(1.5)
The so-called transportation plan, π, is a measure on the product space Q×Q.
It is admissible if its projections to first and second coordinates are measures
with densities h0 and h1, respectively. The transportation cost is measured by
the squared Euclidean distance |x− y|2. For properties of W see Section 7.1 in
[32].

We are now in the position to formulate our result:

Theorem 1. Let U satisfy

U(h) ≥ 0 on (0,∞),
U(h) ≥ 1 on (2,∞).

(1.6)

Let h be a smooth solution of (1.4), which has the same total volume as a
constant layer of thickness 3:∫

h dx =

∫
h∗ dx, h∗ ≡ 3. (1.7)

Then for σ ∈ (1, 3n+2
n )

∫ T

0

(
Λ−nE(h(t))

)σ
dt &

∫ T

0
(t−

n
3n+2 )σ dt, (1.8)

provided T �
(
Λ−n

2 W(h∗, h(0))
) 3n+2

n+1
and Λ−nE(h(0)) � 1.

For the precise meaning of the notation “�” and “&” we refer to Remark 1 in
Section 2. The result states that the energy per volume cannot decrease faster

than t−
n

3n+2 . For further interpretation of the result in terms of the droplet
configuration we refer to Subsection 1.4. The assumption Λ−nE(h(0)) � 1 of
small energy densities encodes that h(0) energetically behaves as a configuration
of droplets connected by a precursor layer of height argmin U = 1, see Figure 2.
This means that we “start the clock” once the system has entered such a regime.

The assumption T �
(
Λ−n

2 W(h∗, h(0))
) 3n+2

n+1
, on the other hand, ensures that

the initial data h(0) are not too far from a constant film thickness. The values
1, 2 and 3 in (1.6) and (1.7) are set purely for convenience. In particular, given a
potential satisfying (1.6), any constant layer of thickness above 2 is admissible.
However, the constants in the estimates would depend on the thickness.

The framework for proving lower bounds on energy decay was introduced
by Kohn and one of the authors in [10] for the constant-mobility and the
degenerate-mobility Cahn-Hilliard equation. The basic idea is to use the gra-
dient flow structure of (1.4). A gradient flow structure is determined by the
energy functional E and a (Riemannian) geometry of the state space (the space
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of all droplet configurations h). The metric tensor encodes the relevant dissi-
pation mechanism, see Appendix B. Following [10], we use coarse information
on the geometry of the energy landscape to derive coarse information on the
gradient flow dynamics. The coarse information on geometry is how fast E can
decrease as a function of the distance to a reference configuration h∗, where the
function is given by a power law with the “geometric exponent” α, see Figure
3. On the other hand, the coarse information on dynamics limits how fast E
can decrease as a function of time, where the function is given by a power law
with the “dynamic exponent” γ. Proposition 1 in Section 2 relates the dynamic
exponent γ to the geometric exponent α.

h∗

E

d(h∗, h)−α

h ∈ (M, g)

Figure 3: The energy E(h) is bounded below by the distance between h and
the reference state h∗.

Let us point out that studying lower bounds on the coarsening rate is a more
complicated question. In fact, there are solutions which do not coarsen at all;
for example the unstable, periodic steady states. Hence a lower bound can only
hold in some generic sense — a statement for all trajectories cannot hold. We
do not address this issue.

Other applications of the method proposed in [10] can be found in the lit-
erature. In [3], coarsening in off-critical mixtures within the Mullins-Sekerka
evolution is studied. The authors of [4] and [5] study the coarsening behavior
in mean-field models of phase transitions and of a phase-field model that deals
with both temperature and phase fields. In [11] and [12], rigorous bounds on
coarsening rates are proven for an epitaxial growth model and for models of
multicomponent phase separation.

1.2. Outline. The following subsections provide background information: In
Subsection 1.3, we describe the underlying physical processes. Heuristics, which
further interpret the result in Theorem 1, are presented in Subsection 1.4. For-
mal asymptotics, e.g. done for the one-dimensional case in [6], are shortly re-
viewed in Subsection 1.5. In Subsection 1.6, we present our numerical exper-
iments which support that the power law bounds we obtain are optimal for
n = 1 and n = 2. The proof of Theorem 1 does not depend on the results
presented in these subsections.
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In Section 2, we review the abstract framework, which exploits the gradient
flow structure to obtain a bound on the energy, proposed in [10], and give
modified proofs of the main results. Our main contribution is the interpolation
inequality, which is essential for the framework. From the mathematical point
of view, it is an extension of the one established in [3]. We rigorously state
and prove the inequality in Section 3. Section 4 provides the proof of the
main result. Appendix A contains the analysis of stationary droplets, while
Appendix B explains the gradient flow structure of the thin-film equation. The
Wasserstein metric, as the induced distance, is introduced heuristically.

1.3. Physics. The statics is determined by capillarity (the surface tension be-
tween liquid and vapor) and the short range forces between the film and the
solid substrate. These intermolecular forces are the combination of a very short-
range repulsive (Born-type) force and a moderately short-range attractive (van
der Waals) force. Their competition stabilizes a precursor layer of well-defined
height, which covers the entire substrate. In particular, our choice of U with
argmin U = 1 yields a precursor layer of height ≈ 1. On a more mesoscopic
level, the liquid is partially wetting: It allows for equilibrium droplets of a
well-defined apparent (i. e. mesoscopic) contact angle. The apparent non-zero
contact angle arises from the competition between the short range forces and
capillarity.

Intermolecular forces of the form discussed above are relevant for a range of
liquids: polymers [1, 26, 27, 28, 29, 33], liquid crystal films and liquid metals
[8, 31], evaporating films [19], and others.

The dynamics is driven by the reduction of total energy (capillary and in-
termolecular). The reduction of energy is limited by viscous friction. This
dissipation mechanism is rather pronounced in the thin liquid film. This means
that inertial effects are negligible and the dynamics are determined by a quasi-
stationary balance of thermodynamic driving and viscous frictional forces. No-
tice that the presence of the precursor layer removes the singularity of the
moving contact line which arises from the no-slip boundary condition.

We think of the initial condition as a flat film of a height sufficiently large
with respect to the equilibrium height of the precursor layer. More precisely, we
think of a perturbation of this configuration; due to the intermolecular forces,
sufficiently long-wave length perturbations grow. In analogy with spinodal de-
composition of binary mixtures (as described by the Cahn–Hilliard equation)
this process is often referred to as spinodal dewetting. The liquid film almost
ruptures and holes (with film thickness of the precursor layer) surrounded by
a network of ridges form. This initial process may have various morphologies
[1, 30]. As time passes, the ridges break up and relax to droplets sitting on the
precursor layer. In this paper, we are not concerned with this initial stage of
droplet formation.

We are interested in the late-stage coarsening behavior. A configuration of
well-separated droplets connected by a precursor layer coarsens in time, see
Figure 2. We have in mind a scenario with clearly separated time scales: The
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time scale of the coarsening process is slow compared to the scale on which
the droplets relax to equilibrium shape. Hence the configuration is essentially
described by the radius and the position of the center of mass of the individual
droplets. These quantities evolve slowly. This is sometimes called quasi-static
evolution or quasi-stationary motion.

The coarsening process can be mediated by two mechanisms: collapse or
collision. Collapse relies on mass exchange between the droplets through the
precursor layer. In this scenario, the large droplets grow at the expense of the
small ones which eventually collapse. This is a particular instance of Ostwald
ripening. The basic difference with respect to the traditional Ostwald ripen-
ing for binary mixtures (as described by the late stages of the Cahn–Hilliard
equation with strongly off-critical initial data, see for instance [18] for the two-
dimensional case) lies in the mixed dimensionality: Ripening of droplets on an
n-dimensional substrate is (n+1)-dimensional with respect to mass and energy,
but n-dimensional when it comes to the kinetics.

We now address collision: As do the particles in traditional Ostwald ripening,
the droplets drift. The difference with respect to traditional Ostwald ripening
lies in the fact that droplets are much more mobile than particles (since the
mobility strongly depends on height). In [6], it has been argued that on a one-
dimensional substrate, this effect may lead to collision and thus to “accidental”
coarsening.

Unlike for the initial instability and subsequent dewetting, there are few
experimental studies of coarsening in liquid films. The only long-time results
we are aware of are studies of coarsening for certain polymers [14, 15].

1.4. Dynamical scaling: Heuristics. Numerical simulations suggest that
coarsening, although rather complex in detail, has a simple statistical behavior
(see Section 1.6). In particular, the time-dependence of averaged quantities, like
the average distance L between droplets, in sufficiently large systems appears
to be a power law:

L ∼ tβ.

We are interested in understanding the mechanisms which determine the char-
acteristic exponent β. In order to discern what information about β is contained
in the energy bound (1.8), we first analyze and relate the length scales present in
the problem. We consider configurations of well-separated, equilibrium-shaped
droplets with fixed average height greater than the height of the precursor layer.
The typical averaged length scales are the typical distance L, the height H and
radius R of a droplet. Figure 4 sketches such a typical droplet configuration we
have in mind.

From this point of view, we infer the following scaling relations:

• On a mesoscopic level, the potential U acts as the characteristic function
of {h > 1}. Thus the individual droplets are governed by the mesoscopic
energy

E(h) =

∫
1
2 |∇h|2 dx + vol ({h > 1}),
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1

L

H

x

R

h

Figure 4: Droplet configuration on one-dimensional substrate. The typical
length scales H, R and L are not independent, cf. (1.10) & (1.11).

which enforces an apparent equilibrium contact angle of

1
2 |∇h|2 = 1 on ∂{h > 1}, (1.9)

see Appendix A. Notice that (1.9) implies that the average height H
and the average radius R of the droplets scale the same:

H ∼ R. (1.10)

• We infer from mass conservation, i.e.

Λ−n

∫
h dx ∼ 1,

and

Λ−n

∫
h dx ∼

(
number density

of droplets

)
×
(

volume of
individual droplet

)

∼ L−n × HRn

(1.10)∼ L−n × Rn+1

that R and L are related by

L ∼ R
n+1

n . (1.11)

Now let us explain why a lower bound on the energy heuristically yields an
upper bound on the average droplet distance L. Indeed, the energy density (i.e.
the energy per system volume) is related to L via

Λ−nE ∼
(

number density
of droplets

)
×
(

energy of
individual droplet

)

(1.10)∼ L−n × Rn

(1.11)∼ L− n
n+1 . (1.12)

Thus a lower bound on E heuristically yields an upper bound on L. The energy
bound (that we show in a time-averaged form in Theorem 1)

Λ−nE & t−
n

3n+2
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in view of (1.12), heuristically amounts to the upper bound

β ≤ n + 1

3n + 2
=

{
2
5 for n = 1
3
8 for n = 2

. (1.13)

Based on numerical and heuristic predictions (which are solid for n = 1 and
somewhat less so for n = 2) this bound is optimal (up to logarithmic correction
in two dimensions). In the non-physical case of n ≥ 3, we do not expect the
bound to be optimal.

1.5. Formal asymptotics. The coarsening process on one-dimensional sub-
strates was analytically studied by Glasner and Witelski [6, 7] for physically
relevant mobility h3. Based on the quasi-static assumption, they derive a system
of coupled ODE-s for droplet pressures {Pi} (which are in one-to-one correspon-
dence to their radius) and droplet positions {Xi}. Using the scale separation
H ∼ R � L they argue heuristically that

L ∼ t
2
5 .

Their numerical experiments confirm this scaling. Furthermore, Glasner and
Witelski show that in certain regimes, both collapse and collisions of droplets
are possible mechanisms of coarsening.

We verified that their heuristics extends to our mobility M(h) = h and yields
the same scaling. It is a particularity of the mobility M(h) = h3 that both
processes, collapse and collision, yield the same exponent (modulo a logarithm).
For M(h) = h however, collapse is eventually the faster process.

A back-of-the-envelope argument for two-dimensional substrates based on
the collapse scenario suggests that

L ∼ t
3
8

(modulo a logarithm specific to the fundamental solution of Laplace equation
in 2-d, see [18]). The importance of collisions, as it depends on M(h), is not yet
well-understood in our opinion, despite the investigation of droplet mobility in
[25].

Our analysis does not rely on a derivation of a reduced model based on a
quasi-static assumption. Likewise, it does not presuppose that coarsening is
simple on a statistical level.

1.6. Numerics. To gain some understanding of the coarsening dynamics we
carried out several numerical experiments. Let us first address the discretiza-
tion of the thin-film equation (1.4). To solve this equation (1.4) in one and
two dimensions we use a modification of the discretization of a Cahn–Hilliard-
type equation proposed in [21]. This discretization approach is guided by two
features of the model (1.4):

• The total mass
∫

h is preserved due to the continuity equation

∂th + ∇ · J = 0, (1.14)

where J = −h∇
(

∂E
∂h

)
.
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• The energy E is a Lyapunov functional:

d

dt
E = −

∫
1

h
|J |2 ≤ 0.

We use a semi-implicit time discretization (explicit in the mobility). Since
the time-discrete equation is non-linear we apply a single Newton step:

hk+1 − hk − τ∇ ·
[
hk∇

(
∂2E

∂h2
(hk)(hk+1 − hk) +

∂E

∂h
(hk)

)]
= 0.

By introducing the flux J :

hk+1 = hk − τ∇ · Jk+1,

we obtain a symmetric problem
[

1

hk
id − τ∇

(
∂2E

∂h2
(hk)

)
∇·
]

Jk+1 = − 1

hk
∇
(

∂E

∂h
(hk)

)
.

We use a finite difference scheme for the fourth-order problem and solve the
linear system by conjugate gradient method, preconditioned by the constant

coefficient operator id − τ∇
(

∂2E
∂h2 (1)

)
∇·, which we invert by FFT.

Now we turn to the numerical experiments. We use the potential

U(h) = 2h−3 − 3h−2 + 1,

which was used in [6, 19], and take as initial data

h(t = 0) = h∗ + perturbation,

where we choose h∗ ≡ 2, which is in the concave part of U , but still of the order
of the precursor layer thickness. System sizes are chosen Λ = 10000 for n = 1
and Λ = 1000 for n = 2.

Figure 6 shows a logarithmic plot of the number of droplets vs. time both
in one and two dimension. Furthermore, we measure the energy density of the
configurations, see Figure 5. Note that the data is averaged over ten runs.

Our numerical experiments reveal the scaling exponent β = 2
5 for n = 1 (see

Figure 6 left), since the number density Λ−nN scales like L−n. This exponent
is equal to the upper bound we obtained in (1.13). Experiments for n = 2 (see
Figure 6 right) suggest a faster decrease of the number density than for n = 1,
as predicted. The coarsening exponent is in agreement with the bound (1.13),
but appears to be slightly different than the bound itself. Let us comment on
this apparent discrepancy: The heuristics in Subsection 1.4 are based on the
assumption that

Λ−nE
(1.12)∼ L− n

n+1

∼
(
Λ−nN

) 1
n+1 .

We therefore monitor the system averaged quantity

Λ−nE
(
Λ−nN

)− 1
n+1
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over time. For an infinite system this number should reach an asymptotic
value if coarsening is statistically self-similar. Figure 7 shows that for n = 2
the numerical simulations have barely reached an asymptotic state. Hence for
n = 2 a numerical confirmation of the optimality of our result would require
much larger time horizons and thus much larger system sizes.
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Figure 5: Energy density of droplet configuration for n = 1 (left) and for n = 2
(right) vs. time.
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Figure 6: Number of droplets for n = 1 (left) and for n = 2 (right) vs. time.

2. Abstract framework: From geometry to dynamics

In this section we show how coarse information on the geometry of the energy
landscape (see Figure 3) leads to coarse information on the gradient flow dynam-
ics. Proposition 1 relates the dynamic exponent γ to the geometric exponent
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Figure 7: The system averaged quantity Λ−nE (Λ−nN)
− 1

n+1 for n = 1 (left)
and for n = 2 (right) vs. time.

α:

γ =
α

α + 2
.

This insight is essentially from [10]. We give a somewhat different presentation
here and include the modified proofs for the convenience of the reader. For the
clarity of presentation, we adopt an abstract framework: Let M be a manifold
endowed with a metric tensor g and a function E. We denote by d the induced
distance on the Riemannian manifold (M, g).

Proposition 1 ([10]). Let h∗ ∈ M. Let h : R+ → M be a solution of

∂th = −gradE(h). (2.1)

and h(0) = h0.
Assume that for some α > 0 the interpolation inequality

E(h)d(h, h∗)α ≥ 1 for all h ∈ M with E(h) ≤ 1 (2.2)

holds. Then for σ ∈ (1, 1 + 2
α)

∫ T

0
E(h(t))σ dt &

∫ T

0
(t−

α
α+2 )σ dt (2.3)

provided T � d(h0, h
∗)α+2 and E(h(0)) ≤ 1.

Remark 1. The notation & and � stands for:

For all σ ∈ (1, 1 + 2
α) there exists a constant C = C(α, σ) such that ∀δ > 0

∃Cδ = C(α, σ, δ):
∫ T

0
E(h(t))σ dt ≥ (1 − δ)C

∫ T

0
(t−

α
α+2 )σ dt (2.4)

provided T ≥ Cδd(h0, h
∗)α+2.

Remark 2. It is not true that (2.1) and (2.2) imply the pointwise estimate

E(t) & t−
α

α+2 . (2.5)
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Indeed, let M = R+, h∗ = 0 and h(0) = 1. For given b � 1 let Eb be
equal to h−α outside the interval (1, b) and let it be linear on [1, b] so that Eb

is continuous:

Eb(h) :=

{
1 + b−α−1

b−1 (h − 1) on [1, b],

h−α otherwise.

Then

∂th = −dEb

dh
(h(t)) = −b−α − 1

b − 1

as long as h(t) ≤ b. Hence

h(t) = 1 − b−α − 1

b − 1
t

and thus h(tb) = b for tb := (b−1)2

1−b−α . Therefore

Eb(h(tb))

t
− α

α+2

b

=
(b − 1)

2α
α+2

bα(1 − b−α)
α

α+2

≤ 2b−
α2

α+2 → 0

as b → ∞.

Remark 3. The range for 1 < σ < 1 + 2
α is (almost) optimal.

The example above can be used to show that for 0 < σ < 1 the statement
cannot hold. An elementary (but lengthy) calculation shows that for T =
b2+α−η, with 0 < η < α(1 − σ)

∫ T

0
(Eb(h(t)))σdt ∼ b2+α(1−σ)−η,

∫ T

0
t−

ασ
α+2 dt ∼ b2+α(1−σ)−η+ αση

α+2 .

Thus inequality (2.3) cannot hold when 0 < σ < 1. The case σ = 1 remains
open. The proof we present for σ > 1 does not extend to σ = 1 since the
constant C in (2.4) vanishes as σ approaches 1; see (2.12).

For σ = 1+ 2
α the statement would hold if the lower bound 0 in the integrals

was replaced by 1. This follows from the continuity of the functionals with
respect to σ and from the fact that constant C is bounded away from 0 as σ
approaches 1 + 2

α ; see (2.12). The range σ > 1 + 2
α is not of interest, since

the integral from 1 to infinity of the right hand side is finite, and hence the
inequality (2.3) would contain no information on the decay rate of E.

We now consider an arbitrary but fixed trajectory h(t) of (2.1). The following
lemma restricts the rate at which the distance d(h, h∗) between h(t) and any
fixed h∗ ∈ M can change. We set for convenience

E(t) := E(h(t))

D(t) := d(h(t), h∗).
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Lemma 1. Let h be a solution of (2.1) and h∗ ∈ M.
Then ∣∣ d

dtD(t)
∣∣2 ≤ − d

dtE(t). (2.6)

Proof of Lemma 1. The triangle inequality and the definition of d imply for any
δ ∈ R
∣∣∣∣
1

δ
(D(t + δ) − D(t))

∣∣∣∣ ≤ 1

δ
d(h(t + δ), h(t))

≤ 1

δ

∫ 1

0

√
gh(t+sδ)(∂th(t + sδ)δ, ∂th(t + sδ)δ) ds

=

∫ 1

0

√
gh(t+sδ)(∂th(t + sδ), ∂th(t + sδ)) ds.

Hence we obtain in the limit δ → 0∣∣∣∣
d

dt
D(t)

∣∣∣∣ ≤
√

gh(t)(∂th(t), ∂th(t)).

Furthermore

d
dtE(t) = gh(t)(gradE(t), ∂th(t))

(2.1)
= −gh(t)(∂th(t), ∂th(t)),

so that we conclude ∣∣ d
dtD(t)

∣∣2 ≤ − d
dtE(t).

�

Proof of Proposition 1. Since E is a monotone function of time, D(t) can be
viewed as a function of E(t). To distinguish the argument of this function from
the actual value of the energy we write D = D(e). Hence (2.6) turns into

1 ≥
(

dD

de

)2

|Ė|. (2.7)

Multiplying (2.7) by E(t)σ and integrating in t yield
∫ T

0
E(t)σ dt ≥

∫ T

0
E(t)σ

(
dD

de

)2

|Ė| dt =

∫ E0

ET

eσ

(
dD

de

)2

de, (2.8)

where we have set E0 = E(0) and ET = E(T ).
From the Cauchy–Schwarz inequality we obtain

(∫ E0

ET

eσ

(
dD

de

)2

de

∫ E0

ET

e−σ de

) 1
2

≥
∣∣∣∣
∫ E0

ET

dD

de
de

∣∣∣∣ = |D0 − DT |,

where we define D0 = D(0) and DT = D(T ). Substituting in (2.8) and inte-

grating
∫ E0

ET
e−σ de = (σ − 1)−1

(
E1−σ

T − E1−σ
0

)
implies

∫ T

0
E(t)σ dt ≥ (σ − 1)

(
E1−σ

T − E1−σ
0

)−1
(D0 − DT )2

≥ (σ − 1)Eσ−1
T (D0 − DT )2. (2.9)
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Here we have used the assumption σ > 1. We rewrite the right hand side of
(2.9) as

(σ − 1)E
σ−1− 2

α

T (ET Dα
T )

2
α (1 − D0

DT
)2

and apply the interpolation inequality (2.2), so that
∫ T

0
E(t)σ dt ≥ (σ − 1)E

σ−1− 2
α

T (1 − D0
DT

)2. (2.10)

Set for abbreviation

f(T ) :=

∫ T

0
E(t)σ dt.

Then (2.10) turns into

f(T ) ≥ (σ − 1)f ′(T )(σ−1− 2
α

)/σ(1 − D0
DT

)2

= (σ − 1)f ′(T )
σα−α−2

σα (1 − D0
DT

)2,

or equivalently,

f(T )
σα

α+2−σα f ′(T ) ≥
(
(σ − 1)(1 − D0

DT
)2
) σα

α+2−σα
,

provided σ < 1 + 2
α . Note that

f(T )
σα

α+2−σα f ′(T ) =
d

dt

(
f(T )

σα
α+2−σα

+1

σα
α+2−σα + 1

)
=

d

dt

(
f(T )

α+2
α+2−σα

α+2
α+2−σα

)
.

Then we get by integration in time

f(T ) ≥ (σ − 1)
σα

α+2

(
α+2

α+2−σα

)1−σ α
α+2

(1 − D0
DT

)2
σα

α+2 T 1−σ α
α+2 . (2.11)

When T is such that D0
DT

≤ 1 − (1 − δ)
α+2
2σα =: ε(δ), equation (2.11) yields

f(T ) ≥ C(α, σ)(1 − δ) T 1−σ α
α+2

with

C(α, σ) := (σ − 1)
σα

α+2

(
α+2

α+2−σα

)1−σ α
α+2

. (2.12)

For the case D0
DT

> ε(δ) the interpolation inequality yields

Eσ
T > ε(δ)σαD−σα

0 .

Since the energy decreases in time this inequality holds for all t ≤ T , so that
∫ T

0
E(t)σ dt ≥ ε(δ)σαD−σα

0 T = ε(δ)σαD−σα
0 T σ α

α+2 T 1−σ α
α+2 .

Hence

f(T ) ≥ (1 − δ)C(α, σ) T 1−σ α
α+2

provided T ≥ C(α, σ)
α+2
σα ε(δ)−α−2 Dα+2

0 , which proves (2.4). �

Remark 4. The coefficient C is optimal for σ = 1 + 1
α .
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To see that the coefficient is optimal for σ = 1+ 1
α , consider in 1-d the energy

E(h) := h−α. Obviously this energy obeys the interpolation inequality (2.2) for
h∗ = 0. The gradient flow of E with h0 = 0 is given by

h(t) = (α(α + 2)t)
1

α+2 .

Hence

E(h(t)) = h(t)−α = (α(α + 2)t)−
α

α+2

and furthermore
∫ T

0
E(t)σ dt = (α(α + 2))−σ α

α+2 α+2
α+2−σα T 1−σ α

α+2 .

The coefficient coincides with the coefficient in (2.11) provided σ = 1 + 1
α .

1 2 3 4
0

1

2

3

4

5

α

σ

σ
opt

Figure 8: Permitted values of σ (grey region) as a function of α. The dotted
line σopt := 1 + 1

α indicates the values of σ for which the coefficient in (2.3) is
optimal.

3. An interpolation inequality

From Section 2 and Appendix B we learn that relating the energy (1.2)
and the induced distance (1.5) by an interpolation inequality of the form (1.12)
provides a main ingredient for the proof of a lower bound on the energy. In view
of Proposition 1, the geometric exponent α determines the dynamic exponent
γ. As mentioned before, we fix h∗ ≡ 3 to focus on ideas. Proposition 2 shows
that the geometric exponent is α = n

n+1 .

Proposition 2. There exists a constant C > 0 only depending on n such that

Λ−nE(h)
(
Λ−n

2 W(h, 3)
) n

n+1 ≥ 1
C provided E(h) ≤ 1

C , Λ ≥ C.

Before giving the rigorous proof, let us motivate the result. The exponent
α = n

n+1 can be heuristically inferred from the following argument:
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• From (1.12) we have

Λ−n E ∼ L− n
n+1 .

• From the definition (1.5) of the Wasserstein distance W we obtain the
scaling

Λ−nW(h, 3)2 ∼ Λ−n

∫∫
|x − y|2 dπ(x, y)

∼ Λ−n × L2

∫∫
dπ(x, y)

∼ Λ−n × L2 ×
∫

3 dx

∼ L2,

(see Figure 9), that is,

Λ−n
2 W(h, 3) ∼ L. (3.1)

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

0

1

h

L

RnH

x

h∗ = 3

Figure 9: Scaling of W(h, 3).

These two scaling relations yield

Λ−nE
(
Λ−n

2 W(h, 3)
) n

n+1 ∼ L− n
n+1 × L

n
n+1 ∼ 1.

We turn to the rigorous proof of Proposition 2. Set

R := (Λ−nE(h))−1 and h̃ := (h − 2)+. (3.2)

Note that the definition of R is motivated by the scaling (1.11) and (1.12). The
proof is done in several lemmas:

• Lemma 2 shows that the average droplet height H scales like the average
droplet radius in accordance with (1.10). The radius is expressed in
terms of the energy, cf. (3.2).

• Lemma 3, applied to h̃, shows that most of the droplet mass lies in a
“small” set in the sense that the volume of the thickened set is con-
trolled.
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• Lemmas 2 and 3 imply Lemma 4, which shows that the typical droplet

distance L scales like R
n+1

n , as suggested by the heuristic arguments in
(1.11).

• Finally, Lemma 5 reveals that for sufficiently distant droplets the vol-
ume-averaged Wasserstein distance between h and the average height
scales like L in accordance with (3.1).

Lemma 2.

(1) The typical droplet height H is at least of order R in the sense that
∫

{eh>H}
h̃ dx ≥ 1

2

∫
h̃ dx for H = R

2 . (3.3)

(2) The typical droplet radius is at least of the order R in the sense that

R

∫
|∇h̃| dx ≤

∫
h̃ dx. (3.4)

Proof. We first notice that h ≤ h̃ + 2 implies
∫

h dx ≤
∫

h̃ dx + 2
3

∫
3 dx

(1.7)
=

∫
h̃ dx + 2

3

∫
h dx,

so that ∫
h̃ dx ≥ 1

3

∫
h dx. (3.5)

Next we notice that

Λ−nE(h)
(1.7)
= 3R

h dx

∫
1
2 |∇h|2 + U(h) dx

(1.6)

≥ 3R
h dx

vol ({h > 2}),

so that by (3.2)

vol ({h > 2}) ≤ 1
3R

∫
h dx. (3.6)

This implies
∫

{eh≤H}
h̃ dx =

∫

{2<h≤H+2}
(h − 2) dx

≤ H vol ({h > 2})
(3.6)

≤ H
3R

∫
h dx

(3.5)

≤ H
R

∫
h̃ dx.

Hence we obtain (3.3):
∫

{eh>H}
h̃ dx =

∫
h̃ dx −

∫

{eh≤H}
h̃ dx ≥

(
1 − H

R

) ∫
h̃ dx.

This motivates the choice of H.
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Now we turn to (3.4):
∫

|∇h̃| dx =

∫

{h>2}
|∇h| dx

(1.6)

≤
∫

|∇h|
√
U(h) dx

≤
∫

1
2 |∇h|2 + U(h) dx

(1.7)
=

R
h dx

3Λn

∫
1
2 |∇h|2 + U(h) dx

(3.5)

≤ Λ−nE(h)

∫
h̃ dx.

According to (3.2) this turns into

R

∫
|∇h̃| dx ≤

∫
h̃ dx.

�

The next lemma is strongly inspired by [3, Lemma 2.1].

Lemma 3. Let R ≤ Λ. Assume g : (0, Λ)n → [0,∞)

• has height H in the sense that
∫

{g≥H}
g dx ≥ 1

2

∫
g dx (3.7)

• and radius R in the sense that

R

∫
|∇g| dx ≤

∫
g dx. (3.8)

Then there exists a set AR ⊂ {g ≥ H}
(1) which contains substantial mass in the sense that

∫

AR

g dx ≥ 1
4

∫
g dx

(2) and is small in the sense that the volume of the thickened sets

Ad
R := {x ∈ (0, Λ)n | dist(x, AR) < d}

is controlled by

vol (Ad
R) ≤ 3n2n+1

(
1 + 4 d

R

)n 1
H

∫
g dx for all d > 0.

Proof. Extend g : [0, Λ]n → R to g : R
n → R as follows:

• [0, Λ]n  [−Λ, Λ]n by even reflection and
• [−Λ, Λ]n  R

n by periodic continuation.

Set for convenience A := {g ≥ H}. Define

AR :=

{
x ∈ A

∣∣∣∣
∫

B(x, R
8

)
g dy ≥ H

2 vol (B(x,
R

8
))

}
. (3.9)
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With the help of the convolution of g

gR(x) :=
1

vol (B(x, R
8 ))

∫

B(x, R
8

)
g dy,

AR can be written as AR = {x ∈ A | gR(x) ≥ H
2 }.

We use the standard estimate

∫

(−Λ,Λ)n

|g − gR| dx ≤ R
8

∫

(−Λ,Λ)n

|∇g| dx
(3.8)

≤ 1
8

∫

(−Λ,Λ)n

g dx.

Since the integrands are even functions this yields

∫
|g − gR| dx ≤ 1

8

∫
g dx. (3.10)

We now define A := A ∩ (0, Λ)n and AR := AR ∩ (0, Λ)n. Then we have

g ≥ H ≥ 2gR on A − AR

and thus

g ≤ 2(g − gR) on A − AR.

Therefore

∫

A−AR

g dx ≤ 2

∫

A−AR

(g − gR) dx ≤ 2

∫
|g − gR| dx

(3.10)

≤ 1
4

∫
g dx. (3.11)

Notice that by assumption (3.7),
∫
A g dx ≥ 1

2

∫
g dx. Hence

∫
g dx ≤ 2

∫

A
g dx

≤ 2

(∫

AR

g dx +

∫

A−AR

g dx

)

(3.11)

≤ 2

∫

AR

g dx + 1
2

∫
g dx,

which yields the first assertion.

Let J ⊂ AR be maximal with the property

{
B(x, R

8 )
}

x∈J
are disjoint. (3.12)

Then necessarily

AR ⊂
⋃

x∈J

B(x, R
4 ). (3.13)
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Thus

#J vol (B(0, R
8 )) =

∑

x∈J

vol (B(x, R
8 ))

(3.9)

≤ 2
H

∑

x∈J

∫

B(x, R
8

)
g dx

(3.12)

≤ 2
H

∫

(−Λ,2Λ)n

g dx

= 3n 2
H

∫
g dx. (3.14)

Here we used the assumption R ≤ Λ.
Now (3.13) implies Ad

R ⊂ ⋃x∈J B(x, R
4 + d), so that

vol (Ad
R) ≤ #J vol (B(0, R

4 + d))

=
vol (B(0, R

4 + d))

vol (B(0, R
8 ))

#J vol (B(0, R
8 ))

(3.14)

≤ 3n( 8
R(R

4 + d))n 2
H

∫
g dx

= 3n2n+1(1 + 4 d
R)n 1

H

∫
g dx,

which proves the second assertion. �

Lemma 4. Let Λ ≥ R ≥ 3n28n. Then the typical droplet distance L is at least

of the order R
n+1

n in the following sense: There exists a set AR ⊂ R
n such that

(1)
∫

AR

h dx ≥ 1
12

∫
h dx, (3.15)

(2)

3 vol (AL
R) ≤ 3

4

∫

AR

h dx for L = 3−12−10R
n+1

n . (3.16)

Proof. According to Lemma 3 there exists a set AR such that

∫

AR

h̃ dx ≥ 1
4

∫
h̃ dx, (3.17)

which by (3.5) turns into (3.15), and

vol (AL
R) ≤ 3n2n+1

(
1 + 4L

R

)n 1
H

∫
h̃ dx. (3.18)



22 FELIX OTTO, TOBIAS RUMP AND DEJAN SLEPČEV

By the definition of H and R in Lemma 2, (3.18) gives rise to

vol (AL
R) ≤ 3n2n+2

(
1 + 4L

R

)n 1
R

∫
h̃ dx

(3.17)

≤ 3n2n+4
(
1 + 4L

R

)n 1
R

∫

AR

h̃ dx

≤ 3n2n+4
(
1 + 4L

R

)n 1
R

∫

AR

h dx.

Now L in (3.16) is defined such that

3n2n+4
(
1 + 4L

R

)n 1
R ≤ 1

4

provided R ≥ 3n28n. Hence the inequality turns into

3 vol (AL
R) ≤ 3

4

∫

AR

h dx.

�

Lemma 5. Let h : Q → [0,∞) with h∗ := Λ−n
∫

h(x) dx and A ⊂ R
n and

L > 0 be given with

h∗ vol ({dist(·, A) < L}) ≤ 3
4

∫

A
h(x) dx. (3.19)

Then

W(h, h∗)2 ≥ 1
4L2

∫

A
h(x) dx.

Proof. Set for abbreviation AL := {dist(., A) < L}. Let π be any admissible
transportation plan in the definition of W. We conclude

∫

Rn×Rn

|x − y|2 dπ(x, y) ≥
∫

A×(Rn−AL)
|x − y|2 dπ(x, y)

≥ L2π(A × (Rn − AL))

≥ L2(π(A × R
n) − π(Rn × AL))

= L2

(∫

A
h dx −

∫

AL

h∗ dx

)

= L2

(∫

A
h dx − h∗ vol (AL)

)

(3.19)

≥ 1
4L2

∫

A
h dx.

�

Proof of Proposition 2. According to Lemma 5 (applied to h∗ = 3 and A = AR)
it follows from Lemma 4 for the L defined in (3.16)

W(h, 3)2 ≥ 1
4L2

∫

AR

h dx
(3.15)

≥ 1
48L2

∫
h dx.
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In view of (1.7), this turns into

Λ−nW(h, 3)2 ≥ 2−4L2.

In view of the definition (3.2) of R and the definition (3.16) of L this yields

Λ−nE(h)
(
Λ−n

2 W(h, 3)
) n

n+1 ≥ R−1(2−4L2)
n

2(n+1)

= R−1(3−22−24R2n+1
n )

n
2(n+1)

= 3−
n

n+1 2−
12n
n+1 .

�

4. Proof of Theorem 1

We cannot apply Proposition 1 right away since the argument for the (infi-
nite-dimensional) gradient flow structure introduced in Appendix B is formal.
An inspection of the proof of Proposition 1 reveals that it is only necessary to
find a substitute for Lemma 1. In fact, one can directly prove the equivalent of
Lemma 1 for the Wasserstein metric as defined in (1.5) and a smooth solution
of (1.4).

Lemma 6. Let h be a smooth solution of (1.4). Then
∣∣∣∣
d

dt
W(3, h(t))

∣∣∣∣
2

≤
(
− d

dt
E(t)

)
. (4.1)

Proof. We follow [22].
Note that

d

dt
E(t) = −

∫
h

∣∣∣∣∇
∂E

∂h

∣∣∣∣
2

dx.

It thus is sufficient to establish the inequality
∣∣∣∣
d

dt
W(3, h(t))

∣∣∣∣
2

≤
∫

h|u|2 dx (4.2)

for the transport equation

∂th + ∇ · (hu) = 0. (4.3)

Due to the triangle inequality we only need to show

lim
δ→0

1

δ
W(ht, ht+δ) ≤

√∫
ht|ut|2 dx. (4.4)

Here, that the indices t and t + δ denote the time argument of h and u.
First we show that ht+δ is the push-forward of ht under the flow map Φδ

generated by ut+δ, i.e.

∂δΦδ = ut+δ ◦ Φδ, Φ0 = id. (4.5)

Note that by the push-forward one understands
∫

ζ ht+δ dx =

∫
(ζ ◦ Φδ) ht dx for all ζ ∈ C0

0 (Rn). (4.6)
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For given ζ define ζδ := ζ ◦ Φ−1
δ ; ζδ satisfies

∂δζδ + ut+δ · ∇ζδ = 0.

Furthermore, recall that ht+δ solves the transport equation

∂δht+δ + ∇ · (ht+δut+δ) = 0.

Hence we obtain
d

dδ

∫
ζδ ht+δ dδ =

∫
(∂δζδ ht+δ + ∂δht+δ ζδ) dx = 0,

which proves (4.6).
Next we define a product measure πδ by

dπδ(x, y) = dht(x) δ[y = Φδ(x)].

According to (4.6), πδ defines an admissible transportation plan in the sense of
the definition of W. Thus we get by definition

1

δ
W(ht, ht+δ) ≤

√∫
1

δ2
|x − Φδ(x)|2ht(x) dx.

We obtain from the definition (4.5) of the flow map that 1
δ2 |x−Φδ(x)|2 converges

pointwise to |ut|2. The dominated convergence theorem yields

lim
δ→0

∫
1

δ2
|x − Φδ(x)|2ht(x) dx =

∫
ht|ut|2 dx,

which establishes (4.4). �

Appendix A. Stationary droplet shape

In this section, we analyze the shape of a stationary droplet. For this purpose
we consider a single droplet with prescribed mass V > 0 on top of the precursor
layer of equilibrium thickness h ≡ 1 on an n-dimensional substrate. We are
interested in the stationary droplet shape on a mesoscopic scale. Hence we
focus on the mesoscopic energy

E =

∫
1
2 |∇h|2 dx + vol ({h > 1}) (A.1)

(see Section 1.4) for all h which fulfill the mass constraint
∫

(h − 1)+ dx = V. (A.2)

Since the precursor layer of height h ≡ 1 has no contribution to the energy E,
we shift h by −1 and consider the problem

Minimize

∫
1
2 |∇h|2 dx + vol ({h > 0}) subject to

∫
h dx = V. (A.3)

For convenience, we keep the notation h for the shifted film height.

Proposition 3. Let V ≥ 0. Then there exists a constant H > 0 depending on
V such that

h̄(x) = − 1
2H |x|2 + H on B(0,

√
2H), (A.4)

is the unique (up to translations) minimizer of problem (A.3).
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Proof. We proceed in three steps:

(1) Any minimizer h̄ of (A.3) is radially symmetric and monotonically de-
creasing.

(2) Any minimizer h̄ satisfies

−∆h̄ = const in {h̄ > 0}. (A.5)

(3) A unique (up to translations) minimizer h̄ exists and satisfies

1
2 |∇h̄|2 = 1 on ∂{h̄ > 0}. (A.6)

Argument for (1): The proof is based on the symmetric decreasing rearrange-
ment h# of the function h. It is well known ([13, Lemma 7.17]) that

∫
|∇h#|2 dx ≤

∫
|∇h|2 dx

with equality if and only if h is radially symmetric and monotone decreasing.
Furthermore, the second contribution to the energy is conserved:

vol ({h# > 0}) = vol ({h > 0}).

Argument for (2): The first variation of E yields
∫

(−∆h) δh dx = 0

for all variation δh with∫
δh dx = 0 and supp δh ⊂ {h > 0}.

Hence we obtain (A.5).

Argument for (3): From (1) and (2), we deduce that any minimizer centered
at the origin must be of the form

h(x) = −A|x|2 + H on B(0,
√

H/A). (A.7)

Note that the family of candidates is invariant under the volume-conserving
homothetic variation:

hλ(x) = λ−nh
(x

λ

)
.

Then the first variation of E in λ at λ = 1 yields that at a critical point h̄

(n + 2)

∫
1
2 |∇h̄|2 dx = n vol ({h̄ > 0}). (A.8)

Note that the critical point is in fact a minimum since the function

λ 7→ E(hλ) = λ−(n+2)

∫
1
2 |∇h̄|2 dx + λn vol ({h̄ > 0}).

is convex. We compute
∫

{h̄>0}

1
2 |∇h̄|2 dx = 2

n+2ωnA2(
√

H/A)n+2

and

vol ({h̄ > 0}) = 1
nωn(

√
H/A)n,



26 FELIX OTTO, TOBIAS RUMP AND DEJAN SLEPČEV

where ωn denotes the (n − 1)-dimensional measure of S
n−1. Thus we obtain

from (A.8) that for the minimizer

2AH = 1. (A.9)

Hence at ∂{h̄ > 0} where |x|2 = H/A,

|∇h̄|2 = 2

which proves (3). Furthermore, we obtain from (A.7) and (A.9) that

h̄(x) = − 1
2H |x|2 + H on B(0,

√
2H).

�

Remark 5. Proposition 3 reveals the scaling (1.10)

H ∼ R,

since the radius of the droplet is given by
√

2H.

Appendix B. The gradient flow structure

In this section, we specify in which sense the evolution (1.4) is a gradient
flow of E defined in (1.2). This heuristic section serves purely as a motivation
which guides our analysis. The rigorous result is independent of this section.

The mathematical structure required for a gradient flow

∂th = −gradE(h). (B.1)

is determined by a smooth function M 3 h 7→ E(h) on a Riemannian manifold
(M, g). A trajectory [0,∞) 3 t 7→ h(t) ∈ M of (B.1) is characterized by the
fact that for any tangent vector field [0,∞) 3 t 7→ δh(t) ∈ Th(t)M, one has

gh(t) (∂th(t), δh(t)) +
〈
diffEh(t), δh(t)

〉
= 0 for all t > 0. (B.2)

In our case M corresponds to the space of all possible film heights which
take the overall mass constraint into account:

M =

{
h ≥ 0

∣∣∣
∫

h(x) dx =

∫
3 dx

}
.

The metric tensor encodes the limiting dissipation mechanism by (viscous) fric-
tion. Given the continuity equation ∂th+∇· (h u) = 0 for the film height h ≥ 0
by a (vertically averaged horizontal) velocity field u ∈ R

n, the rate of energy
dissipation by friction is given by

∫
h |u|2 dx in the case of Darcy-type friction.

(It would be
∫

1
h |u|2 dx for Stokes friction with no-slip boundary conditions.)

The (quadratic part of) the metric tensor is given by

gh(δh, δh) = inf
u

{∫
h|u|2 dx

∣∣∣ δh + ∇ · (hu) = 0

}
. (B.3)

For the sake of simplicity, we do not state the boundary conditions like ν ·u = 0
on ∂Q. The squared size, gh(δh, δh), of an infinitesimal perturbation δh is the
minimal rate of energy dissipation by friction which is necessary to generate δh.
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Writing down the Euler–Lagrange equation for (B.3) yields the following
representation in terms of the velocity potential ϕ:

gh(δh, δh) =

∫
h|∇ϕ|2 dx where δh + ∇ · (h∇ϕ) = 0.

By polarization, this yields

gh(δh1, δh2) =

∫
h∇ϕ1 · ∇ϕ2 dx, (B.4)

where the functions ϕi are defined by

δhi + ∇ · (h∇ϕi) = 0.

It is easy to check that indeed (1.4) is the gradient flow of (1.2) in the sense of
(B.2) with respect to the metric tensor (B.4) defined on M.

Any Riemannian manifold (M, g) is endowed with a natural distance function
d between two points h0 and h1 by means of minimizing the action of curves
from h0 to h1. In view of the definition of the metric tensor (B.3), d turns into

d(h0, h1)
2 = inf

(h,u)

{∫ 1

0

∫
h|u|2 dxds

∣∣∣ ∂sh + ∇ · (hu) = 0,

{
h(0, ·) = h0

h(1, ·) = h1

}}
.

It is shown in [23] that d in fact coincides with the Wasserstein distance W
defined above in (1.5).
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