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ABSTRACT. We study the linear stability of selfsimilar solutions of long-wave unstable thin-film
equations with power-law nonlinearities

ut = −(unuxxx + umux)x 0 < n < 3, n ≤ m

Steady states, which exist for all values ofm andn above, are shown to be stable ifm ≤ n + 2
when0 < n ≤ 2, marginally stable ifm ≤ n + 2 when2 < n < 3 and unstable otherwise.
Dynamical selfsimilar solutions are known to exist for a range of values ofn whenm = n+2. We
carry out the analysis of stability of these solutions whenn = 1 andm = 3. Spreading selfsimilar
solutions are proven to be stable. Selfsimilar blowup solutions with a single local maximum are
proven to be stable, while selfsimilar blowup solutions with more than one local maximum are
unstable.

The equations above are a gradient flows of a nonconvex energyon formal infinite dimensional
manifolds. In the spacial casen = 1 the equations are gradient flows in the familiar Wasserstein
metric. The geometric structure of the equations plays an important role in the analysis and pro-
vides a natural way to approach a family of linear stability problems.

Thin-film equations model the evolution of a thin layer of viscous fluid on a solid substrate.
They are derived from the Navier–Stokes equations in the limit of low Reynolds number assum-
ing the separation of horizontal and vertical length scales— the so called lubrication approxima-
tion. Overviews and further references can be found in [8], [25]. The general form of thin-film
equations is:

(1) ut = −∇ · (f(u)∇∆u+ g(u)∇u)
whereu is the height of the fluid. The leading order term, containing∆u, describes the effects
of surface tension. The particular form of the functionf(u) depends on the boundary condition
between the fluid and the substrate. In particularf(u) = u3 models the no-slip boundary con-
dition. The equations withf(u) = u are obtained in lubrication approximation of a Hele-Shaw
cell [1], [15] in which case the friction between the side-wall and the fluid is negligible. The
term containingg(u) models the effects of additional forces acting on the fluid, such as gravity
or intermolecular forces (e.g. Van der Waals forces). We consider these equations in the regime
of complete wetting in which the angle at the edge of the support of the liquid (i.e. the contact
angle) is zero.

In this paper we consider one-dimensional thin-film equations with power-law nonlinearity
and a destabilizing lower order term:

(2) ut = −(unuxxx + umux)x x ∈ R
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wherem ≥ n > 0 and3 > n > 0. The existence of weak solutions was studied by Bertozzi and
Pugh [6, 7]. The conditions0 < n < 3 is needed for the existence of compactly supported solu-
tions even if the destabilizing term was not present, due to the so called contact line singularity.
The conditionm ≥ n is also required for the existence due to considerations near the contact
line [6, Thm. 4.4]. For that reason we only consider the powersm ≥ n. Bertozzi and Pugh have
shown that the powerm = n + 2 is critical in the sense that whenm < n + 2 then there exist
global in time solutions for initial data in

X := {u ∈ H1 ∩ L1 | u ≥ 0}

while for m ≥ n + 2 finite-time blow-up is possible. The existence of solutionsthat blow up
in finite time has been shown in the special casesn = 1 andm ≥ 3 [6] and0 < n < 3/2 and
m = n+ 2 [28].

Structurally these equations represent a higher order analogue of widely studied second order
equations with destabilizing lower order terms that exhibit finite time blowup. In particular of the
nonlinear Schrödinger equation and nonlinear heat equation. The list works on these equation is
very large and we only mention a few in which a reader can find further references [12],[13], [14],
[16], [24], [29]. Blowup in related fourth order parabolic equations has also been investigated
[2], [5], [9], [33], [34] For a large family of equations blowup generically occurs at a point as
the solution grows and focuses at the point. The blowup is often, at least locally, selfsimilar.
In the case that the equation is invariant under appropriatescaling it can have global (in space)
selfsimilar blowup solutions that, if stable, govern the local structure of the blowup.

For the equation (2) in the critical casem = n + 2, the scaling of the equation suggests that
there exist dynamical selfsimilar solutions. Beretta [3] has shown that there exist source-type
(spreading) selfsimilar solutions for0 < n < 3, and that there are no source-type selfsimilar
solutions whenn ≥ 3. Selfsimilar blow-up solutions were considered in [28]. Their existence
was shown for0 < n < 3/2 and nonexistence forn ≥ 3/2. It was shown that while spreading
selfsimilar solutions have only one local maximum, the blow-up selfsimilar solutions can have
one or more local maxima. The solutions with one maximum are called single-bump solutions
while the solutions with more then one local maximum are called multi-bump solutions.

The critical casen = 1 andm = 3:

(3) ut = −(uuxxx + u3ux)x

was investigated by Witelski, Bernoff, and Bertozzi [32]. By numerically computing the spec-
trum of the linearized operator they have demonstrated thatspreading selfsimilar solutions are
linearly stable as are the single-bump blowup selfsimilar solutions. On the other hand the multi-
bump selfsimilar solutions were demonstrated to be linearly unstable. Nonlinear stability was
also apparent from numerical simulations of the Cauchy problem.

Our aim is to verify the linear stability analysis rigorously. In the case of dynamical selfsimilar
solutions we rescale the equation spatially and temporallyso that the stability analysis of the
blowup solutions reduces to the stability analysis of steady states of the rescaled equation. An
important element of this work is in the viewpoint we take. Namely the original equation and
the rescaled equation whenn = 1 have the formal structure of a gradient flow on a infinite-
dimensional manifold. Using the gradient-flow structure ofthe equation suggests the space in
which to consider the linearized equation, in particular one in which the linearized operator is
symmetric. This observation follows from the fact that the linearized dynamics at a steady state is
governed by the Hessian (on the manifold), which is always a symmetric operator. Furthermore
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the structure of the metric on the manifold suggests a natural choice of coordinates, in which the
operator becomes more transparent.

We recall facts about selfsimilar solutions in Section 1. The gradient-flow structure of the
equations is described in Section 2. The stability analysisof steady states is carried out in Section
3. We prove that steady states are linearly stable when0 < n ≤ 2 andn + 2 ≥ m ≥ n. That
is we show that modulo zero eigenvalue(s) that correspond tothe invariance(s) of the equations
the spectrum of the linearized operator has positive lower bound. The invariances mentioned are
translations and in the critical casem+n+2 also dilations. When2 < n < 3 andn ≤ m ≤ n+2
the steady states are shown to be marginally stable, but not stable in the above sense. That is if
2 < n < 5/2, modulo translations (and dilations ifm = n+ 2) the spectrum is nonnegative but
there is no positive lower bound. Ifn ≥ 5/2 the steady states are again marginally stable, but
translations and dilations are no longer allowed perturbations, that is they are not in the domain
of the linearized operator. This is not surprising. Mobility with n = 1 corresponds to no friction
between the fluid and the substrate, whilen = 3 corresponds to no slip boundary condition.
Hence asn increases moving the contact line requires greater energy dissipation. In particular
whenn > 5/2 translating the steady state (in arbitrarily small neighborhood of the contact line)
requires infinite energy dissipation rate (9).

Let us also remark here that powern = 5/2 is not universal in the sense that not all compactly
supported functions with zero contact angle would require infinite energy dissipation to move.
The critical power depends on the rate at which a solution touches down. Steady states that we
consider touch down quadratically, while for example selfsimilar solutions of thin-film equation
without destabilizing terms touch down like(L − x)3/n [4], whereL is the touchdown point.
The critical power for such touchdown isn = 3.

Steady states are shown to be linearly unstable in the supercritical casem > n + 2. The
stability analysis of selfsimilar blowup solutions and selfsimilar source type is done in Section
4. In the Appendix we prove some facts about the weighted Sobolev space we use. In particular
Hardy-type inequalities with constraints, needed for establishing the positive lower bound on the
spectrum.

1. STEADY STATES, SELFSIMILAR SOLUTIONS AND SIMILARITY VARIABLES

Steady states of (2) both on bounded domains and onR were investigated in a series of papers
by Laugesen and Pugh [20, 19, 21, 22]. The simplest steady states onR with finite mass are so
calleddroplet steady states, which have connected, compact support, have one local maximum
and are axially symmetric. By taking several droplet steadystates with disjoint supports one
obtains more complicated steady states, so calleddroplet configurations.

Whenm 6= n+ 2 there are droplet steady states of any mass (L1-norm), while in the critical
casem = n + 2 all droplet steady states have the same mass,Mc = 2π

√

2/3. The value of
constantMc was determined in [32].

To consider dynamical selfsimilar solutions, observe thatthe equation (2) is invariant under
the scalingx → λx, u → u/λ andt → λn+4t whenm = n + 2. If m 6= n + 2 there is no
such scaling invariance. The scaling suggests that the equation in the critical case could posses
solutions of the form:

u(x, t) = λ(t)ρ(λ(t)x)
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These solutions, should they exist, are called selfsimilarsolutions. Substituting in the equation
yields that

λ′(t) = σλn+4(t)

for some constantσ. This implies

λ(t) =
(

λ(0) − σt
)− 1

n+4 .

Spreading selfsimilar solutions.Settingσ < 0 asks for a solutions that is spreading and exist
for all t > 0. It is convenient to setλ(0) = 1 and normalize the solution by settingσ := −1.
One should note that had we pickedλ(0) = 0 we would indeed get a true source type selfsimilar
solution, with delta mass as its initial data.

The functionU is called the selfsimilar profile and satisfies an ODE (withσ as a parameter).
Properties, and existence of solutions the appropriate ODEwere studied by Beretta in [3]. It was
shown that there exists one family of source-type selfsimilar solutions, these solutions are even,
have one local maximum (at zero), and have compact support.

To study their stability we introduce, as is customary, a time-dependent rescaling (change of
variables) that transforms the selfsimilar solutions intosteady states (of a new equation). In par-
ticular looking for substitution that agrees with the scaling above:u(x, t) = λ(t)v(λ(t)x, s(t))
we find thats(t) = ln(1 + t). So

(4) v(y, s) = (es − 1)−
1

n+4u((es − 1)−
1

n+4 y, es − 1).

Using the equation (2) one obtains thatv is a solution of:

(5) vs = −
(

vnvyyy + vn+2vy − 1

n+ 4
yv
)

y

with the same initial data asu. Note thatv(y, s) = U(y) is a steady state of the equation.
Focusing selfsimilar solutions.Settingσ > 0 asks for a focusing solution that blows-up at

time t = λ(0)
σ . In this case we normalize the solution by settingλ(0) := 1 andσ := 1.

The set of selfsimilar blow-up solutions has richer structure, as in addition to solutions with
a single maximum there exist solutions with any number of local maxima [28]. The support of
solutions is again compact and connected.

Substituting as before we obtains(t) = − ln(1 − t) and

(6) v(y, s) = (1 − e−s)−
1

n+4u((1 − e−s)−
1

n+4 y, 1 − e−s)

which satisfies the equation

(7) vs = −
(

vnvyyy + vn+2vy +
1

n+ 4
yv
)

y

with same initial data asu.

2. THIN-FILM EQUATIONS AS GRADIENT FLOWS

The equation (2) can be viewed as the gradient flow of the following energy: Form − n 6∈
{−1,−2}

(8) E(u) :=

∫

R

1

2
u2

x − 1

(m− n+ 2)(m− n+ 1)
um−n+2dx
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for u ∈ X . Otherwise, ifm − n = −2 then the second term of the energy is− lnu and if
m − n = −1 then it isu lnu − u. Since almost all of the paper is devoted to the casem ≥ n
these special cases will not play a role.

Let us first note that energyE is a dissipated quantity of the evolution with the dissipation
rate dE

dt = −D:

(9) D =

∫

R

1

un(x)
j2(x)dx

wherej is the flux:j = −unuxxx + umux.
The energyE plays a crucial role in current existence theory for the equation. Namely, as

was shown in [6], energyE and mass produce a bound on theH1-norm of the solution when
m < n+ 2 via Gagliardo–Nirenberg inequality:

‖u‖Lp ≤ C‖ux‖
2(p−1)

3p

L2 ‖u‖
2+p
3p

L1 for p > 1

In the critical casem = n+ 2 the sharp constant in the inequality was determined by Sz.-Nagy
[30]. The inequality becomes:

∫

R

u4dx ≤ 6

M2
c

(
∫

R

|u|dx
)2 ∫

R

u2
xdx

For solutions of (2) withm = n+ 2 it implies

1

2

(

1 − (
∫

u)2

M2
c

)
∫

u2
xdx ≤ E(u(t)) ≤ E(u0).

So if the initial mass is less then the mass of a droplet steadystate then the solution exists for all
time.

For the equations in similarity variables appropriate energy is known only for the casen = 1
and has the form

(10) E±(v) :=

∫

R

1

2
v2

y − 1

12
v4 ± 1

10
y2vdy

where+ is taken for the spreading problem and− for the focusing. The energy is defined for
v ∈ Y := X ∩ {v |

∫

R
y2vdy <∞}.

2.1. Gradient flow structure. The geometric viewpoint of gradient flows we take was devel-
oped by Otto [26]. Consider a formal Riemannian manifoldM whose elements are real functions
on given domain, with inner product〈 · , · 〉u, u ∈ M. The equation

du

dt
= F ([u])

is a gradient flow of energyE : M −→ R if for all u ∈ M, F ([u]) ∈ TuM and

〈F ([u]), s〉u = −dE[s]

for everys ∈ TuM. By [u] we denoted then-tuple of the spatial derivatives involved in the
equation.

In the case of the equations (2), (5), and (7),M is loosely speaking the infinite dimensional
manifold of nonnegativeL1 functions with finite second moments. The tangent vectors atu ∈ M
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are functions whose support is subset of the support ofu, and that have zero mean on each
connected component of the support ofu. The inner product is, formally, defined as follows:

(11) 〈s1, s2〉u =

∫

unf1f2

wherefi are such that−(unfi)x = si for i = 1, 2 and limx→∞ un(x)fi(x) = 0. Note that
dE[s] = δE

δu [s], whereδE
δu [s] is the Gateaux derivative ofE in the directions. Elementary, but

formal, calculations then verify that foru satisfying equation (2) andE given by (8)

〈ut, s〉u = −δE
δu

[s].

Analogously, in then = 1, case the rescaled equations (5) and (7) are gradient flows ofthe
energies described in (10).

The remarkable fact about the inner product withn = 1 is that the distance it induces on the
manifoldM is the Wasserstein metric. Various gradient flows in Wasserstein metric have been
subject of a number of recent studies beginning with[17]. A reader can find further details in
[26, 31].

2.2. Linearizing a gradient flow at a steady state.The geometric structure of the gradient
flows can be utilized when conducting linear-stability analysis. In particular Denzler and Mc-
Cann [10], [11] have used this structure to study the linearization of the fast-diffusion equation.

The linearized dynamics near a steady state of a gradient flowon a manifold is described by
the Hessian of the energy. By the definition of the Hessian, itis a symmetric operator in the
metric of the gradient flow. To illustrate that in some generality, let u(t) be the gradient flow of
energyE on manifoldM with inner product〈 · , · , 〉. For allv1, v2 ∈ TuM, HessE(v1, v2) =
HessE(v2, v1). The Hessian operatorH : TuM −→ TuM is associated to the Hessian form,
HessE, by 〈H v1, v2〉 = HessE(v1, v2)

In our case the manifold structure is formal. For the gradient flows that we consider we show
that at a steady state, the Hessian operator,H , an object defined using the formal manifold
structure, is equivalent to the standard linearization operator. More precisely, let us consider an
equation

ut = F ([u]).

which we assume to be in divergence form, and hence mass preserving. Let the equation also be
the gradient flow of the energyE on the manifoldM. Let η be a steady state of the equation
above. Letv ∈ TηM. The linearized operatorL atη is given by

L |ηv = lim
h→0

F ([η + hv]))

h

Note thatα(h) = η + hv is a curve onM. Take an arbitraryw ∈ TηM. By D
dh we denote the

covariant derivative alongα, while we use∇ for Riemannian connection.

HessE|η(v, w) = 〈∇v gradE,w〉η =

=

〈

D

dh

∣

∣

∣

∣

h=0

F ([α(h)]), w

〉

η

=

〈

lim
h→0

F ([α(h)])

h
,w

〉

η

= 〈L |ηv, w〉η

We used thatgradE|η = 0. Note that the above equality shows thatL |η is symmetric.
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2.3. Local coordinates. In the description above we were loose in describing the space of func-
tions that form the tangent space. For the gradient flows withthe inner product defined as in (11)
the description is easier after a change of coordinates. Theparticular coordinates whenn = 1,
were suggested by work of Otto, and were used by Denzler and McCann [10],[11].

The definition of the inner product suggests to identify the tangent plane atu ∈ M with the
set of functions

L2
un =

{

f |
∫

un(x)f2(x)dx <∞
}

.

The inner product is the weightedL2 inner product,〈f, g〉u =
∫

un(x)f(x)g(x)dx. The co-
ordinate change that transforms from this description to the old one iss = −(unf)x. When
n = 1 this transformation describes going from Lagrangian description, f to Eulerian descrip-
tion s. That iss the describes the infinitesimal change in the height of fluid,while f is the vector
field the fluid is perturbed by, with all particles located above the same spot moving by the same
amount.

But as it turns out, Lagrangian coordinates for the tangent plane can be useful even when
n 6= 1. Although it is possible to use the coordinates suggested bythe inner product directly, for
our particular problem the Lagrangian coordinates yield a slightly simpler form of the operator.
The tangent plane is in this case identified with the weightedL2 space:L2

u2−n . The inner product
is 〈f, g〉u =

∫

{u>0}
u2−n(x)f(x)g(x)dx. The coordinate transformation to Eulerian coordinates

is s = −(uf)x.

3. STABILITY OF STEADY STATES

We now study the stability of steady states of the equations

ut = −(unuxxx + umux)x

with 0 < n < 3 andm ≥ n.
Steady states of these equations have been studied by Laugesen and Pugh [20, 19, 21, 22].

There are two classes of steady states. The first are positive, periodic steady states. The stability
of these steady states was studied in [19]. Constant steady states are long-wave unstable. Positive
periodic steady states were shown to be unstable to zero-mean perturbations of the same period
if m ≥ n + 1 or m < n. For n ≤ m < n + 1 evidence is presented that periodic steady
states can be stable. The stability in [19] is characterizedin terms of time and area maps of a
related nonlinear oscillator. Let us remark techniques of [19] use that the linearized operator is
nondegenerate which is not the case in the problems that we consider. We should also point out
the difference in the definitions of stability in [19] and here. Steady states in [19] are defined to
be stable if the spectrum of the linearized operator is nonnegative, while we distinguish between
positivity (stability) and nonnegativity (marginal stability) of the spectrum.

The second class of steady states are ones with compact support. We study the stability of
such states here. If the set where a compactly supported steady state is positive is connected,
we call it a droplet steady state. Otherwise the steady stateis a configuration of droplet steady
states. That is any compactly supported steady state is a sumof droplet steady states with disjoint
positivity sets.

The stability of the droplet configuration that are made of droplets with disjoint supports can
be obtained from the stability of droplet steady states thatform it. If the supports of droplets
touch then the situation is a bit more complicated. We will show that the stability of droplet
steady states depends only on the powers of nonlinearities.So two droplets that touch are either
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both stable or both unstable. If both are unstable then the joint state is also unstable, while if
both are stable then our analysis only implies that the jointstate is marginally stable. Whether it
is stable is an open problem.

From now on we concentrate on droplet steady states. Letη be such a state. We know
from [20] thatη is symmetric and hence, by translating it if necessary, we can assume thatη
is centered at0, and that the support ofη is the interval[−L,L]. From [20] also follows that
η is aC1 function,η restricted to[−L,L] is a smooth function, but is not aC2 function onR.
Furthermorelimx→L− η

′′(x) > 0.
The linearized equation can be obtained in a classical way, by perturbing the steady state in

Eulerian variables. For this we refer the reader to the work of Witelski, Bernoff, and Bertozzi [32,
Sec. 5.2] who carried it out for then = 1 case. The delicate part of this procedure is handling
the contact line, that is the boundary of the support ofη.

Following Otto [26], and Denzler and McCann [10],[11] we consider the linearization using
the geometry of the equation. This approach handles the contact line in a natural and straightfor-
ward manner. We will first compute the Hessian formHessE in Lagrangian local coordinates,
mentioned above.

Hessian is a bilinear form, but for our considerations we only need the quadratic formHessE(f, f).
To computeHessE(f, f) at steady stateη, given a tangent vectorf ∈ L2

η2−n ∩C2([−L,L]) we
use that

HessE(f, f) = 〈∇f gradE, f〉 grad E|η=0
= f [〈gradE, f〉] = f [f [E]]

which is equal to the second derivative ofE along a curve whose tangent vector isf . When
n = 1 the geodesic in directionf is known and has a simple expression. Even whenn 6= 1 this
geodesic is a curve with tangent vectorf atη. Hence we use these curves to compute the Hessian
for anyn.

The geodesics were used in the works of McCann [23], Otto [26]and Denzler and McCann
[10],[11], and we refer to these works or the book by Villani [31] for the details. Here we just
state what the geodesics are. Letρ ∈ M andf ∈ TρM be a bounded function. Then the
geodesicγ is for |s| < 1/‖f‖L∞ given by:

γ(s) = (Id+ sf)#ρ

HereF#ρ represents the push forward of the measure with densityρ via the functionF . In the
case above that represents to translating each particle beneath the graph ofρ by the vectorsf . So
the new location of the particle originally atx is Φs(x) = x+ sf(x). If f is differentiable then

γ(y, s) =
ρ(Φ−1

s (y))

Φ′
s(Φ

−1
s (y))

The Hessian quadratic form of the energyE at a steady stateη is

HessE(f, f) = f [f [E]] =
d2

ds2

∣

∣

∣

∣

s=0

E(γ(s))

The energies we study involve the following

E1(u) =

∫

u2
xdx, E2(u) =

∫

uβdx, and E3(u) =

∫

x2udx.
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Let us computeHessE1 at a steady stateη. We will use notationx = Φ−1
s (y). Let f ∈

L2
η2−n ∩ C2([−L,L]).

HessE1(f, f) =
d2

ds2

∣

∣

∣

∣

s=0

E1(γ(s))

=
d2

ds2

∣

∣

∣

∣

s=0

∫
(

∂y
η(Φ−1

s (y))

Φ′
s(Φ

−1
s (y))

)2

dy

=
d2

ds2

∣

∣

∣

∣

s=0

∫

η′(x)

(Φ′
s(x))

2
− η(x)Φ′′

s (x)

(Φ′
s(x))

3
dy

=
d2

ds2

∣

∣

∣

∣

s=0

∫
(

η′(x)

(1 + sf ′(x))2
− η(x)sf ′′(x)

(1 + sf ′(x))3

)2

(1 + sf ′(x))dx

=

∫

12(η′(x))2(f ′(x))2 + 16η(x)η′(x)f ′(x)f ′′(x) + 2η(x)2(f ′′(x))2dx

The Hessians of energiesE2 andE3 are computed similarly. Moreover Hessians of these func-
tionals were already computed by Otto [26].

HessE2(f, f) = β(β − 1)

∫

ηβ(x)(f ′(x))2dx

HessE3(f, f) = 2

∫

η(x)f(x)2dx

The Hessian of the energyE(u) given by (8) atη is thus equal to

HessE(f, f) =
1

2
HessE1(f, f) +

1

(m− n+ 2)(m− n+ 1)
HessE2(f, f)

=

∫ L

−L

η2(x)(f ′′(x))2 − m− n− 2

m− n+ 2
η(x)m−n+2(f ′(x))2dx.

(12)

In obtaining the expression above we used the fact thatη is a steady state, that it has compact sup-
port and thatη′ = 0 on the edge of the support. Specifically we used thatη satisfies the equation
η′′′(x) = −ηm−n(x)η′(x), as well as the integrated form of the equationη′′ = η(0)

m(m+1) −
ηm

m

and that(η′)2 = 2
m(m+1)η (η(0)m − ηm).

It is clear that the formHessE is semibounded whenm ≤ n + 2 (recall that we always
assume thatm ≥ n). Note thatη′′(L) = η(0)

m(m+1) > 0 and hence there exist positive constants

C1 andC2 > 1 such thatC1(L − |x|)2 < η(x) < C2(L − |x|)2 for all x ∈ (−L,L). Thus
the interpolation inequality (19) implies that the form is also semibounded for whenm > n+ 2.
That is there existsA such thatHessE(f, f) ≥ A〈f, f〉 for all f ∈ L2

η2−n ∩ C2([−L,L]). The
form domain is the weighted Sobolev spaceY = W 2,2((−L,L), 4 − 2n, 2m − 2n + 4, 4) as
defined by (15) in the Appendix. The linearized operator itself has the form

L f = ηn−2

(

(η2f ′′)′′ +
m− n− 2

m− n+ 2
(ηm−n+2f ′)′

)

Note that it is symmetric onL2
η2−n ∩ C4([−L,L]), with no additional boundary conditions at

−L andL. The formHessE determines the Friedrichs extension (see [27]) of operatorL. The
extended operatorL is selfadjoint.
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Perturbing in the directionf = 1 corresponds to translations. Observe that formallyHessE(1, 1) =
0. However only when0 < n < 5/2 does1 ∈ L2

η2−n and hence only then isf = 1 an eigenvec-
tor of the operatorL that corresponds to eigenvalue 0. The fact thatf = 1 is a neutral direction
not surprising; it is a consequence translation invarianceof equation (2).

Perturbing the solution in directionf = x corresponds to dilations. Note that whenm > n+2,
and0 < n < 5/2 thenHessE(x, x) < 0 andx ∈ Y . Hence when steady states are linearly
unstable, and dilations represent an unstable direction. If m = n+2 thenf = x is an eigenvector
corresponding to eigenvalue0. Whenm ≤ n + 2 the droplet steady states are linearly stable,
which we prove in the next theorem.

Theorem 1. (subcritical case) Letη be a droplet steady state of equation(2) with 0 < n < 3 and
n ≤ m < n+2 supported on interval[−L,L]. LetHessE be the Hessian atη of energyE given
by (12). Let us denote byY the weighted Sobolev spaceW 2,2((−L,L), 4−2n, 2m−2n+4, 4),
defined in(15).

i) If 0 < n ≤ 2 thenη is linearly stable modulo translations, that is there exists λ > 0
such that

HessE(f, f) > λ〈f, f〉η
for all functionsf ∈ Y such that〈f, 1〉η = 0.

ii) If 2 < n < 5/2 thenη is marginally stable modulo translations, that isHessE(f, f) > 0
for all f ∈ Y \{0} such that〈f, 1〉η = 0. However

inf
f∈Y \{0},〈f,1〉η=0

HessE(f, f)

〈f, f〉η
= 0.

iii) If 5/2 ≤ n < 3 thenη is marginally stable. That isHessE(f, f) > 0 for all f ∈ Y \{0},
but

inf
f∈Y \{0}

HessE(f, f)

〈f, f〉η
= 0

SinceL is a selfadjoint operator, the claims above imply lower bounds on the spectrum of the
operatorL (restricted to orthogonal complement of1 whenn < 5/2).

Proof. Assume thatn ≤ m ≤ n + 2. If 0 < n ≤ 2 then applying Corollary 10 establishes that
there existsλ > 0 such thatHessE(f, f) ≥

∫ L

−L f
2(x)dx ≥ ‖η‖n−2

L∞

∫ L

−L η
2−n(x)f2(x)dx for

all f ∈ C2([−L,L]) such that〈f, 1〉η = 0. We claim that orthogonal complement of vector 1 in
C2([−L,L]) is dense in the orthogonal complement of1 in Y . Let ε > 0 andg ∈ Y such that
〈g, 1〉η = 0. By Lemma 6,C2([−L,L]) is dense inY . Thus there existsgε ∈ C2([−L,L]) such
that‖gε − g‖Y < ε. Note that the projection ofgε on the orthogonal complement of vector1,
g̃ε = gε − 〈gε, 1〉η/〈1, 1〉η is also inC2([−L,L]). Furthermore‖g̃ε − g‖Y ≤ ‖gε − g‖Y < ε
which establishes the density claim.

Since all functionals involved are continuous with respectto norm onY the claim of the
lemma follows.

If 2 < n < 5/2 then it is clear from the form ofHessE that HessE(f, f) > 0 for all
f ∈ Y \{0} such that〈f, 1〉η = 0. To establish the second claim letg 6≡ 0 be a smooth function
supported on a subset of(0, 1). Let the functiongβ be given bygβ(x) = g(β(L − |x|)). Let
fβ = gβ − 〈gβ, 1〉η/〈1, 1〉η. Then forβ > 1/L, fβ is smooth and

HessE(fβ , fβ) ≤ 2

∫ L

0

η2(x)(g′′β(x))2 + ηm−n+2(x)(g′β(x))2dx.
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An elementary calculation that uses thatη(x) ≤ C2(L− |x|)2, gives us how the relevant quanti-
ties scale withβ:

∫ L

0

η2(x)(g′′β(x))2dx ≤ C2
2

β

∫ 1

0

z4(g′′(z))2dz

∫ L

0

ηm−n+2(x)(g′β(x))2dx ≤ Cm−n+2
2

β2m−2n+3

∫ 1

0

z2m−2n+4(g′(z))2dz

∫ L

−L

η2−n(x)f2
β(x)dx ≥

∫ L

−L

η2−ng2
βdx− 2

(

∫ L

−L

η2−ngβdx

)2
/

〈1, 1〉η

≥ 2C2−n
2 β2n−5

∫ 1

0

z4−2ng2(z)dz − 4C4−2n
2 β2(2n−5)

(

∫ 1

0 z
4−2ng(z)dz

)2

〈1, 1〉η
Since0 > 2n− 5 > −1 and2m− 2n+ 3 ≥ 1 the scalings above imply

lim
β→∞

HessE(fβ , fβ)

〈fβ , fβ〉η
= 0

which establishes the claim.

If 5/2 ≤ n < 3 then1 6∈ Y . HenceHessF (f, f) > 0 for all f ∈ Y . Let fβ = gβ wheregβ

was defined in the case above. The scalings above then show that

lim
β→∞

HessE(fβ , fβ)

〈fβ , fβ〉η
= 0.

�

Theorem 2. (critical case) Let η be a droplet steady state of equation(2) with 0 < n < 3 and
m = n+ 2 supported on[−L,L]. LetHessE be the Hessian atη of energyE given by(12)and
let Y = W 2,2((−L,L), 4 − 2n, 2m− 2n+ 4, 4).

i) If 0 < n < 2 thenη is linearly stable modulo translations and dilations, thatis there
existsλ > 0 such that

HessE(f, f) > λ〈f, f〉η
for all functionsf ∈ Y such that〈f, 1〉η = 0 and〈f, x〉η = 0.

ii) If 2 < n < 5/2 and thenη is marginally stable modulo translations and dilations. That
is HessE(f, f) > 0 for all f ∈ Y \{0} such that〈f, 1〉η = 0 and〈f, x〉η = 0. However

inf
f∈Y \{0},〈f,1〉η=0,〈f,x〉η=0

HessE(f, f)

〈f, f〉η
= 0

iii) If 5/2 ≤ n < 3 and thenη is marginally stable. That isHessE(f, f) > 0 for all
f ∈ Y \{0}. However

inf
f∈Y \{0}

HessE(f, f)

〈f, f〉η
= 0

Proof. The proofs are analogous to the proofs in the subcritical case. The only significant differ-
ence is that the existence of desiredλ > 0 in the case0 < n < 2 follows from the Hardy type
inequality established in claim i) of Lemma 9. �
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Theorem 3. (supercritical case) Letη be a droplet steady state of equation(2) with 0 < n < 3
andm > n+ 2 supported on[−L,L]. LetHessE be the Hessian atη of energyE given by(12)
and letY = W 2,2((−L,L), 4 − 2n, 2m − 2n + 4, 4). The steady stateη is linearly unstable.
In particular when0 < n < 5/2, f = x belongs to the spaceY and represents an unstable
direction: HessE(x, x) < 0. When5/2 ≤ n < 3 there existsf ∈ C∞

0 (−L,L) ∩ Y such that
HessE(f, f) < 0.

Proof. Sinceη ≥ C1(L − |x|)2 near±L it readily follows that functionf(x) = x is in Y
precisely whenn < 5/2. Form ofHessE then gives thatHessE(x, x) < 0.

Let us now consider the case5/2 ≤ n < 3. Letκ be a smooth, nondecreasing cut-off function
such thatκ = 0 on (−∞, 0], andκ = 1 on [1,∞). Forβ > 1 let fβ(x) = xκ(β(L − |x|)) for
x ∈ (−L,L). Note thatfβ is smooth and odd. Thus〈fβ, 1〉η = 0.

Consider how the terms ofHessE(fβ , fβ) scale withβ. Sinceη ≤ C2(L− |x|)2

∫ L

−L

η2(x)(f ′′
β (x))2dx ≤ 2C2

2

∫ L

0

(L − x)4
(

β2xκ′′(β(L − x)) − 2βκ′(β(L − x))
)2
dx

≤ 8C2
2

∫ 1

0

y4

β
L2(κ′′(y))2 +

y4

β3
(κ′(y))2dy

which converges to0 asβ → ∞. On the other hand

∫ L

−L

ηm−n+2(x)(f ′
β(x))2dx ≥ 2

∫ L(1−1/β)

0

ηm−n+2(x)dx

is bounded from below. Therefore, forβ large enoughHessE(fβ , fβ) < 0. �

4. STABILITY OF BLOW -UP AND SOURCE TYPE SELFSIMILAR SOLUTIONS

The equation (2) has dynamical selfsimilar solutions only whenm = n + 2. We study the
stability of these solutions via the stability analysis of steady states of the equations in similarity
variables: (5) and (7). As we already mentioned, only whenn = 1 is the gradient-flow structure
of equations (5) and (7) known. Thus all the considerations in this section are for the casen = 1
andm = 3.

4.1. Selfsimilar blowup solutions. The equation in similarity variables (7) is a gradient flow of
the energyE = 1

2E1 − 1
12E2 − 1

10E3. Using the computations of Hessians ofE1, E2 andE3

given in Section 3 we obtain the Hessian ofE at selfsimilar profileρ:

HessE(f, f) =

∫

ρ2(f ′′)2 + 8ρρ′f ′f ′′ + 6(ρ′)2(f ′)2 − ρ4(f ′)2 − 1

5
ρf2dx.

for f ∈ C2([−L,L]).
The profilesρ symmetric selfsimilar blowup solution satisfy the equation

ρ′′′(x) = −x
5
− ρ2(x)ρ′(x)
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with ρ′(0) = 0 and zero contact angle:ρ′(L) = 0. Using identities obtained by integrating the
equation:

ρ′′(x) = ρ′′(0) +
ρ3(0)

2
− x2

10
− ρ3(x)

3

ρ′(x)2 = 2

(

ρ′′(0) +
ρ3(0)

3

)

ρ(x) − ρ4(x)

6
− x2ρ(x)

5
− 2

5

∫ L

x

sρ(s)dsand

we obtain

(13) HessE(f, f) =

∫

ρ2(x)(f ′′(x))2 − 4

5
ϕ(x)(f ′(x))2 − 1

5
ρ(x)f2(x) dx

where

ϕ(x) =

∫ L

x

sρ(s)ds.

Sinceρ is an even and positive function on(−L,L) so isϕ. Furthermoreϕ(L) = ϕ′(L) =
ϕ′′(L) = 0. The form domain is the weighted Sobolev spaceY = W 2,2((−L,L), ρ, ϕ, ρ2).

The linearized operatorL has the form

L f =
1

ρ

(

(ρ2f ′′)′′ +
4

5
(ϕf ′)′ − 1

5
ρf

)

.

It is symmetric onC4([−L,L]) with no boundary conditions.
Note thatHessE(1, 1) < 0 andHessE(x, x) < 0. Furthermoref = 1 is an eigenvector

corresponding to eigenvalue−1/5 andf = x is an eigenvector corresponding to eigenvalue−1.
So the functionsf = 1, which corresponds to translations andf = x which corresponds to
dilations represent unstable directions for the operator.This is a consequence of the invariances
of the original equation and the rescaling to selfsimilar variables. However this does mean that
selfsimilar blow-up solutions are structurally unstable,it just means that a small perturbation of
initial data may result in shift in the location or time of theblowup. If we want to investigate
whetherρ describes the asymptotic shape of the blowup solution near apoint we need to find out
if there are other eigenvectors corresponding to a negativeeigenvalue.

Hence we say that a selfsimilar blowup solution is linearly stable if there exists a positive
constantλ, such that atρ

HessE(f, f) ≥ λ〈f, f〉ρ
for all functionsf ∈ Y such that〈f, 1〉ρ = 0, and〈f, x〉ρ = 0.

4.1.1. Stability of single-bump selfsimilar blowup solutions.To formulate and prove the result
about stability we need to recall several facts about the existence and properties of both steady
states and selfsimilar blowup profiles.

Let us denote byη the droplet steady state with support[−1, 1]. LetH1 = η(0). It follows
from [28, eq. (11)] that5 < H0 < 6. Let l(x) = 1 − |x|. Using thatη′′ = H3

1/4 − η3/3 it is
easy to show that4l2(x) < η(x) < 30l2(x) for x ∈ (−1, 1). The facts listed below follow from
Theorem 11 and Lemma 13 in [28].

• For allH large enough there exists a symmetric single-bump selfsimilar blowup profile
ρH with ρH(0) = H , zero contact angle atx = ±LH . Furthermore5/H < LH < 7/H .

• Let σH(z) := ρ(LHz)/H . For allH large enough‖σH − η‖C2([−1,1]) < 1.
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Therefore3l2(x) < σH(x) < 31l2(x) for all H large enough. A consequence of this it that
W 2,2((−LH , LH), ρ, ϕ, ρ2) = W 2,2((−LH , LH), 2, 3, 4). The density ofC∞([−LH , LH ]) fol-
lows from Lemma 6.

Theorem 4. There exist positiveC andλ, such that for allH > C, and all functionsf ∈ Y =
W 2,2((−LH , LH), 2, 3, 4) such that〈f, 1〉ρH

= 0 and〈f, x〉ρH
= 0

HessE(f, f) > λ〈f, f〉ρH
.

Therefore the formHessE is semibounded and hence the Friedrichs extension ofL is defined
and self-adjoint. In conclusion forH > C single-bump selfsimilar profilesρH are linearly stable
andλ is a lower bound on the spectrum ofL restricted to orthogonal complement of1.

Proof. LetH be large enough that the properties ofρH listed above hold. Letf be aC2 function
on [−1, 1] such that〈f, 1〉ρH

= 0 and〈f, x〉ρH
= 0. The inequality i) of Lemma 9 then yields

∫ LH

−LH

ρ2
H(x)(f ′′(x))2dx =

∫ 1

−1

H2L−3
H σ2

H(z)

(

d2f(LHz)

dz2

)2

dz

≥ c1H
2L−3

H

∫ 1

−1

l(z)2f2(LHz)dz

≥ c2H
5

∫ LH

−LH

ρ2
H(x)f2(x)dx

Constantsc1 andc2 above are positive and independent ofH .
Let φH(x) =

∫ 1

x
sσH(s)ds. SinceσH is an even function, so isφH . Furthermore since

3l2 < σH < 31l2 on (−1, 1) an elementary calculation gives1/16l3 < φH < 12l3 on (−1, 1).
Using the inequality ii) of Lemma 9 we obtain:

∫ LH

−LH

ρ2
H(x)(f ′′(x))2dx =

∫ 1

−1

H2L−3
H σ2

H(z)

(

d2f(LHz)

dz2

)2

dz

≥ c3H
2L−3

H

∫ 1

−1

l(z)3
(

df(LHz)

dz

)2

dz

≥ c4H
2L−1

H

∫ 1

−1

φH(z)(f ′(LHz))
2 dz

≥ c5H
5

∫ LH

−LH

∫ LH

x

sρH(s)ds (f ′(x))2dx.

The constantsci, i = 3, 4, 5 are again positive and independent ofH .
Combining the inequalities above yields thatHessE(f, f) > 〈f, f〉 for all H large enough

(> max{2/ 5
√
c2, 1/ 5

√
c5} ). Arguing as in Theorem 1 one can show the density of the orthogonal

complement of{1, x} inC2([−L,L]) in the orthogonal complement of{1, x} in Y . The continu-
ity of the functionals involved with respect to topology ofY implies thatHessE(f, f) > 〈f, f〉ρ
for all f ∈ Y orthogonal to1 andx. �

4.1.2. Instability of multi-bump selfsimilar blowup solutions.We show instability of multi-bump
selfsimilar blowup solutions by constructing an unstable direction,f , orthogonal to translations
and dilations (see Figure 1). Perturbing the profileρ in directionf is effectively dilating out the
solution fromα to the right, while dilating in the solution the solution to the left of−α. The
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α

ρ

f

H

LH,3

6

-

Figure 1: Illustration of the right half of the unstable direction f in k = 3 case

dynamical effect of this perturbation is that the bumps on the left blow up sooner then the ones
on the right. Thus, as it blows up, the solution is attaining ashape rather different fromρ.

We present the details for the solution with odd number of bumps. The construction for a
solution with even number of bumps is similar so we only comment on the differences. We first
recall some facts about existence and properties of selfsimilar solutions from [28].

• Let k be an odd integer andk ≥ 3. For allH large enough there exists a symmetric
selfsimilar blowup profileρH,k with ρH,k(0) = H , zero contact angle atx = ±LH,k,
and exactlyk local maxima. Furthermore5k/H < LH,k < 7k/H .

• Let k be an even integer andk ≥ 2. For all θ large enough there exists a symmetric
selfsimilar blowup profileρθ,k with ρ′′θ,k(0) = θ, zero contact angle atx = ±Lθ,k, and
exactlyk local maxima.

• ForH > 0 let ηH be the steady state centered at 0 withηH(0) = H and zero contact
angles at±L/H (constantL ≈ 6 is known). LetηH(x) = ηH(x − ⌊xH/L⌋L/H) for
x ∈ R. Fork ≥ 3 odd and allH large enough

‖ρH,k − ηH‖L∞([−LH,k,LH,k]) < H−7/2 and ‖ρ′′H,k − η′′H‖L∞([−LH,k,LH,k]) < H−3/2.

The facts listed follow from Theorem 29, Theorem 30, Lemma 23, Lemma 26, and the argument
of Corollary 21 of [28].

Theorem 5. For all odd integersk ≥ 3 and all H large enough there exists a functionf ∈
C∞([−LH,k, LH,k]) such that

〈f, 1〉ρH,k
= 0, 〈f, x〉ρH,k

= 0, and HessE(f, f) < 0.

The statement also holds fork ≥ 2 even, withH replaced byθ.

Proof. Let k ≥ 3 be an odd integer. LetH > 5 be large enough that the properties above hold.
As H andk are set, from now on we omit theH, k indexes. Letα be the location of the first
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local minimum ofρ. Leta = H−3 andg be an evenC∞ function on[−L,L] such that

g(x) =

{

0 if 0 ≤ x ≤ α− a
x− α if α+ a ≤ x

Furthermoreg is required to be nondecreasing on(0,∞) and to satisfy|g′′| < 5/a. Let f be the
projection ofg to the orthogonal complement of vector1, that is let

f = g − 〈g, 1〉ρ
〈1, 1〉ρ

Then〈f, 1〉ρ = 0 and sincef is even〈f, x〉 = 0. Using the estimates onρ− η listed above, that
η has minimum 0 andη′′ < H3/12 it follows thatρ(α) < H−7/2 andρ′′ < H3 on [−L,L].
Thusρ(x) ≤ ρ(α) +H3(x − α)2. Therefore

∫ L

−L

ρ2(x)(f ′′(x))2dx ≤ 2

∫ α+a

α−a

(H−7/2 +H3a2)2
(

5

a

)2

dx ≤ 400H−3

On the other hand using thatL > 15/H > 2L, α + a < 4/3L, andρ > ηH − 1 > H/3 on
[5/3L, 2L] we obtain

∫ L

−L

∫ L

x

sρ(s)ds (f ′(x))2dx ≥ 2

∫ 5
3 L

4
3 L

∫ 2L

5
3L

sρ(s)ds dx ≥ 2
1

H

1

H

5

H

H

4
≥ H−2

These inequalities imply that forH large enough

HessE(f, f) ≤ 400H−3 − 4

5
H−2 < 0.

In the case thatk is even one can construct the test function by shiftingg to the left byα− a.
This gives aV -shaped test function. �

Let L̃ be the restriction ofL to orthogonal complement of{1, x}. As a symmetric and real
operatorL̃ has a self-adjoint extension [27]. In terms of the spectrum of any such an extension,
also dentored bỹL, the above lemma implies that the spectrum ofL̃ contains negative numbers.

4.2. Source-type selfsimilar solutions.The stability analysis of these solutions is straightfor-
ward. We say that a source-type selfsimilar solution of (2) is stable if the associated steady state
(ie the selfsimilar profile) of the equation (5) is stable. That is if the Hessian of the energy (10)
is a uniformly positive-definite quadratic form.

UsingE = 1
2E1 − 1

12E2 + 1
10E3 and the computations of the Hessians in the Section 3 we

obtain that forf ∈ L2
ρ ∩ C2([−L,L]) the Hessian ofE atρ is

HessE(f, f) =

∫

ρ2(f ′′)2 + 8ρρ′f ′f ′′ + 6(ρ′)2(f ′)2 − ρ4(f ′)2 +
1

5
ρf2dx.

The profile,ρ of a symmetric spreading selfsimilar solution satisfies theequation

ρ′′′(x) =
x

5
− ρ2(x)ρ′(x)
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with ρ′(0) = 0 and zero contact angle:ρ′(L) = 0. We also use the following identities that
follow by integrating the equation:

ρ′′(x) = ρ′′(0) +
ρ3(0)

2
+
x2

10
− ρ3(x)

3

ρ′(x)2 = 2

(

ρ′′(0) +
ρ3(0)

3

)

ρ(x) − ρ4(x)

6
+
x2ρ(x)

5
+

2

5

∫ L

x

sρ(s)ds.and

An elementary calculation yields:

(14) HessE(f, f) =

∫

ρ(x)(f ′′(x))2 +
4

5

∫ L

x

sρ(s)ds(f ′(x))2 +
1

5
ρ(x)f2(x) dx

It is obvious thatHessE(f, f) ≥ 1
5 〈f, f〉ρ for all f in the form domain and hence the self-

similar spreading solutions are linearly stable.

5. APPENDIX

In this section we establish some properties of the weightedSobolev spaces relevant for the
stability analysis. In particular the weights that appear in our considerations are equivalent to
powers of the distance to boundary of the domain.

Given an intervalI let us denote byd(x) the distance of a pointx ∈ I to the boundary. We
denote byW 2,2(I, a, c, b) the space of functionsf on I whose distributional derivatives satisfy

(15) ‖f‖2
W 2,2(I,a,b,c) =

∫

I

dc(x)(f ′′(x))2 + db(x)(f ′(x))2 + da(x)f2(x)dx <∞.

The particular weights of interest will bec = 4, b ≥ 4, while−2 < a < 4.

5.1. Density of smooth functions.

Lemma 6. Consider the weighted Sobolev spaceW (a, b) = W 2,2((0, 1), a, b, 4).

i) The setC∞([0, 1]) is dense inW (a, b) if b ≥ 2 anda > −1.
ii) The setC∞

0 (0, 1) is dense inW (a, b) if b ≥ 2 anda < 0.

In the statement above the functions defined on[0, 1] are restricted to(0, 1) to be considered
elements ofW (a, b). This convention holds throughout the paper.

Proof. If a ≥ 0 the claimi) follows by using standard arguments; see Kufner [18, Sec. 7]. In
the case0 > a > −1 the claim follows from claimii); we listed it above just to point out that
C∞([0, 1]) ⊂W (b, a) as long asa > −1.

To showii), considerf ∈ W (a, b) with b ≥ 2 anda < 0. Let κ be a smooth, nondecreasing
cut-off function:κ = 0 on(−∞, 0], κ = 1 on [1,∞). It suffices to approximateκf and(1−κ)f
by smooth functions. As the other case is analogous, we can assume thatf = κf , that is that
f = 0 in some neighborhood of1.
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Let κα(x) = κ(αx) and letfα = κα f . We claim thatfα → f in W (a, b) asα → ∞. It
suffices to show that

∫ 1

0

xa(fα(x) − f(x))2dx→ 0(16)

∫ 1

0

xb(f ′
α(x) − f ′(x))2dx→ 0(17)

∫ 1

0

x4(f ′′
α(x) − f ′′(x))2dx→ 0(18)

asα→ ∞. The claim in (16) follows immediately, since
∫ 1

0

xa(fα(x) − f(x))2dx =

∫ 1/α

0

xa(κ(αx) − 1)2f2(x)dx ≤
∫ 1/α

0

xaf2(x)dx → 0

asα→ ∞, since
∫ 1

0
xaf2(x)dx <∞. To show (17) we estimate:

∫ 1

0

xb(ακ′(αx)f(x) + κ(αx)f ′(x) − f ′(x))2dx

≤ 2‖κ′‖2
L∞α2

∫ 1/α

0

xb−a xaf2(x)dx + 2

∫ 1/α

0

xb(f ′(x))2dx

≤ 2‖κ′‖2
L∞α2 α−b+a

∫ 1/α

0

xaf2(x)dx + o(1) → 0

asα→ ∞ since−b+ a+ 2 < 0. In showing (18) we utilize estimates provided above.
∫ 1

0

x4(α2κ′′
(

αx)f(x) + 2ακ′(αx)f ′(x) + (κ(αx) − 1)f ′′(x)
)2
dx

≤ 3‖κ′′‖2
L∞α4

∫ 1/α

0

x4−axaf2(dx) + o(1)

≤ 3‖κ′′‖2
L∞αa

∫ 1/α

0

xaf2(x)dx → 0

asα→ ∞ sincea < 0.
Thusfα → f in W (a, b) asα → ∞. The functionsfα are supported on compact subsets of

(0, 1). The fact that anyfα can be approximated by a function inC∞
0 (0, 1) follows by a standard

use of mollifiers; as can be found in [18]. �

5.2. A weighted interpolation inequality.

Lemma 7. Letn > 0, β ≥ max{4− n, 6− 2n, 2}, andl(x) = 1 − |x|. There exitsC > 0 such
that for all 1 > ε > 0 and allf ∈ Y = W 2,2((−1, 1), 4 − 2n, β, 4)

(19)
∫ 1

−1

lβ(x)(f ′(x))2dx ≤ ε

∫ 1

−1

l4(x)(f ′′(x))2dx+
C

ε

∫ 1

−1

l4−2n(x)f2(x)dx.

Proof. Since all of the expressions involved in the inequality are continuous with respect to norm
onY and smooth functions (that isC∞([−1, 1]) whenn < 5/2 andC∞

0 (−1, 1) whenn ≥ 5/2)
are dense inY it suffices to show the inequality for smooth functions. Letf ∈ C∞([−1, 1]) if
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n < 5/2 andf ∈ C∞
0 (−1, 1) whenn ≥ 5/2. Recall that in either casef ∈ L2

l4−2n . For any
1 > ε > 0

∫ 1

−1

lβ(x)(f ′(x))2dx ≤
∫ 1

−1

lβ(x)|f ′′(x)f(x)|dx + β

∫ 1

−1

lβ−1(x)|l′(x)||f ′(x)f(x)|dx

≤
(
∫ 1

−1

l4(x)(f ′′(x))2dx

)1/2(∫ 1

−1

l2β−4(x)f2(x)dx

)1/2

+ β

(
∫ 1

−1

lβ(x)(f ′(x))2dx

)1/2(∫ 1

−1

lβ−2(x)f2(x)dx

)1/2

≤ ε

2

∫ 1

−1

l4(x)(f ′′(x))2dx+
1

2ε

∫ 1

−1

l4−2n(x)f2(x)dx

+
1

2

∫ 1

−1

lβ(x)(f ′(x))2dx +
β2

2

∫ 1

−1

l4−2n(x)f2(x)dx

The claim withC = (1 + β2)/2 then follows. �

5.3. Hardy type inequalities.

Lemma 8. Letg ∈ C1([0, a]) be such that for someκ > 0
∫ a

0

zκg2(z)dz > c > 0.

Assume that|g(a)| < ε for ε > 0, such that2aκ+1ε2 < (κ+ 1)c. Then
∫ a

0

zκ+2(g′(z))2dz ≥ (κ+ 1)2

16

∫ a

0

zκg2(z)dz.

Proof. Using integration by parts and assumptions above we obtain
∫ a

0

zκg2(z)dz =
aκ+1

κ+ 1
ε2 − 2

∫ a

0

zκ+1

κ+ 1
g(z)g′(z)dz

≤ aκ+1

κ+ 1
ε2 +

2

κ+ 1

(
∫ a

0

zκg2(z)dz

)1/2 (∫ a

0

zκ+2(g′(z))2dz

)1/2

Therefore
(
∫ a

0

zκg2(z)2dz

)1/2

≤ aκ+1

κ+ 1

ε2√
c

+
2

κ+ 1

(
∫ a

0

zκ+2(g′(z))2dz

)1/2

≤
√
c

2
+

2

κ+ 1

(
∫ a

0

zκ+2(g′(z))2dz

)1/2

Thus

1

2

(
∫ a

0

zκg2(z)dz

)1/2

≤ 2

κ+ 1

(
∫ a

0

zκ+2(g′(z))2dz

)1/2

.

�
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Lemma 9. Let l(x) = 1−|x| andM > 0. There existsλ > 0 such that for any even measurable
functionρ on [−1, 1] such thatMl2 > ρ > l2 and anyf ∈ Y = W 2,2((−1, 1), 0, 2, 4) such that

∫ 1

−1

ρ(x)f(x)dx = 0 and
∫ 1

−1

ρ(x)xf(x)dx = 0

the following hold:

i)
∫ 1

−1

ρ2(x)(f ′′(x))2dx ≥ λ

∫ 1

−1

f2(x)dx.

ii)
∫ 1

−1

ρ2(x)(f ′′(x))2dx ≥ λ

∫ 1

−1

l2(x)(f ′(x))2dx

Proof. Assume that the claim i) is false. We know thatC2([−1, 1]) is dense inY and the
functionals above are continuous with respect to topology of Y . Arguing as in Theorem 1 one
can show that the the set of functions inf ∈ C2([−1, 1]) such that

∫ 1

−1 ρ(x)f(x)dx = 0 and
∫ 1

−1
ρ(x)xf(x)dx = 0 is dense in the set of functions inY satisfying the two equalities. Hence

there exists a sequence of functionsρi andfi ∈ C2([−1, 1]) satisfying the assumptions above,
such that

∫ 1

−1
f2

i (x)dx = 1 and
∫ 1

−1
ρ2

i (x)(f
′′
i (x))2dx→ 0 asi→ ∞.

Thereforef ′′
i → 0 in L2([−a, a]) for any0 < a < 1. Let us now show thatfi(0) andf ′

i(0)
are bounded sequences. By taking the mirror images offi about thex and/or they-axis, we can
assume thatfi(0) ≥ 0 andf ′

i(0) ≥ 0. Sinceρi ≥ 1/4 on [0, 1/2] we can also assume that

1 >
∫ 1/2

0
(f ′′

i (x))2dx ≥
(

∫ 1/2

0
|f ′′

i (x)|dx
)2

for all i. In the following computations we make

use of the estimate(b+ c)2 ≥ 3b2/4 − 3c2. There existsC large such that for alli

C >

∫ 1/2

0

f2
i (x)dx =

∫ 1/2

0

(

fi(0) + f ′
i(0)x+

∫ x

0

∫ r

0

f ′′(s)ds dr

)2

dx

≥
∫ 1/2

0

3

4
(fi(0) + f ′

i(0)x)
2 − 3dx

≥ 3

4

∫ 1/2

0

f2
i (0) + (f ′

i(0))2x2 dx− 2

≥ 1

32
(f2

i (0) + f2
i (0)2) − 2.

Thus there exists a subsequence along whichfi(0) andf ′
i(0) converge. For notational simplicity

we assume that the entire sequence converges:fi(0) → α andf ′
i(0) → β as i → ∞. By

expandingf(x) as above in estimating theH2 norm of |fi − αx − β| it is elementary to verify
that

fi −→ αx + β in H2([−a, a])
for anya ∈ (0, 1). Sobolev inequality implies that the convergence is also inC1,1/2.

Let us show thatβ = 0. Assume thatβ 6= 0. Let 0 < ε < |β|/2. There existsi(ε) such that
for all i > i(ε), ‖fi(x) − αx− β‖C1([−1+ε,1−ε]) < ε. Let Iε = [−1,−1 + ε] ∪ [1− ε, 1]. From
∫ 1

−1 ρi(x)fi(x)dx = 0 follows that
∣

∣

∣

∣

∫

Iε

ρi(x)fi(x)dx

∣

∣

∣

∣

≥
∣

∣

∣

∣

∫ 1−ε

−1+ε

ρi(x)(αx + β)dx

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ 1−ε

−1+ε

ρi(x)(fi(x) − αx − β)dx

∣

∣

∣

∣
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Note that
∫ 1

−1 l
2(x)f2

i (x)dx ≤
∫ 1

−1 f
2
i (x) = 1. For i > i(ε) then follows that

√

2M2ε3

3
≥
√

∫

Iε

Ml2(x)dx

√

∫

Iε

Ml2(x)f2
i (x)dx

≥
∫

Iε

√

ρi(x) (
√

ρi(x) fi(x))dx

≥
∣

∣

∣

∣

∫ 1−ε

−1+ε

ρi(x)βdx

∣

∣

∣

∣

− ε

∣

∣

∣

∣

∫ 1−ε

−1+ε

ρ(x)dx

∣

∣

∣

∣

≥ |β|
2

∫ 1−ε

−1+ε

l(x)2dx

Choosingε small enough leads to contradiction. Thusβ = 0.
The proof thatα = 0 is similar so we omit it. Hencefi → 0 in C1,1/2 on compact subsets of

(−1, 1). There existsi0 such that for alli > i0, |fi(0)|+ |f ′
i(0)| < 1/8. Let us consider the case

that
∫ 1

0 f
2
i (x)dx ≥ 1/2. The case

∫ 0

−1 f
2
i (x)dx ≥ 1/2 is considered analogously.

Lemma 8, applied with withκ = 0, g = fi, z = 1 − x, a = 1, ε = 1/8, andc = 1/2,
implies

∫ 1

0 (1 − x)2(f ′
i(x))

2dx > 1
16

∫ 1

0 f
2
i (x)dx > 1/32. Applying the lemma once more,

this time tog = f ′
i with κ = 2, yields

∫ 1

0
ρ2(x)(f ′′

i (x))2dx >
∫ 1

0
(1 − x)4(f ′′

i (x))2dx >
9
16

∫ 1

0 (1 − x)2(f ′
i(x))

2dx > 1/64. This contradicts the assumption
∫ 1

−1 ρ
2(x)(f ′′

i (x))2dx → 0
asi→ ∞.

Let us now prove claim ii). Assume that the claim is false. Letgi = f ′
i . Arguing as above one

obtains a thatgi → α in C1/2 on compact subsets on(−1, 1).
Let φi(x) =

∫ 1

x sρi(s)ds. Sinceρi is an even, positive function on(−1, 1), so isφi. Also

φi(1) = φ′i(1) = φ′′i (1) = 0. Furthermoreφi(x) ≤
∫ 1

x
ρi(s)ds ≤ M(1 − x)3. Sinceφi is even:

φi(x) ≤ Ml3(x). The condition0 =
∫ 1

−1 ρi(x)xfi(x)dx = −
∫ 1

−1 φ
′(x)fi(x)dx implies, after

integration by parts, that
∫ 1

−1

φi(x)gi(x)dx = 0

This condition can now be used to show thatα = 0. The argument is analogous to the the way
we used

∫ 1

−1 ρi(x)fi(x)dx = 0 to show thatβ = 0 so we leave the details to the reader. Lemma
8, applied withg = gi andk = 2 now leads to contradiction as the second claim did above.�

Corollary 10. LetM > 0, l(x) = 1 − |x|, andψ an integrable function, positive on(−1, 1).
There existsλ > 0 such that for any even measurable functionρ on (−1, 1) such thatMl2 >

ρ > l2 and anyf ∈ C2([−1, 1]) such that
∫ 1

−1
ρ(x)f(x)dx = 0 the following holds:

∫ 1

−1

ρ2(x)(f ′′(x))2 + ψ(x)(f ′(x))2dx ≥ λ

∫ 1

−1

f2(x)dx.

The proof of the corollary closely follows the proof of claimi) of the lemma. The only
difference is that the fact thatα = 0 now follows from the assumption that

∫

ρ2(x)(f ′′
i (x))2 +

ψ(x)(f ′
i(x))

2dx→ 0 asi→ ∞.

Acknowledgment. The author would like to thank Mary Pugh for introducing him to the
problem, many useful advices and constant support. The author is grateful to Robert McCann



22 D. SLEP̌CEV

for introducing him to geometric viewpoint of gradient flowsand many enlightening discussions.
The author is also thankful to Andrea Bertozzi for continuing support.

Part of the research was supported by NSERC grant 250305-02,NSF grants DMS-0244498
and DMS-0638481, and ONR grant N000140410078.

REFERENCES

[1] Robert Almgren. Singularity formation in Hele-Shaw bubbles.Phys. Fluids, 8(2):344–352, 1996.
[2] Robert Almgren, Andrea Bertozzi, and Michael P. Brenner. Stable and unstable singularities in the unforced Hele-

Shaw cell.Phys. Fluids, 8(6):1356–1370, 1996.
[3] Elena Beretta. Selfsimilar source solutions of a fourthorder degenerate parabolic equation.Nonlinear Anal.,

29(7):741–760, 1997.
[4] F. Bernis, L. A. Peletier, and S. M. Williams. Source typesolutions of a fourth order nonlinear degenerate parabolic

equation.Nonlinear Anal., 18(3):217–234, 1992.
[5] Andrew J. Bernoff and Andrea L. Bertozzi. Singularitiesin a modified Kuramoto-Sivashinsky equation describing

interface motion for phase transition.Phys. D, 85(3):375–404, 1995.
[6] A. L. Bertozzi and M. C. Pugh. Long-wave instabilities and saturation in thin film equations.Comm. Pure Appl.

Math., 51(6):625–661, 1998.
[7] A. L. Bertozzi and M. C. Pugh. Finite-time blow-up of solutions of some long-wave unstable thin film equations.

Indiana Univ. Math. J., 49(4):1323–1366, 2000.
[8] Andrea L. Bertozzi. The mathematics of moving contact lines in thin liquid films.Notices Amer. Math. Soc.,

45(6):689–697, 1998.
[9] C. J. Budd, V. A. Galaktionov, and J. F. Williams. Self-similar blow-up in higher-order semilinear parabolic equa-

tions.SIAM J. Appl. Math., 64(5):1775–1809 (electronic), 2004.
[10] Jochen Denzler and Robert J. McCann. Phase transitionsand symmetry breaking in singular diffusion.Proc. Natl.

Acad. Sci. USA, 100(12):6922–6925 (electronic), 2003.
[11] Jochen Denzler and Robert J. McCann. Fast diffusion to self-similarity: complete spectrum, long-time asymptotics,

and numerology.Arch. Ration. Mech. Anal., 175(3):301–342, 2005.
[12] C. Fermanian Kammerer, F. Merle, and H. Zaag. Stabilityof the blow-up profile of non-linear heat equations from

the dynamical system point of view.Math. Ann., 317(2):347–387, 2000.
[13] Marek Fila and Hiroshi Matano. Blow-up in nonlinear heat equations from the dynamical systems point of view. In

Handbook of dynamical systems, Vol. 2, pages 723–758. North-Holland, Amsterdam, 2002.
[14] Victor A. Galaktionov and Juan L. Vázquez. The problemof blow-up in nonlinear parabolic equations.Discrete

Contin. Dyn. Syst., 8(2):399–433, 2002.
[15] Lorenzo Giacomelli and Felix Otto. Rigorous lubrication approximation.Interfaces Free Bound., 5(4):483–529,

2003.
[16] Yoshikazu Giga and Robert V. Kohn. Asymptotically self-similar blow-up of semilinear heat equations.Comm.

Pure Appl. Math., 38(3):297–319, 1985.
[17] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker-Planck equation.

SIAM J. Math. Anal., 29(1):1–17 (electronic), 1998.
[18] Alois Kufner. Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons Inc.,New York,

1985.
[19] R. S. Laugesen and M. C. Pugh. Linear stability of steadystates for thin film and Cahn-Hilliard type equations.

Arch. Ration. Mech. Anal., 154(1):3–51, 2000.
[20] R. S. Laugesen and M. C. Pugh. Properties of steady states for thin film equations.European J. Appl. Math.,

11(3):293–351, 2000.
[21] R. S. Laugesen and M. C. Pugh. Energy levels of steady states for thin-film-type equations.J. Differential Equations,

182(2):377–415, 2002.
[22] Richard S. Laugesen and Mary C. Pugh. Heteroclinic orbits, mobility parameters and stability for thin film type

equations.Electron. J. Differential Equations, pages No. 95, 29 pp. (electronic), 2002.
[23] Robert J. McCann. A convexity principle for interacting gases.Adv. Math., 128(1):153–179, 1997.
[24] Frank Merle and Pierre Raphael. Profiles and quantization of the blow up mass for critical nonlinear Schrödinger

equation.Comm. Math. Phys., 253(3):675–704, 2005.
[25] A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid films.Rev. Mod. Phys., 69(3):931–980,

1997.



LINEAR STABILITY OF SELFSIMILAR SOLUTIONS OF UNSTABLE THIN-FILM EQUATIONS 23

[26] Felix Otto. The geometry of dissipative evolution equations: the porous medium equation.Comm. Partial Differen-
tial Equations, 26(1-2):101–174, 2001.
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