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ABSTRACT. We study the linear stability of selfsimilar solutions ohf-wave unstable thin-film
equations with power-law nonlinearities
ut = — (W Ugze + v Ug) s 0<n<3 nm

Steady states, which exist for all valuesrafandn above, are shown to be stablenif < n + 2
when0 < n < 2, marginally stable ifn < n + 2 when2 < n < 3 and unstable otherwise.
Dynamical selfsimilar solutions are known to exist for agemf values of: whenm = n+2. We
carry out the analysis of stability of these solutions whes 1 andm = 3. Spreading selfsimilar
solutions are proven to be stable. Selfsimilar blowup $mst with a single local maximum are
proven to be stable, while selfsimilar blowup solutionshaitore than one local maximum are
unstable.

The equations above are a gradient flows of a nonconvex enarfgymal infinite dimensional
manifolds. In the spacial case= 1 the equations are gradient flows in the familiar Wasserstein
metric. The geometric structure of the equations plays groitant role in the analysis and pro-
vides a natural way to approach a family of linear stabilitgtpems.

Thin-film equations model the evolution of a thin layer ofogsis fluid on a solid substrate.
They are derived from the Navier—Stokes equations in thi¢ tiffow Reynolds number assum-
ing the separation of horizontal and vertical length scalae so called lubrication approxima-
tion. Overviews and further references can be found in [B].[ The general form of thin-film
equations is:

1) u ==V (f(u)VAu + g(u)Vu)

whereu is the height of the fluid. The leading order term, containdng describes the effects
of surface tension. The particular form of the functitfx) depends on the boundary condition
between the fluid and the substrate. In particyflar) = u3 models the no-slip boundary con-
dition. The equations wittf (u) = u are obtained in lubrication approximation of a Hele-Shaw
cell [1], [15] in which case the friction between the sideliveand the fluid is negligible. The
term containingy(u) models the effects of additional forces acting on the fluithsas gravity
or intermolecular forces (e.g. Van der Waals forces). Wesioar these equations in the regime
of complete wetting in which the angle at the edge of the srtpgfdhe liquid (i.e. the contact
angle) is zero.

In this paper we consider one-dimensional thin-film equetiovith power-law nonlinearity
and a destabilizing lower order term:

(2) ur = — (W Uggr + U U ) 5 reR
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wherem > n > 0 and3 > n > 0. The existence of weak solutions was studied by Bertozzi and
Pugh [6, 7]. The condition8 < n < 3 is needed for the existence of compactly supported solu-
tions even if the destabilizing term was not present, dueacsb called contact line singularity.
The conditionm > n is also required for the existence due to considerationstheacontact
line [6, Thm. 4.4]. For that reason we only consider the pewer> n. Bertozzi and Pugh have
shown that the power = n + 2 is critical in the sense that when < n + 2 then there exist
global in time solutions for initial data in

X:={uc H'NnL'|u>0}

while for m > n + 2 finite-time blow-up is possible. The existence of solutitimest blow up
in finite time has been shown in the special cases 1 andm > 3 [6] and0 < n < 3/2 and
m =n+ 2 [28].

Structurally these equations represent a higher ordeogualof widely studied second order
equations with destabilizing lower order terms that exHibite time blowup. In particular of the
nonlinear Schrodinger equation and nonlinear heat eguafihe list works on these equation is
very large and we only mention a few in which a reader can fintthéux references [12],[13], [14],
[16], [24], [29]. Blowup in related fourth order paraboliqeations has also been investigated
[2], [5], [9], [33], [34] For a large family of equations blayp generically occurs at a point as
the solution grows and focuses at the point. The blowup isnofat least locally, selfsimilar.
In the case that the equation is invariant under appropsitng it can have global (in space)
selfsimilar blowup solutions that, if stable, govern thedbstructure of the blowup.

For the equation (2) in the critical case = n + 2, the scaling of the equation suggests that
there exist dynamical selfsimilar solutions. Beretta [8ktshown that there exist source-type
(spreading) selfsimilar solutions for < n < 3, and that there are no source-type selfsimilar
solutions whem > 3. Selfsimilar blow-up solutions were considered in [28].eirtexistence
was shown fob < n < 3/2 and nonexistence for > 3/2. It was shown that while spreading
selfsimilar solutions have only one local maximum, the blggvselfsimilar solutions can have
one or more local maxima. The solutions with one maximum afied single-bump solutions
while the solutions with more then one local maximum areechthulti-bump solutions.

The critical case: = 1 andm = 3:

(3) Ut = *(Uuzzz + U3Um)z

was investigated by Witelski, Bernoff, and Bertozzi [32]y Bumerically computing the spec-
trum of the linearized operator they have demonstratedsiratading selfsimilar solutions are
linearly stable as are the single-bump blowup selfsimitdutions. On the other hand the multi-
bump selfsimilar solutions were demonstrated to be liyeanistable. Nonlinear stability was
also apparent from numerical simulations of the Cauchylprob

Our aim is to verify the linear stability analysis rigoroydh the case of dynamical selfsimilar
solutions we rescale the equation spatially and temposallyhat the stability analysis of the
blowup solutions reduces to the stability analysis of syestdtes of the rescaled equation. An
important element of this work is in the viewpoint we take.niNdy the original equation and
the rescaled equation when= 1 have the formal structure of a gradient flow on a infinite-
dimensional manifold. Using the gradient-flow structurahs equation suggests the space in
which to consider the linearized equation, in particulag @nwhich the linearized operator is
symmetric. This observation follows from the fact that tine&rized dynamics at a steady state is
governed by the Hessian (on the manifold), which is alwaygansetric operator. Furthermore
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the structure of the metric on the manifold suggests a nlathcace of coordinates, in which the
operator becomes more transparent.

We recall facts about selfsimilar solutions in Section 1.e Gnadient-flow structure of the
equations is described in Section 2. The stability anabfssseady states is carried out in Section
3. We prove that steady states are linearly stable vthenn < 2 andn + 2 > m > n. That
is we show that modulo zero eigenvalue(s) that correspotttetinvariance(s) of the equations
the spectrum of the linearized operator has positive lowend. The invariances mentioned are
translations and in the critical caset+n+2 also dilations. Whefl < n < 3andn < m < n-+2
the steady states are shown to be marginally stable, butatdesn the above sense. That is if
2 < n < 5/2, modulo translations (and dilationsrif = n + 2) the spectrum is nonnegative but
there is no positive lower bound. #f > 5/2 the steady states are again marginally stable, but
translations and dilations are no longer allowed pertimbat that is they are not in the domain
of the linearized operator. This is not surprising. Mogilitith n = 1 corresponds to no friction
between the fluid and the substrate, while= 3 corresponds to no slip boundary condition.
Hence as: increases moving the contact line requires greater enasgipdtion. In particular
whenn > 5/2 translating the steady state (in arbitrarily small neighiood of the contact line)
requires infinite energy dissipation rate (9).

Let us also remark here that power= 5/2 is not universal in the sense that not all compactly
supported functions with zero contact angle would requifimite energy dissipation to move.
The critical power depends on the rate at which a solutionties down. Steady states that we
consider touch down quadratically, while for example selifar solutions of thin-film equation
without destabilizing terms touch down liK& — x)3/™ [4], where L is the touchdown point.
The critical power for such touchdownsis= 3.

Steady states are shown to be linearly unstable in the sifpsiccasem > n + 2. The
stability analysis of selfsimilar blowup solutions andfsishilar source type is done in Section
4. In the Appendix we prove some facts about the weighted I8olspace we use. In particular
Hardy-type inequalities with constraints, needed forldighing the positive lower bound on the
spectrum.

1. STEADY STATES, SELFSIMILAR SOLUTIONS AND SIMILARITY VARIABLES

Steady states of (2) both on bounded domains aridl were investigated in a series of papers
by Laugesen and Pugh [20, 19, 21, 22]. The simplest steathsstaR with finite mass are so
calleddroplet steady statesvhich have connected, compact support, have one localmuai
and are axially symmetric. By taking several droplet stesidyes with disjoint supports one
obtains more complicated steady states, so calteglet configurations

Whenm # n + 2 there are droplet steady states of any md@3sr(orm), while in the critical
casem = n + 2 all droplet steady states have the same mags— 277\/2/_3. The value of
constantV/,. was determined in [32].

To consider dynamical selfsimilar solutions, observe thatequation (2) is invariant under
the scalingr — Az, v — u/)\ andt — A"*4t whenm = n + 2. If m # n + 2 there is no
such scaling invariance. The scaling suggests that thetiequa the critical case could posses
solutions of the form:

u(z, ) = A()p(A(D)a)
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These solutions, should they exist, are called selfsinsitdutions. Substituting in the equation
yields that

N(t) = o A" (t)
for some constant. This implies

A(t) = (A(0) — ot) 7,

Spreading selfsimilar solution&ettingo < 0 asks for a solutions that is spreading and exist
forall ¢ > 0. Itis convenient to sek(0) = 1 and normalize the solution by setting:= —1.
One should note that had we picke@) = 0 we would indeed get a true source type selfsimilar
solution, with delta mass as its initial data.

The functionU is called the selfsimilar profile and satisfies an ODE (withs a parameter).
Properties, and existence of solutions the appropriate @&xe studied by Beretta in [3]. It was
shown that there exists one family of source-type selfgsingblutions, these solutions are even,
have one local maximum (at zero), and have compact support.

To study their stability we introduce, as is customary, setidependent rescaling (change of
variables) that transforms the selfsimilar solutions steady states (of a new equation). In par-
ticular looking for substitution that agrees with the seglaboveuw(x,t) = A(t)v(A(t)z, s(t))
we find thats(¢) = In(1 4+ t). So

“) W(y,8) = (€8 — 1)~ u((e® — 1) "7y, e — 1),

Using the equation (2) one obtains thdas a solution of:

1

(5) Vs = _(Unvyyy + v"+2vy T hrd y”)y
with the same initial data as Note that(y, s) = U(y) is a steady state of the equation.

Focusing selfsimilar solutionsSettingo > 0 asks for a focusing solution that blows-up at
timet = @ In this case we normalize the solution by settk{g) := 1 ando := 1.

The set of selfsimilar blow-up solutions has richer struetas in addition to solutions with
a single maximum there exist solutions with any number oéllocaxima [28]. The support of
solutions is again compact and connected.

Substituting as before we obtaift) = — In(1 — ¢) and

(6) v(y,s) = (1— %) mau((l—e ™) mhy,1— ™)
which satisfies the equation

n n 1
(7) Vs = _(U Vyyy TV +QUy + n1d yv)y

with same initial data as.

2. THIN-FILM EQUATIONS AS GRADIENT FLOWS
The equation (2) can be viewed as the gradient flow of theviatig energy: Form — n ¢
{*17 *2}
1, 1

(8) E(u) = /R —ug — T Y e— u™ "2y
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for u € X. Otherwise, ifm — n = —2 then the second term of the energy-isn« and if
m —n = —1thenitisulnu — u. Since almost all of the paper is devoted to the case n
these special cases will not play a role.

Let us first note that energ is a dissipated quantity of the evolution with the dissipati
rate4Z = —D:

1
9 D= i2(x)d
© | i e
wherej is the flux:j = —u™ Uz + ™ ug.

The energyF plays a crucial role in current existence theory for the éigna Namely, as
was shown in [6], energ¥ and mass produce a bound on tHé-norm of the solution when
m < n + 2 via Gagliardo—Nirenberg inequality:

2(p—1)

2+p
lullr < Cllusll " |lull /7 forp > 1

In the critical casen = n + 2 the sharp constant in the inequality was determined by SgyN
[30]. The inequality becomes:

6 2
utdr < (/ |u|da:) /uidaz
/]R Mz \Jr R

For solutions of (2) withm = n + 2 it implies

% (1 - ({wu;) /uidm < E(u(t)) < E(uo)-

So if the initial mass is less then the mass of a droplet stetadg then the solution exists for all
time.

For the equations in similarity variables appropriate gpés known only for the case = 1
and has the form

[l L 4,1 o
(10) Ei(v):= /R 5% " 137 + oY vdy
where+ is taken for the spreading problem andfor the focusing. The energy is defined for

veY :=Xn{v| [py’vdy < oo}

2.1. Gradient flow structure. The geometric viewpoint of gradient flows we take was devel-
oped by Otto [26]. Consider a formal Riemannian manifetdvhose elements are real functions
on given domain, with inner product, -),, v € M. The equation

du
= F([u)

is a gradient flow of energ¥' : M — R if forall u € M, F([u]) € T, M and
(F([u]),5), = —dE[s]

for everys € T, M. By [u] we denoted the:-tuple of the spatial derivatives involved in the
equation.

In the case of the equations (2), (5), and (¥},is loosely speaking the infinite dimensional
manifold of nonnegativé!® functions with finite second moments. The tangent vectaisaiMm
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are functions whose support is subset of the suppott, aind that have zero mean on each
connected component of the supporuofThe inner product is, formally, defined as follows:

(11) (51,52)u Z/u"f1f2

where f; are such that-(u"f;), = s; fori = 1,2 andlim, .., u™(z) f;(z) = 0. Note that

dE[s] = %E[s], whereZ[s] is the Gateaux derivative df in the directions. Elementary, but

formal, calculations then verify that farsatisfying equation (2) anf' given by (8)
oF
(uts s)u = —5—ls].

Analogously, in then = 1, case the rescaled equations (5) and (7) are gradient flothe of
energies described in (10).

The remarkable fact about the inner product witk= 1 is that the distance it induces on the
manifold M is the Wasserstein metric. Various gradient flows in Wassiersnetric have been
subject of a number of recent studies beginning with[17].eAder can find further details in
[26, 31].

2.2. Linearizing a gradient flow at a steady state.The geometric structure of the gradient
flows can be utilized when conducting linear-stability as#&. In particular Denzler and Mc-
Cann [10], [11] have used this structure to study the liresaion of the fast-diffusion equation.

The linearized dynamics near a steady state of a gradientffoavmanifold is described by
the Hessian of the energy. By the definition of the Hessiais, & symmetric operator in the
metric of the gradient flow. To illustrate that in some gelisrdet u(t) be the gradient flow of
energyE on manifold M with inner product -, -, ). For allvy, vy € T, M, Hess E(v1,v2) =
Hess E(vg,v1). The Hessian operatdd : T, M — T, M is associated to the Hessian form,
Hess E, by (H vy, v9) = Hess E(v1, v2)

In our case the manifold structure is formal. For the gradiews that we consider we show
that at a steady state, the Hessian operdtbr,an object defined using the formal manifold
structure, is equivalent to the standard linearizatiorrajoe. More precisely, let us consider an
equation

uy = F([u]).
which we assume to be in divergence form, and hence massyiresd._et the equation also be

the gradient flow of the energh on the manifoldM. Letn be a steady state of the equation
above. Lew € T;, M. The linearized operatdt atn is given by

E([n+ hvl))
h

Note thata(h) = n + hv is a curve onM. Take an arbitraryw € T,,M. By % we denote the
covariant derivative along, while we useV for Riemannian connection.

L|,v = lim
h—0

Hess E|,) (v, w) = (V, grad E, w),, =
D _ F([a(h)])
= < an F([a(h>])7w> = <hm T,w> = (L v, w)y

h=0 h—0
= n n
We used thagrad E|,, = 0. Note that the above equality shows tiaf, is symmetric.
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2.3. Local coordinates. In the description above we were loose in describing theesp&ftinc-
tions that form the tangent space. For the gradient flowsthéhnner product defined as in (11)
the description is easier after a change of coordinates.p@heular coordinates when = 1,
were suggested by work of Otto, and were used by Denzler ari@aiic [10],[11].

The definition of the inner product suggests to identify #regent plane at € M with the

set of functions
2. ={11 s <:c>d:c<oo}.

The inner product is the weighteltf inner product,(f, g, = [u"(z) (x)dz. The co-
ordinate change that transforms from this description tzodkd one ISs = ( "f)z. When
n = 1 this transformation describes going from Lagrangian dgson, f to Eulerian descrip-
tion s. That iss the describes the infinitesimal change in the height of flulle f is the vector
field the fluid is perturbed by, with all particles located abthe same spot moving by the same
amount.

But as it turns out, Lagrangian coordinates for the tangéamepcan be useful even when
n # 1. Although it is possible to use the coordinates suggestatéinner product directly, for
our particular problem the Lagrangian coordinates yieltigh#ly simpler form of the operator.
The tangent plane is in this case identified with the weiglitespace: L2, _,.. The inner product
is{f,q) f{u>0} u?~"(z) f(x)g(x)dx. The coordinate transformation to Eulerian coordinates

iss = (uf)x

3. STABILITY OF STEADY STATES
We now study the stability of steady states of the equations
ur = — (U Uggr + 0 Uz ) 5

with 0 < n < 3 andm > n.

Steady states of these equations have been studied by lesuged Pugh [20, 19, 21, 22].
There are two classes of steady states. The first are pogitiviedic steady states. The stability
of these steady states was studied in [19]. Constant st¢ateg aire long-wave unstable. Positive
periodic steady states were shown to be unstable to zera-pegturbations of the same period
if m>n+1orm < n. Forn < m < n+ 1 evidence is presented that periodic steady
states can be stable. The stability in [19] is characterizgdrms of time and area maps of a
related nonlinear oscillator. Let us remark techniquesl6f [ise that the linearized operator is
nondegenerate which is not the case in the problems that msd=y. We should also point out
the difference in the definitions of stability in [19] and BefSteady states in [19] are defined to
be stable if the spectrum of the linearized operator is ngatie, while we distinguish between
positivity (stability) and nonnegativity (marginal stétyi) of the spectrum.

The second class of steady states are ones with compactrsuye study the stability of
such states here. If the set where a compactly supportedysstate is positive is connected,
we call it a droplet steady state. Otherwise the steady &ateonfiguration of droplet steady
states. That is any compactly supported steady state is afsinoplet steady states with disjoint
positivity sets.

The stability of the droplet configuration that are made afpdiets with disjoint supports can
be obtained from the stability of droplet steady states thiah it. If the supports of droplets
touch then the situation is a bit more complicated. We wibthglthat the stability of droplet
steady states depends only on the powers of nonlineat8eswyo droplets that touch are either
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both stable or both unstable. If both are unstable then tin¢ §tate is also unstable, while if
both are stable then our analysis only implies that the gt is marginally stable. Whether it
is stable is an open problem.

From now on we concentrate on droplet steady states. nl@ such a state. We know
from [20] thatn is symmetric and hence, by translating it if necessary, weassume thaj
is centered ab, and that the support of is the interval[—L, L]. From [20] also follows that
nis aC! function,n restricted to— L, L] is a smooth function, but is not@? function onR.
Furthermordim,. ., n" (z) > 0.

The linearized equation can be obtained in a classical wapebturbing the steady state in
Eulerian variables. For this we refer the reader to the wbitelski, Bernoff, and Bertozzi [32,
Sec. 5.2] who carried it out for the = 1 case. The delicate part of this procedure is handling
the contact line, that is the boundary of the suppoti.of

Following Otto [26], and Denzler and McCann [10],[11] we safer the linearization using
the geometry of the equation. This approach handles thacblirie in a natural and straightfor-
ward manner. We will first compute the Hessian fdfess £ in Lagrangian local coordinates,
mentioned above.

Hessian is a bilinear form, but for our considerations we oeled the quadratic forfiiess E(f, f).
To computeess E(f, f) at steady state, given a tangent vectgf € Lf}z,” NC?([-L, L)) we
use that

Hess (. f) = (Vs grad B, /) "2 fl(grad £, )] = fIf(E]
which is equal to the second derivative Bfalong a curve whose tangent vectorfis When
n = 1 the geodesic in directiofi is known and has a simple expression. Even whef 1 this
geodesic is a curve with tangent vecfaaity. Hence we use these curves to compute the Hessian
for anyn.

The geodesics were used in the works of McCann [23], Otto §26] Denzler and McCann
[10],[11], and we refer to these works or the book by VillaB1] for the details. Here we just
state what the geodesics are. lete M and f € T, M be a bounded function. Then the
geodesiey is for |s| < 1/||f||L= given by:

v(s) = (Id + sf)#p

Here F'#p represents the push forward of the measure with depsitg the functionF'. In the
case above that represents to translating each partickatiethe graph gf by the vectos f. So
the new location of the particle originally atis ®;(z) = = + sf(x). If f is differentiable then

()
0 )

The Hessian quadratic form of the eneifg\at a steady stateis

d2

Hess E(f, f) = fIf[E]] = 152

E(v(s))

s=0

The energies we study involve the following

Eq(u) :/uida:, Es(u) :/uﬁd:c, and FEs(u) :/I2udfv.
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Let us computeess E; at a steady statg. We will use notationr = ®;(y). Let f €
Lfﬁ,” N C?([-L, L)).

d2
HessE1(f, f) = e
s=0

_ (@7 (1) \*

- ds? s_()/ (ay ‘I),'s(q)s_l(y))) %

_ a2 n'(x) (@)@ (z)
- ds? s=0/ (@4(x)*  (P4(2))? 4

_ d_28=0 (- ”(x)sf"(%)? (1+ 5/ (@)da

ds? (L+sf'(2)?  (1+sf'(x))
= /12(77'(30))2(f'(f6))2 +16n(2) () f (@) f" (@) + 2n(2)*(f" (2))*dz

The Hessians of energié% and E'5 are computed similarly. Moreover Hessians of these func-
tionals were already computed by Otto [26].

Hess B (f, f) = B(6 — 1) / 7 (2)(f (2))2de
Hess E3(f, f) = 2 / n(@)f (z)*da

The Hessian of the enerdy(u) given by (8) at; is thus equal to

Hess E(f, f) = %HGSSEl(f,f) + m—ns 2)1(m m—— Hess Es(f, f)
" - / S P@ @) - B2 e ()
=" m-n+2" '

In obtaining the expression above we used the factiish steady state, that it has compact sup-
port and thaty’ = 0 on the edge of the support. Specifically we used thsHtisfies the equation
0" (x) = —y™ " (z)n/(z), as well as the integrated form of the equatih= m(”,,g)]rl) -1
and that(n)? = o2y n (n(0)™ —0™).

It is clear that the fornHess E' is semibounded whem < n + 2 (recall that we always
assume thatr > n). Note thaty” (L) = m?rg)+)1) > 0 and hence there exist positive constants
Cy andCy > 1 such thatCy (L — |z])? < n(x) < Co(L — |z|)* forall z € (—L,L). Thus
the interpolation inequality (19) implies that the form isasemibounded for when > n + 2.
That is there existsl such thatess E(f, f) > A(f, f) forall f € L?, , n C*([-L, L]). The
form domain is the weighted Sobolev space= W22((—L,L),4 — 2n,2m — 2n + 4,4) as
defined by (15) in the Appendix. The linearized operatoffitsas the form

n— m—mn—2 m—n
Lf=ng""? ((an”)” o " +2f’)')

Note that it is symmetric omflz,” N C4([-L, L]), with no additional boundary conditions at
—L andL. The formHess E determines the Friedrichs extension (see [27]) of opetatdFhe
extended operatdt is selfadjoint.
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Perturbing in the directiofi = 1 corresponds to translations. Observe that fornfadly £(1,1) =
0. However only wher) < n < 5/2 doesl € Lf}z,” and hence only then i = 1 an eigenvec-
tor of the operatod that corresponds to eigenvalue 0. The fact that 1 is a neutral direction
not surprising; it is a consequence translation invariarieguation (2).

Perturbing the solution in directigh= x correspondsto dilations. Note that whern> n+2,
and0 < n < 5/2 thenHess E(z,z) < 0 andz € Y. Hence when steady states are linearly
unstable, and dilations represent an unstable direction.=+ n+2 thenf = x is an eigenvector
corresponding to eigenvalle Whenm < n + 2 the droplet steady states are linearly stable,
which we prove in the next theorem.

Theorem 1. (subcritical case) Letn be a droplet steady state of equati@with0 < n < 3 and
n < m < n+2 supported on intervdL, L]. LetHess F be the Hessian af of energyE given
by (12). Let us denote by the weighted Sobolev spadé®2((—L, L), 4 — 2n, 2m — 2n +4,4),
defined in(15).
i) If 0 < n < 2thenn is linearly stable modulo translations, that is there exist> 0
such that
Hess E(f, f) > A{f, f)n
for all functionsf € Y such that(f, 1),, = 0.
i) If 2 < n < 5/2thennis marginally stable modulo translations, thatess E(f, f) > 0
forall f € Y\{0} suchthatf, 1),, = 0. However

mg  HesE(LSH
FeY\oL(f1)a=0  (f, f)y
i) If 5/2 < n < 3thennis marginally stable. ThatiBess E(f, f) > Oforall f € Y\{0},
but
Hess E(f, f)

in =0
rev\or  (f, fin

SinceL is a selfadjoint operator, the claims above imply lower ligion the spectrum of the
operatorL (restricted to orthogonal complementioivhenn < 5/2).

Proof. Assume thath < m < n + 2. If 0 < n < 2 then applying Corollary 10 establishes that
there exists\ > 0 such thatless E(f, f) > [*, f2(z)dx > ||n|7=2 [*, n?~"(x) f2(x)dx for
all f € C?([-L, L]) such thatf, 1),, = 0. We claim that orthogonal complement of vector 1 in
C?([-L, L]) is dense in the orthogonal complementidh Y. Lete > 0 andg € Y such that
(9,1), = 0. By Lemma 6,C?([—L, L]) is dense irt’. Thus there existg. € C?([—L, L]) such
that||g- — g|ly < e. Note that the projection gf. on the orthogonal complement of vector
G = 9= — {9:,1),/(1,1), is also inC?*([— L, L]). Furthermorg|g. — g|ly < |lg- — glly < ¢
which establishes the density claim.

Since all functionals involved are continuous with resgechorm onY the claim of the
lemma follows.

If 2 < n < 5/2thenitis clear from the form oHess E that Hess E(f, f) > 0 for all
f € Y\{0} such thatf, 1),, = 0. To establish the second claim lgt# 0 be a smooth function
supported on a subset ¢§,1). Let the functiongg be given bygs(x) = g(8(L — |z|)). Let
fa=9s—(98,1)5/(1,1),. Thenforg > 1/L, f3is smooth and

L
Hess E(f3, f5) < 2A 1 (2)(g5(2))* + 0™ () (g (2)*da.



LINEAR STABILITY OF SELFSIMILAR SOLUTIONS OF UNSTABLE THINFILM EQUATIONS 11

An elementary calculation that uses thét) < C2(L — |z|)?, gives us how the relevant quanti-
ties scale withs:

L 02 1
A @) gh(e)2de < 2 [ )Rz

m—n-+2
&)

L 1
/O 777”_"L+2(m)(g/'3(x))2dx S 62m72n+3 /O 22m_2"+4(gl(2))2d2

L L L 2
| e [ Ln“gzdx2< / 772”gﬁdfv> Ju.,

2
1 49
1 Jy 247?g(2)dz
> 20227n62n75/ A2, 4031—%62(27175) ( 0 )
0 (L, 1)y
Since0 > 2n — 5 > —1 and2m — 2n + 3 > 1 the scalings above imply

lim Hess E(f3, f3) _o
p—oo (f: fa)n

which establishes the claim.

If 5/2 <n < 3thenl ¢ Y. HenceHess F'(f, f) > Oforall f € Y. Let f3 = g3 wheregg
was defined in the case above. The scalings above then shbw tha

lim Hess E(fg, f3)

= 0.
B—oo  (fp, fa)n

O

Theorem 2. (critical case) Letn be a droplet steady state of equatif®) with 0 < n < 3 and
m = n+ 2 supported ofi— L, L]. LetHess E be the Hessian aj of energyE given by(12)and
letY = W22((—L,L),4 — 2n,2m — 2n + 4,4).

i) If 0 < n < 2theny is linearly stable modulo translations and dilations, thathere
existsA > 0 such that
Hess E(f, f) > A, f)n
for all functionsf € Y such that(f, 1),, = 0 and(f, z),, = 0.
i) If 2 <n < 5/2and then is marginally stable modulo translations and dilations.ath
isHess E(f, f) > 0forall f € Y\{0} suchthat(f, 1), = 0and(f,x), = 0. However

Hess E(f, f)

inf =0
FEV\{O},(f1)n=0,(f2)n=0  (f, f)n

i) If 5/2 < n < 3 and thenn is marginally stable. That i§less E(f, f) > 0 for all
f € Y\{0}. However

- Hess E(f, f)
fey\{o} <fa f>7]

Proof. The proofs are analogous to the proofs in the subcritica.cilse only significant differ-

ence is that the existence of desited> 0 in the casd) < n < 2 follows from the Hardy type
inequality established in claim i) of Lemma 9. O

=0
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Theorem 3. (supercritical case) Letn be a droplet steady state of equati@) with0 < n < 3
andm > n + 2 supported onl—L, L]. LetHess E be the Hessian af of energyE given by(12)
and lety = W22((—L,L),4 — 2n,2m — 2n + 4,4). The steady statg is linearly unstable.
In particular when0 < n < 5/2, f = « belongs to the spacE and represents an unstable
direction: Hess E(z, ) < 0. When5/2 < n < 3 there existsf € C§°(—L, L) N'Y such that
Hess E(f,f) <0

Proof. Sincen > Ci(L — |z|)? near£L it readily follows that functionf(z) = z is in Y’
precisely whem < 5/2. Form ofHess E then gives thaHess E(z, z) < 0.

Let us now consider the ca8¢2 < n < 3. Letx be a smooth, nondecreasing cut-off function
such thatc = 0 on(—o0,0], ands = 1 on[l,00). Fors > 1let fg(x) = x x(B(L — |z|)) for

€ (—L, L). Note thatf is smooth and odd. Thugs, 1),, = 0.

Consider how the terms dfess E( f3, f3) scale with3. Sincen < Ca(L — |z])?

L L 9
/ (@) (f1()2de < 2C3 / (L — )} (Ban” (B(L — z)) — 26K (B(L — 2)))’dx

—L

< 8C3 —L2 “+ @(%’(y))zdy
0

which converges td asg — oo. On the other hand

L L(1-1/8)
/ R (@) (£ ()P > 2 / 2 () de

—L 0

is bounded from below. Therefore, férlarge enougtiless E(f3, f3) < 0. O

4. STABILITY OF BLOW-UP AND SOURCE TYPE SELFSIMILAR SOLUTIONS

The equation (2) has dynamical selfsimilar solutions onhewmn = n + 2. We study the
stability of these solutions via the stability analysis fegly states of the equations in similarity
variables: (5) and (7). As we already mentioned, only whea 1 is the gradient-flow structure
of equations (5) and (7) known. Thus all the consideratiornhis section are for the case= 1
andm = 3.

4.1. Selfsimilar blowup solutions. The equation in similarity variables (7) is a gradient flow of
the energyE = 1 E1 — 4 E, — £ E3. Using the computations of Hessians&f, E» and E;
given in Section 3 we obtain the Hessianmat selfsimilar profilep:

HeSSE(f,f):/pQ(f”)Q+8pplf/f”+6(pl)2(fl)2*p4(f/)2*%prdIC.

for f € C*([-L, L]).
The profilesp symmetric selfsimilar blowup solution satisfy the equatio

p(x) = =% = p*(a)p' (z)

x
)
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with p’(0) = 0 and zero contact angle!(L) = 0. Using identities obtained by integrating the
equation:

a.nd p/(x)Q — 2 (p//(o) + pd(o)) p(l‘) _ m _ M — 2 /L Sp(S)dS

3 6 5 5
we obtain
2 " 2 4 / 2 1 2
1) HesE(L) = [P0 @) - 5e@)( @) - 2o e) da
where

o = [ " sp(s)ds.

Sincep is an even and positive function dr-L, L) so isp. Furthermorep(L) = ¢'(L) =
¢"(L) = 0. The form domain is the weighted Sobolev spaice- W22((—L, L), p, ¢, p?).
The linearized operatdt has the form

1 2 plIN\I 4 N/ 1
pr((pf) +=(ef) 5pf)-
It is symmetric onC*([—L, L]) with no boundary conditions.

Note thatHess E£(1,1) < 0 andHess E(x,x) < 0. Furthermoref = 1 is an eigenvector
corresponding to eigenvaluel /5 and f = z is an eigenvector corresponding to eigenvalie
So the functionsf = 1, which corresponds to translations afid= = which corresponds to
dilations represent unstable directions for the operdtois is a consequence of the invariances
of the original equation and the rescaling to selfsimilaiialsles. However this does mean that
selfsimilar blow-up solutions are structurally unstaliigist means that a small perturbation of
initial data may result in shift in the location or time of thiowup. If we want to investigate
whetherp describes the asymptotic shape of the blowup solution npairewe need to find out
if there are other eigenvectors corresponding to a negeitynvalue.

Hence we say that a selfsimilar blowup solution is lineathbte if there exists a positive
constant\, such that ap

HeSSE(faf) Z )‘<f7f>ﬂ
for all functionsf € Y such thatf, 1), = 0, and(f, z), = 0.

4.1.1. Stability of single-bump selfsimilar blowup solution® formulate and prove the result
about stability we need to recall several facts about thetemce and properties of both steady
states and selfsimilar blowup profiles.

Let us denote by the droplet steady state with suppprtl, 1]. Let H; = 1(0). It follows
from [28, eq. (11)] thab < Hy < 6. Letl(z) = 1 — |z|. Using thaty” = H/4 — n®/3itis
easy to show that/?(z) < n(x) < 30*(x) for x € (—1,1). The facts listed below follow from
Theorem 11 and Lemma 13 in [28].

e For all H large enough there exists a symmetric single-bump selfsimiowup profile
pr With p(0) = H, zero contactangle at= + L. Furthermoré/H < Ly < 7/H.
o Letoy(z) := p(Luz)/H. ForallH large enoughior — 0l c2(-1,1) < 1.
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Therefore3i?(z) < on(z) < 31i*(z) for all H large enough. A consequence of this it that
W22((=Ly,Ly),p,e,p?) = W22((—=Ly, Ly),2,3,4). The density o2°° ([~ Ly, Ly]) fol-
lows from Lemma 6.

Theorem 4. There exist positiv€’ and ), such that for allH > C, and all functionsf € Y =
W22((—~Ly,Ly),2,3,4) such that(f, 1),,, = 0 and(f,z),, =0

Hess E(f, f) > X[, [)pu

Therefore the fornHess £ is semibounded and hence the Friedrichs extensioh &f defined
and self-adjoint. In conclusion fadd > C single-bump selfsimilar profilgs; are linearly stable
and )\ is a lower bound on the spectrum bfrestricted to orthogonal complementbf

Proof Let H be large enough that the propertie:pgflisted above hold. Lef be aC? function
on[—1, 1] suchthat f,1),, = 0and(f,z),, = 0. The inequality i) of Lemma 9 then yields

/_L; 2 (@)(f dz—/ H2L; )(d fCESQHZ)) dz
> H?Ly? [11(2) fA(Lyz)dz

Ly
>l [ @)

Ln
Constantsg; andc, above are positive and independenfbf

Let ¢ (z) = fxl sop(s)ds. Sincecy is an even function, so i$y. Furthermore since
31 < og < 3117 on (-1, 1) an elementary calculation giveg16/3 < ¢z < 1213 on(—1,1).
Using the inequality ii) of Lemma 9 we obtain:

[ oo [ wpe (C1Y o
203H2LH3/_111(2)3 (%) dz

>ty [ on ) (L) d:

>H/ /LHspH )ds (' (x))2de.

The constants;, i« = 3, 4, 5 are again positive and independentbf

Combining the inequalities above yields th&tss E(f, f) > (f, f) for all H large enough
(> max{2/{/c2,1/{/cs}). Arguing as in Theorem 1 one can show the density of the gahal
complementof1,z}in C?([-L, L)) in the orthogonal complement 6f, #} in Y. The continu-
ity of the functionals involved with respect to topology¥fimplies thatHess E(f, f) > (f, ),
forall f € Y orthogonal tol andz. O

4.1.2. Instability of multi-bump selfsimilar blowup solutiongV/e show instability of multi-bump

selfsimilar blowup solutions by constructing an unstahiteation, f, orthogonal to translations
and dilations (see Figure 1). Perturbing the prajiia direction f is effectively dilating out the

solution froma to the right, while dilating in the solution the solution toetleft of —a. The
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A

Y

: « /‘ Lygs
|

Figure 1: lllustration of the right half of the unstable ditien f in k = 3 case

dynamical effect of this perturbation is that the bumps anldit blow up sooner then the ones
on the right. Thus, as it blows up, the solution is attainirstpape rather different from

We present the details for the solution with odd number of ppsimThe construction for a
solution with even number of bumps is similar so we only comnoa the differences. We first
recall some facts about existence and properties of sélfsisolutions from [28].

e Let k£ be an odd integer ankl > 3. For all H large enough there exists a symmetric
selfsimilar blowup profileps 1, with pr (0) = H, zero contact angle at = + Ly 1,
and exactlyk local maxima. Furthermorgk/H < Ly < 7k/H.

e Let k be an even integer arfd > 2. For all§ large enough there exists a symmetric
selfsimilar blowup profiley . with py ;. (0) = 6, zero contact angle at= +Lg , and
exactlyk local maxima.

e For H > 0 letny be the steady state centered at 0 wjth(0) = H and zero contact
angles at-L/H (constantl, ~ 6 is known). Letj; () = ng(z — |zH/L|L/H) for
x € R. Fork > 3 odd and allH large enough

lpmke =Tl L (L L < H % and o, — Tl nee (e prmn < H 22

The facts listed follow from Theorem 29, Theorem 30, Lemmal28nma 26, and the argument
of Corollary 21 of [28].

Theorem 5. For all odd integersk > 3 and all H large enough there exists a functigne
C*([—Luk, Lm i) such that

(f,Dpur =0, (f,2)p,, =0, and Hess E(f, f) <O.

The statement also holds fbr> 2 even, withH replaced byd.

Proof. Let k > 3 be an odd integer. Lelf > 5 be large enough that the properties above hold.
As H andk are set, from now on we omit the, k£ indexes. Letx be the location of the first
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local minimum ofp. Leta = H 3 andg be an ever©>® function on[—L, L] such that

() = 0 fo<z<a-a
=1 s -« fata<z

Furthermorg is required to be nondecreasing @) co) and to satisfy{¢”’| < 5/a. Let f be the
projection ofg to the orthogonal complement of vectigrthat is let

<gv 1>ﬂ
f=g- 3758
(1,1),
Then(f,1), = 0 and sincef is even(f,xz) = 0. Using the estimates gn— 7 listed above, that
7 has minimum 0 and” < H?/12 it follows thatp(a) < H~"/? andp” < H? on[~L,L).
Thusp(z) < p(a) + H3(z — )?. Therefore

/ C ) () < 2 /

L a—a

a+ta 5 2
(H—”2+fﬁa%2<—) dx < 400H 3
a
On the other hand using that> 15/H > 2L, a + a < 4/3L, andp > 7j; —1 > H/3 on
[5/3L,2L] we obtain

/L /L sp(s)ds (f'(z))*dx > 2/%]: /2L sp(s)dsdx > 2iiig >H?
s iz Jaz HHH 4
These inequalities imply that fdd large enough

Hess E(f, f) < 400H 3 — %H‘Q < 0.

In the case that is even one can construct the test function by shiftinig the left bya — a.
This gives a/-shaped test function. |

Let L be the restriction of to orthogonal complement dfl,z}. As a symmetric and real
operatorL has a self-adjoint extension [27]. In terms of the spectrfiany such an extension,
also dentored by, the above lemma implies that the spectruni.afontains negative numbers.

4.2. Source-type selfsimilar solutions.The stability analysis of these solutions is straightfor-
ward. We say that a source-type selfsimilar solution of $Atable if the associated steady state
(ie the selfsimilar profile) of the equation (5) is stable.aTts if the Hessian of the energy (10)
is a uniformly positive-definite quadratic form.

UsingE = 3 F1 — 15 E> + 15F5 and the computations of the Hessians in the Section 3 we
obtain that forf € L2 N C?([-L, L]) the Hessian oF atp is

Hess B(f, f) = / PP+ 8p F1" 4+ 6(0)(F) = P (F)” + %pﬂdw.

The profile,p of a symmetric spreading selfsimilar solution satisfiesayeation

T

p(x) = £ = p*(@)p' ()
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with p’(0) = 0 and zero contact angle/(L) = 0. We also use the following identities that
follow by integrating the equation:

3
weN_ p°(0) ,
Pl(@) = p"(0)+ ==+ 15— 3

(N
B
o
—
&
N

An elementary calculation yields:

4 [t 1
14)  HessE(f. )= [ @) @) +5 [ splo)ds((@) + Zpla) @) da
It is obvious thattess E(f, f) > L (f, f), for all f in the form domain and hence the self-
similar spreading solutions are linearly stable.

5. APPENDIX

In this section we establish some properties of the weigBtublev spaces relevant for the
stability analysis. In particular the weights that app@aour considerations are equivalent to
powers of the distance to boundary of the domain.

Given an interval let us denote byi(x) the distance of a point € I to the boundary. We
denote byWW?22(I, a, c, b) the space of functiong on I whose distributional derivatives satisfy

15) I/l ame) = /Idc(%)(f”(%))2 +d(@)(f'())* + d*(2) f*(x)da < oo

The particular weights of interest will be= 4, b > 4, while —2 < a < 4.

5.1. Density of smooth functions.

Lemma 6. Consider the weighted Sobolev spatéa, b) = W22((0,1), a, b,4).

i) The setC°°([0,1]) is dense iV (a,b) if b > 2 anda > —1.
i) The seC§°(0,1) is dense iV (a,b) if b > 2 anda < 0.

In the statement above the functions defined(®n] are restricted t¢0, 1) to be considered
elements of¥ (a, b). This convention holds throughout the paper.

Proof. If a > 0 the claimi) follows by using standard arguments; see Kufner [18, Seclin7]
the casdé) > a > —1 the claim follows from claimii); we listed it above just to point out that
C*>(]0,1]) € W(b,a) as long as > —1.

To showii), considerf € W (a, b) with b > 2 anda < 0. Let x be a smooth, nondecreasing
cut-off function:x = 0 on(—o0,0], K = 1 0n[1, o). It suffices to approximatef and(1 — ) f
by smooth functions. As the other case is analogous, we camesthatf = «f, that is that
f = 0in some neighborhood df.
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Let ko(2) = k(ax) and letf, = ko f. We claim thatf, — f in W(a,b) asa — oco. It
suffices to show that

(16) / 2 (falz) — [(2)dz — 0
17) /O D () — f(2))2de — 0
(18) A 2 (1 (z) — £ (2))?dx — 0

asa — oo. The claim in (16) follows immediately, since

1 1/ 1/a
/ 2 (fala) — f(2))?de = / (o) — 122 (x)de < / 2212 (x)de — 0

0 0 0

asa — 00, sincefo1 2% f%(z)dx < oo. To show (17) we estimate:
1
| #tantan)f@) + nlaz)f(z) - (a)da
0

1/ 1/«
< 2|2 w0 / 270 2% 2 () + 2 / 2(f (@) de
0

0
1/«
< 2||K||2 0 0® a_b+“/ 2% f2(z)dx + o(1) — 0
0

asa — oo since—b + a + 2 < 0. In showing (18) we utilize estimates provided above.
1
/ a*(a?k" () f(z) + 20k (az) f' () + (k(az) — 1)f”(x))2dx
0
1/«
< 3H/<;”||%ma4/ 472 £2(dx) 4 o(1)
0

1/«
< 3|w||imaa/ +° f2(2)de — 0
0

asa — oo sincea < 0.

Thusf, — fin W(a,b) asa — oo. The functionsf,, are supported on compact subsets of
(0,1). The fact that any,, can be approximated by a functiondig° (0, 1) follows by a standard
use of mollifiers; as can be found in [18]. d

5.2. A weighted interpolation inequality.

Lemma 7. Letn > 0, 8 > max{4 — n,6 — 2n,2}, andl(z) = 1 — |z|. There exits” > 0 such
thatforalll > e >0andallf € Y = W22((—1,1),4 — 2n,3,4)

19 [ P@u@ra e [ @ @i [ 1 P

Proof. Since all of the expressions involved in the inequality amatimuous with respect to norm
onY and smooth functions (that 8> ([—1, 1]) whenn < 5/2 andC§°(—1, 1) whenn > 5/2)
are dense iy it suffices to show the inequality for smooth functions. lfet C>°([—1,1]) if
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n < 5/2andf € Cg°(—1,1) whenn > 5/2. Recall that in either casg € L?, ... For any
1>e>0

| Pou@re s [ Celr@ieldss | @@ @i

1 1/2 1 1/2
< ([ ra@wr@ra) ([ Ewfwe)
—1 —1
1 1/2 1 1/2
wo( [ P@r@ra) ([ reree)
1 -1
e [* 1/t
<3 [t @ g [ e P
2/, 2 )4
1 1 ﬁ2 1
3 [ P L [ @ e
—1 —1
The claim withC = (1 + 3%)/2 then follows. O
5.3. Hardy type inequalities.
Lemma 8. Letg € C*([0,a]) be such that for some > 0
/ 27g%(2)dz > ¢ > 0.
0
Assume thally(a)| < e for e > 0, such thaka"'e? < (k + 1)c. Then
a 1 2 a
/ Zﬁ+2(g/(z))2d22 (K"" ) / ZHQQ(Z)CZZ.
0 16 0
Proof. Using integration by parts and assumptions above we obtain
“ K2 d a”i+1 2 2 “ ZKJFI / d
Azg(z)zfﬁ_i_lsf Aﬁ_’_lg(z)g(z)z
a1 ) 2 a ) 1/2 a o ) 1/2
< K K
< Tie +K+1</Ozg(z)dz) (Az (g(z))dz>

Therefore

1/2
/ anJrl 2 2

<Aa an2(z)2dz) < o % S (Aa ZK+2(9/(Z))2dZ>1/2

= g + ﬁil (/oa ZHQ(gI(z))QdZ)W

Thus
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Lemma9. Leti(x) = 1—|x| andM > 0. There exists\ > 0 such that for any even measurable
functionp on[—1, 1] such thatMi? > p > [? and anyf € Y = W?2((—1,1),0,2,4) such that

/_1 p(x)f(z)de =0 and /_1 p@)zf(x)dr =

the following hold:
i) / )2dx > )\/ f(x
ii) / )2dx > )\/ 1%(x

Proof. Assume that the claim i) is false. We know that([—1,1]) is dense inY and the
functionals above are continuous with respect to topoldgy 0Arguing as in Theorem 1 one
can show that the the set of functionsfine C?([-1,1]) such thatfl1 p(x)f(x)de = 0 and
f p(x x)dx = 0 is dense in the set of functions ¥ satisfying the two equalities. Hence
there exrsts a sequence of functrqnsand fi € C?([—1,1]) satisfying the assumptions above,
such thatf fA(z)dr =1 andf P2 (f(x))?de — 0 asi — oc.

Therefore ! — 0in L?([—a,a]) forany0 < a < 1. Let us now show thaf;(0) and f/(0)

are bounded sequences. By taking the mirror imagés about ther and/or they-axis, we can
assume thafi( ) > 0andf/(0) > 0. Sincep; > 1/4 on[0,1/2] we can also assume that

2
1> f1/2 I/ (z))*dx > ( 01/2 |fi”(a:)|dx) for all 7. In the following computations we make
use of the estrmat(‘:b +¢)? > 3b?/4 — 3¢2. There exist€ large such that for all

1/2 1/2 x T 2
2 _ . / "
C> ; fi (z)dx = /0 (fz(o) + f{(0)x +/0 /0 1" (s)ds dr) dz

1/2
> [0+ £i0)2) 3

3 /2

>4 F20) + (f/(0)*a* dx — 2
0

1
> = (F2(0) + F(0)?) — 2
Thus there exists a subsequence along wifiith) and f/(0) converge. For notational simplicity
we assume that the entire sequence convergg8) — « and f/(0) — (§ asi — oco. By
expandingf (z) as above in estimating thé2 norm of | f; — ax — 3| it is elementary to verify
that

\/

fi — azx+p in H*([~a,a])

for anya € (0,1). Sobolev inequality implies that the convergence is als@'i/?.

Let us show thatt = 0. Assume tha # 0. Let0 < ¢ < |3|/2. There exists(e) such that
foralli > i(e), || fi(x) — ax — Bllor(—14e1—e)) < €. LetL. = [-1,-14¢€]U[1 —¢,1]. From
fil pi(z) fi(z)dz = 0 follows that

‘/ pi(x) fi(x)dz ‘/Ha )(ax + B)dx

‘/kfmwﬂﬁ@)(mﬂwf

—14e€
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Note that[" i%(z) f2(x)dz < [, f2(x) = 1. Fori > i(¢) then follows that

\/ QM;EB > \/ Ml?(x)dx\/ MI2(z) f2(x)da
I I.

;LVEGNWREﬁme
> ‘ / 11; i (z) Bdx /_ l:ep(:wdfv

> 18l /
1+¢

Choosings small enough leads to contradiction. Thiis= 0.

The proof thaty = 0 is similar so we omit it. Hencg; — 0in C'»'/2 on compact subsets of
(—1,1). There exists, such that for ali > i¢, | f;(0)| +|f/(0)| < 1/8. Let us consider the case
thatfo1 f2(x)dx > 1/2. The cas«;j/’i)1 f?(x)dx > 1/2is considered analogously.

Lemma 8, applied with withc = 0, g =fi,iz=1—2z,a=1¢=1/8 andc = 1/2,
implies fol 1 —2)(f/(x))?de > 15 fo fA(x da: > 1/32. Applying the lemma once more,
th|s time tog = f/ with x = 2, yields fo z)(f!(z))?dz > fo (1 — 2)*(f!(z))%dx >
% fo (1 —2)2(f/(z))%dz > 1/64. This contrad|cts the assumptlgfﬁ1 P2 (z)(f!'(z))*dx — 0
asi — oo.

Let us now prove claim ii). Assume that the claim is false. et f/. Arguing as above one
obtains a thay; — « in C'/2 on compact subsets @r-1, 1).

Let ¢;(z) = fxl spi(s)ds. Sincep; is an even, positive function of+-1, 1), so is¢;. Also
i (1) = ¢;(1) = ¢/(1) = 0. Furthermorep; (z) < f pi(s)ds < M(1 - a:) Sinceg; is even:
¢i(x) < MI3(x). The conditior) = filp, xft( )z = — [ | @' () fi(x)dz implies, after

integration by parts, that
1
JRCOr
—1

This condition can now be used to show that 0. The argument is analogous to the the way
we usedfi1 pi(x) fi(x)dz = 0 to show that? = 0 so we leave the details to the reader. Lemma
8, applied withg = g; andk = 2 now leads to contradiction as the second claim did above.

— &

Corollary 10. LetM > 0, i(z) = 1 — |z|, and¢ an integrable function, positive of+-1, 1).
There exists\ > 0 such that for any even measurable functjoon (-1, 1) such thatMi? >

p > 1% and anyf € C%(|-1,1]) such thatfi1 p(z) f(x)dz = 0 the following holds:

1 1
/ PP @) (" (@) + (@) (f () dw > A/ fA(x)dx
—1 —1

The proof of the corollary closely follows the proof of clainof the lemma. The only
difference is that the fact that = 0 now follows from the assumption thdtp?(z)(f/ (z))? +
»(x)(fl(z))?dz — 0 asi — oc.
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