Lipschitz regularity of graph Laplacians on random data clouds

(work by Jeff Calder, Nicolas Garcia Trillos and Marta Lewicka)

Presenter: Truong-Son Van

"20/2"/20/2020

CNA Working Group, Carnegie Mellon University

Overview

- Introduction
- Some results of the paper
- Regularity by stochastic coupling

Intro: notations

As in previous talks,

- $(\mathcal{M}, d_{\mathcal{M}})$ is a smooth closed *m*-dimensional Riemannian manifold embedded in \mathbb{R}^d .
- $\eta:[0,\infty)\to[0,\infty)$ is non-decreasing, supported on [0,1] s.t.

$$\int_{\mathbb{R}^m} \eta(|w|) \, dw = 1$$

- Denote

$$\sigma_{\eta} \stackrel{\text{def}}{=} \int_{\mathbb{R}^m} \langle w, e_1 \rangle^2 \eta(|w|) dw$$
.

For convenience let $\sigma_{\eta} = 1$ in this talk.

- $\rho: \mathcal{M} \to (0, \infty)$ is a density on \mathcal{M} .

Intro: notations

- $\mathcal{X}_n = \{x_1, \dots, x_n\}$ i.i.d samples from ρ
- Graph Laplacians (of length scale ε) $\Delta_{\varepsilon,\mathcal{X}_n}:L^2(\mathcal{X}_n) o L^2(\mathcal{X}_n)$

$$\Delta_{\varepsilon,\mathcal{X}_n} f(x_i) \stackrel{\text{def}}{=} \frac{1}{n\varepsilon^{m+2}} \sum_{j=1}^n \eta\Big(\frac{|x_i-x_j|}{\varepsilon}\Big) (f(x_i) - f(x_j))$$
- Nonlocal Laplacians (of length scale ε) $\Delta_{\varepsilon} : L^2(\mathcal{M}) \to L^2(\mathcal{M})$

$$\Delta_{\varepsilon} f(x) \stackrel{\text{def}}{=} \frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta \left(\frac{d_{\mathcal{M}}(x,y)}{\varepsilon} \right) (f(x) - f(y)) \, dV_{\mathcal{M}}(y)$$

- Weighted Laplace-Beltrami operator on ${\mathcal M}$

$$\Delta_{\mathcal{M}} f(x) = \Delta_{\mathcal{M},\rho} f(x) \stackrel{\text{def}}{=} -\frac{\sigma_{\eta}}{2\rho} \text{div}(\rho^2 \nabla f).$$

- Unweighted Laplace-Beltrami operator is denoted by Δ

Intro: notations

Note:
$$\frac{1}{2p} \operatorname{div}(p^2 \nabla f) = \frac{1}{2p} \langle 2p \nabla p, \nabla f \rangle + \frac{p^2}{2p} \Delta f$$

$$= p \langle \nabla p, \nabla f \rangle + \frac{p}{2} \Delta f$$

$$= p \langle \nabla \log p, \nabla f \rangle + \frac{p}{2} \Delta f$$

Some results: main focus of today's talk

Things to remember: always consider $\left(\frac{\ln n}{n}\right)^{1/m+4} \ll \varepsilon \ll 1$ length scale

Theorem (Global ε -Lipschitz (Theorem 2.1))

With probability at least $1 - C\varepsilon^{-6m} \exp(-cn\varepsilon^{m+4})$, we have

$$|f(x_i) - f(x_j)| \leqslant C(||f||_{L^{\infty}(\mathcal{X}_n)} + ||\Delta_{\varepsilon,\mathcal{X}_n} f||_{L^{\infty}(\mathcal{X}_n)})(d_{\mathcal{M}}(x_i,x_j) + \varepsilon)$$

for all $f \in L^2(\mathcal{X}_n)$ and all $x_i, x_j \in \mathcal{X}_n$.

Note: There is also an interior Lipschitz regularity with length scale bigger than ε .

Q: remove ε on the right hand side due to the lack of information below ε length scale?

Related works

- On discrete regularity: Kuo and Trudinger, "Schauder Estimates for Fully Nonlinear Elliptic Difference Operators" (2002) only on Z^d (difficulties: definition of derivative, manifold)
- On related application by CMU local: Pegden and Smart, "Convergence of the Abelian sandpile" (2013), "Stability of patterns in the Abelian sandpile" (2020)

Some results: consequences of Global ε -Lipschitz

Note: consider $\Delta_{\varepsilon, \chi_n} f = \lambda f$ where $||f||_2 = 1$,

$$|f(x_i) - f(x_j)| \leqslant C(||f||_{\infty} + \lambda ||f||_{\infty})(d_{\mathcal{M}}(x_i, x_j) + \varepsilon).$$

When $\varepsilon \leqslant c/(\lambda+1)$, work a bit harder using concentration of measure type inequalities to get

$$|f(x_i)-f(x_j)| \leqslant C(\lambda+1)^{m+1}(d_{\mathcal{M}}(x_i,x_j)+\varepsilon),$$

and

$$||f||_{\infty} \leqslant C(\lambda+1)^{m+1} ||f||_{1}$$

with high probability.

Some results: consequences of global ε -Lipschitz

Denote

$$[f]_{\varepsilon,\mathcal{X}_n} \stackrel{\text{def}}{=} \max_{x,y \in \mathcal{X}_n} \frac{|f(x) - f(y)|}{d_{\mathcal{M}}(x,y) + \varepsilon}.$$

Theorem (Convergence rate of eigenvectors of graph Laplacian (Theorem 2.6)) Suppose that f is a normalized eigenvector of $\Delta_{\varepsilon,\mathcal{X}_n}$ with eigenvalue λ , i.e. $\|f\|_{L^2(\mathcal{X}_n)}=1$. Then with probability at least $1-C(n+\varepsilon^{-6m})\exp(-cn\varepsilon^{m+4})$, there exists a normalized eigenfunction \tilde{f} of $\Delta_{\mathcal{M}}$ such that

$$||f-\tilde{f}||_{L^{\infty}(\mathcal{X}_n)}+[f-\tilde{f}]_{\varepsilon,\mathcal{X}_n}\leqslant C_{\lambda}\varepsilon.$$

Idea of Proof of convergence of eigenvectors

By an earlier work of Calder and Trillos, with probability $1 - Cn \exp(-cn\varepsilon^{m+4})$, there exists a normalized eigenfunction \tilde{f} of $\Delta_{\mathcal{M}}$ with eigenvalue $\tilde{\lambda}$ s.t.

$$|\lambda - \tilde{\lambda}| + ||f - \tilde{f}||_{L^2(\mathcal{X}_n)} \leqslant C\varepsilon$$
.

By the same work, with probability $1 - 2n \exp(-cn\varepsilon^{m+4})$,

$$\Delta_{\mathcal{E}, \mathcal{H}_n} f = \lambda f$$

$$\|\Delta_{\mathcal{M}}\tilde{f} - \Delta_{\varepsilon,\mathcal{X}_n}\tilde{f}\|_{L^{\infty}(\mathcal{X}_n)} \leqslant C\varepsilon.$$
 $\triangle_{\mathcal{M}}\tilde{f} = \widetilde{f}$

Let $g \stackrel{\text{def}}{=} f - \tilde{f}$. Then

$$\Delta_{arepsilon,\mathcal{X}_n} g = (\Delta_{arepsilon,\mathcal{X}_n} f - \Delta_{\mathcal{M}} ilde{f}) + (\Delta_{\mathcal{M}} ilde{f} - \Delta_{arepsilon,\mathcal{X}_n} ilde{f}) = \lambda (f - ilde{f}) + (\lambda - ilde{\lambda}) ilde{f} + O(arepsilon)$$

and so

$$\|\Delta_{\varepsilon,\mathcal{X}_n}g\|_{L^{\infty}(\mathcal{X}_n)} \leqslant \lambda \|g\|_{L^{\infty}(\mathcal{X}_n)} + C\varepsilon(1+\|\tilde{f}\|_{L^{\infty}(\mathcal{M})}).$$

Idea of Proof of convregence of eigenvectors (cont.)

Work a bit harder to get $||g||_{L^{\infty}(\mathcal{X}_n)} \leqslant C\varepsilon$ and so

$$\|\Delta_{\varepsilon,\mathcal{X}_n}g\|_{L^{\infty}(\mathcal{X}_n)}\leqslant C\varepsilon$$
.

Thus, by global ε -Lipschitz, we have

$$|g(x_i)-g(x_j)|\leqslant C(\|g\|_{L^\infty(\mathcal{X}_n)}+\|\Delta_{\varepsilon,\mathcal{X}_n}g\|_{L^\infty(\mathcal{X}_n)})(d_{\mathcal{M}}(x_i,x_j)+\varepsilon)\leqslant C\varepsilon(d_{\mathcal{M}}(x_i,x_j)+\varepsilon).$$

Using union bound on the complements these events, the result follows.

Idea of Proof of Global ε -Lipschitz

 $\mathsf{Discrete} o \mathsf{Nonlocal} o \mathsf{Local}$

Define the interpolation operator $\mathcal{I}_{\varepsilon,\mathcal{X}_n}:L^2(\mathcal{X}_n)\to L^2(\mathcal{M})$

$$\mathcal{I}_{\varepsilon,\mathcal{X}_n}f(x) \stackrel{\text{def}}{=} \frac{1}{d_{\varepsilon,\mathcal{X}_n}(x)} \frac{1}{n} \sum_{i=1}^n \frac{1}{\varepsilon^m} \eta\left(\frac{|x-x_i|}{\varepsilon}\right) f(x_i)$$

where the degree $d_{\varepsilon,\mathcal{X}_n}$ is defined as

$$d_{\varepsilon,\mathcal{X}_n}(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \frac{1}{\varepsilon^m} \eta\left(\frac{|x-x_i|}{\varepsilon}\right).$$

Idea of Proof of Global ε -Lipschitz (cont.)

Lemma (Discrete to nonlocal) With probability at least $1 - C\varepsilon^{-6m} \exp(-cn\varepsilon^{m+4})$, we have

$$|\Delta_{\varepsilon}(\mathcal{I}_{\varepsilon,\mathcal{X}}f)(x)| \leqslant C(\|\Delta_{\varepsilon,\mathcal{X}_n}f\|_{L^{\infty}(\mathcal{X}_n\cap B(x,\varepsilon))} + \operatorname{osc}_{\mathcal{X}_n\cap B(x,2\varepsilon)}f)$$

for every $f \in L^2(\mathcal{X}_n)$ and $x \in \mathcal{M}$.

Idea of Proof of Global ε -Lipschitz (cont.)

Define "averaging" operators $A_{arepsilon}$ and $ar{A}_{arepsilon}$

More like
$$A_{\varepsilon}f(x)\stackrel{\text{def}}{=}\frac{1}{d_{\varepsilon}(x)}\int_{B_{\mathcal{M}}(x,\varepsilon)}\frac{1}{\varepsilon^{m}}\eta\Big(\frac{d_{\mathcal{M}}(x,y)}{\varepsilon}\Big)f(y)\rho(y)dV_{\mathcal{M}}(y)$$
 interpolating
$$d_{\varepsilon}\stackrel{\text{def}}{=}\int_{B_{\mathcal{M}}(x,\varepsilon)}\frac{1}{\varepsilon^{m}}\eta\Big(\frac{d_{\mathcal{M}}(x,y)}{\varepsilon}\Big)\rho(y)dV_{\mathcal{M}}(y)$$

For $B_x(0,t) \subseteq T_x \mathcal{M}$,

$$\bar{A}_{\varepsilon}f(x) \stackrel{\text{def}}{=} \int_{B_{x}(0,1)} \eta(|\omega|) (1 + \varepsilon \langle w, \nabla \log \rho(0) \rangle) f(\varepsilon w) dw$$

Fact: for small enough ε , with high probability, for $C^2(\mathcal{M})$ functions

$$\mathcal{I}_{\varepsilon,\mathcal{X}_n}f(x) \overset{O(\varepsilon^2)}{pprox} f(x) \overset{O(\varepsilon^2)}{pprox} A_{\varepsilon}f(x) \overset{O(\varepsilon^2)}{pprox} \bar{A}_{\varepsilon}f(x).$$

The last approximation only requires bounded Borel functions.

Idea of Proof of Global ε -Lipschitz (cont.)

By the discrete-to-nonlocal lemma and the above discussion, we will be in business if we have a similar estimate for the non-local Laplacian on \mathcal{M} , i.e.,

$$|f(x)-f(y)| \leqslant C(\|f\|_{L^{\infty}(\mathcal{M})} + \|\Delta_{\varepsilon}f\|_{L^{\infty}(\mathcal{M})})(d_{\mathcal{M}}(x,y) + \varepsilon)$$

for all bounded Borel function f on \mathcal{M} .

In particular, hit this estimate on $\mathcal{I}_{\varepsilon,\mathcal{X}_n}f(x)$, $A_{\varepsilon}f(x)$ and use triangle inequality.

- Observe that $Bf(x) \stackrel{\text{def}}{=} \frac{1}{\rho} \Delta_{\mathcal{M}} f(x) = \Delta f(x) + 2 \langle \nabla f, \nabla \log \rho \rangle_{x}$.
- This suggest that one should look at an Itô process with drift $\nabla \log \rho$

$$dX_t = \nabla \log \rho(X_t) dt + dB_t. \tag{SDE}$$

Intuition: for small $t \approx \varepsilon^2$, $|X_t - x| \approx O(\varepsilon)$ most of the time. So

$$A_{\varepsilon}f(x) - f(x) \approx \bar{A}_{\varepsilon}f(x) - f(x)$$

Taylor expand
$$f(\varepsilon w) \approx \varepsilon^2 \left(\langle \nabla f(x), \nabla \log \rho(x) \rangle + \frac{1}{2} \Delta f(x) \right) = \varepsilon^2 2Bf(x)$$

term in $\overline{A}_{\varepsilon} f$ $\approx \mathbf{E}^{X \int_0^t} \langle f'(X_s), \nabla \log \rho(X_s) \rangle ds + \frac{1}{2} \mathbf{E}^{X} \int_0^t \Delta f(X_s) ds$
 $= \mathbf{E}^{X} (f(X_t) - f(X_s))$ (KEY)

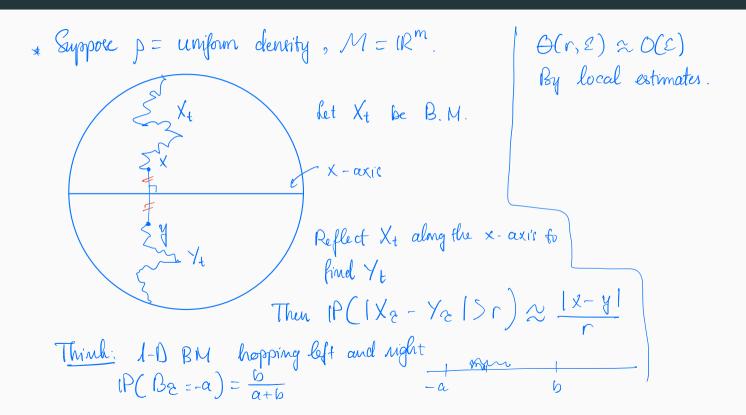
16

Given two processes X_t , Y_t such that $X_0 = x$, $Y_0 = y$ and a stopping time

$$\tau \stackrel{\text{def}}{=} \inf\{t > 0 : |X_t - Y_t| > r \text{ or } |X_t - Y_t| < \varepsilon\}.$$

Suppose that f(x) - f(y) > 0 and $f(X_t) - f(Y_t)$ is a submartingale, then

Game: find X_t and Y_t so that the above inequality is nice.



in general

Unfortunately, this is very hard. But

$$M_t = f(X_t) - f(Y_t) + 2\langle f(X_t) - f(Y_t) \rangle_t$$

is always a submartingale!

By (KEY), it is wise to cook up a process that follows the dynamic of (SDE) such that

$$\langle f(X_t) - f(Y_t) \rangle_t \approx \|A_{\varepsilon}f(x) - f(x)\|_{L^{\infty}(B(x,r))}.$$

- In general, Let X_t be a discrete approximation of size ε of the stochastic flow (SDE).
- Construct Y_t by reflect X_t along the flow. (Draw picture)

