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Intro: notations

As in previous talks,
- (M, dyy) is a smooth closed m-dimensional Riemannian manifold embedded in RY.

- n:[0,00) = [0,00) is non-decreasing, supported on [0, 1] s.t.
[ nlwl) dw = 1
RrRm

- Denote

702 [ (w.ex)n(|w]) .

For convenience let o, =11in this talk.

- p: M — (0,00) is a density on M.



Intro: notations

- X, ={x1,...,Xp} i.i.d samples from p

- Graph Laplacians (of length scale €) A, v, : L2(X,) — L?(X,)

A, ) WZ (B2 (p() — ()

n —> o0
- Nonlocal Laplacians (of length scale ) A, : L>(M) — L?(M)
\/
def ]- dM (X7 y)
AF) E oy [ n(BEEL) (60 = ) aVauy)
| | | ¢ =0
- Weighted Laplace-Beltrami operator on M i

ApmF(x) = Apg o F(x) Z —g—Zdiv(pZVf).

- Unweighted Laplace-Beltrami operator is denoted by A



Intro: notations
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Some results: main focus of today’s talk

Things to remember: always consider ("‘T”)l/m+4 < € < 1 length scale

Theorem (Global e-Lipschitz (Theorem 2.1))
With probability at least 1 — Ce=°™ exp(—cne™*), we have

1F(xi) = FO5)| < CUIf oo (x,) + 1A, f || oo (2) ) (At (Xi5 %) + €)
for all f € L?(X,) and all x;,x; € X,.

Note: There is also an interior Lipschitz regularity with length scale bigger than .

Q: remove ¢ on the right hand side due to the lack of information below & length scale?



Related works

- On discrete regularity: Kuo and Trudinger, “Schauder Estimates for Fully Nonlinear
Elliptic Difference Operators” (2002) — only on Z¢ (difficulties: definition of derivative,
manifold)

- On related application by CMU local: Pegden and Smart, “Convergence of the Abelian
sandpile” (2013), “Stability of patterns in the Abelian sandpile”(2020)



Some results: consequences of Global c-Lipschitz

Note: consider A. x,f = Af where ||f|2 =1,
(i) = FO) < ClIFlloo + Allflloo)(drr(xis x1) +€)

When € < ¢/(A + 1), work a bit harder using concentration of measure type inequalities

to get
[F(xi) = £O)] < COA + )™ (dpa(xi, %) + €)

and
[flloo < CA+ 1) f]l1

with high probability.



Some results: consequences of global =-Lipschitz

Denote

] f(x)—f
[f]s X, =i max | (X) ()/)| -

’ X,y EXn dM(X,y) &
Theorem (Convergence rate of eigenvectors of graph Laplacian (Theorem 2.6))
Suppose that f is a normalized eigenvector of /. x, with eigenvalue ), i.e.
|flli2(x,) = 1. Then with probability at least 1 — C(n + £70M) exp(—cne™**), there
exists a normalized eigenfunction f of A such that

|f — '?HLoo(Xn) +[f — flex, < Cre.



Idea of Proof of convergence of eigenvectors

By an earlier work of Calder and Trillos, with probability 1 — Cnexp(—cne™4), there
exists a normalized eigenfunction f of A with eigenvalue \ s.t.

A — )‘|+Hf_fHL2X < Ce.
" cond =
By the same work, with probability 1 — 2n exp(—cnsm+4), w

]

>7

Ayf— A Fll, < Ce. /\
H M €,Xn HL (Xn) M{
Let g £ f — f. Then

Acx,8 = (Do x,f — Apf) + (A — Do x,F) = A(f — F) + (A= N)F + O(e)
and so
1Ac %8l oo (20,) < Allgllioo () + Ce(X + [Fll oo (rn)) -
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Idea of Proof of convregence of eigenvectors (cont.)

Work a bit harder to get ||g|1~(x,) < Ce and so

12,8l oe ) < Ce.
Thus, by global e-Lipschitz, we have
lg(xi) —g(x)| < CllgllLoe () + [ A28l oo (200) N dra (i X) +€) < Ce(da(xi; x5) +¢)

Using union bound on the complements these events, the result follows. (]
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Idea of Proof of Global c-Lipschitz

Discrete — Nonlocal — Local

Define the interpolation operator Z. x, : L?(X,) — L?(M)

1 11 /x— x|

—Zg—m”(

I x,f(x) =
€,Xn (X) dg’Xn(X) n <~ e

)£ ()

where the degree d. x, is defined as
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Idea of Proof of Global c-Lipschitz (cont.)

Lemma (Discrete to nonlocal)
With probability at least 1 — Ce=°™exp(—cne™*), we have

[Ac(Ze x F)(X)] < C(||Ac,x, ] Lo (x,0B(x,e)) T 05Cx,nB(x,2¢) )

for every f € L?(X,) and x € M.

13



Idea of Proof of Global c-Lipschitz (cont.)

Define “averaging” operators A, and A,

o G A0 G oy (HED)

ivxfur@ajciw\% 1

e dm(x,
dsd=f/B ( )g—mn( M(s y))p(y)dvm(y)
M (x,e

For Bx(0,t) C TM,
AF)E [ )L+ e{w, ¥ log p(0))F (e w) diw
B.(0,1)
Fact: for small enough e, with high probability, for C2(/\/l) functions
O(2 O(&2 0(e?) -
T 2 f0) % o) O A O A

The last approximation only requires bounded Borel functions. 14



Idea of Proof of Global c-Lipschitz (cont.)

By the discrete-to-nonlocal lemma and the above discussion, we will be in business if we

have a similar estimate for the non-local Laplacian on M, i.e.,
[£(x) = f(¥)| < CIIf[[Loory + A | oo () (dr (X, y) +€)

for all bounded Borel function f on M.

In particular, hit this estimate on Z. x,f(x), A-f(x) and use triangle inequality.
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Nonlocal global =-Lipschitz by stochastic coupling

- Observe that Bf(x) = 2Axf(x) = Af(x) + 2(VF, V log p)x.
- This suggest that one should look at an [t6 process with drift V log p
dX: = Vlog p(X¢) dt + dB; . (SDE)
Intuition: for small t ~ &2, |X; — x| &~ O(¢) most of the time. So
Af(x) — f(x) = Af(x) — f(x)

e2((VF(x),V log p(x)) + %Af(x)) — £22Bf(x)

ot (KEY)

t
(F/(X:), V log p(Xe))ds + 1€ [ AF(X.) ds
0 0

E
= EX(f(Xe) — f(x))
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Nonlocal global =-Lipschitz by stochastic coupling

Given two processes X:, Y;: such that Xy = x, Yo = y and a stopping time
TEinf{t>0:|Xe — Ye| >ror|Xe— Ye| <e}.
Suppose that f(x) — f(y) > 0 and f(X;:) — f(Y:) is a submartingale, then

f(x) — fly) < E(f(X7) — £(Y7))
= E(f(X;) = f(Y:): |1 Xr = Yol > 1)+ E(F(X;) — F(Y2): [ X — Yo | <€)
< 2||fllooP(| X — Yo| > r) +sup{|f(a) — f(b)|: a,b € B(x,r),|a— b| < e}
=2||f||lcP(|Xr — Ys| > r) + O(r,e).

\_/—\(__/ e
wevnd UX=Y[/ O(e)
Game: find X; and Y; so that the above inequality is nice.
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Nonlocal global =-Lipschitz by stochastic coupling

) @Woﬁc p= LLVMW cfu/m‘{rﬁ , M = O(r,¢2) = 0O(%)

@14 Jocel  estmotes

X, fut >(t be B M.
. K - ax(¢
K y Q‘lif&&cf X4 aﬂw\raf&i X - ot
' fid,

Thae 1P( [Xe - Ya f>r>/\/ [X;gl

Think: [0 RN I%aﬁo fg{+mcﬂma&t
P( e <a)= w) o 2 18




Nonlocal global =-Lipschitz by stochastic coupling

" %w\u&

Unfortunately, this is very hard\./ But

is always a submartingale!

By (KEY), it is wise to cook up a process that follows the dynamic of (SDE) such that

(F(Xe) = £(Ye))e = [|Acf(x) — f(X)HLoo(B(x,r)) :
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Nonlocal global =-Lipschitz by stochastic coupling

In e

- Let X; be a discrete approximation of size ¢ of the stochastic flow (SDE) .

- Construct Y; by reflect X; along the flow. (Draw picture)
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